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Outline of applications 1

I Sampling Theory

I Sparse Approximation

I Error Correction

I Statistics and Machine Learning

I Low-Rank Matrix Recovery and Matrix Completion

I ...

I See more from Compressive Sensing Resources

1This part of the note is mainly copied from: [1] Simon Foucart Holger Rauhut, A

Mathematical Introduction to Compressive Sensing, Springer 2013.
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1. Sampling Theory

I Sampling theory is to reconstruct a continuous-time

signal from a discrete set of samples.

I Examples include image processing, sensor technology in

general, and analog-to-digital conversion appearing in

audio entertainment systems or mobile communication

devices [1].

I Sampling theory is based on the Shannon sampling

Theorem:

Theorem (Shannon)

If f is banded limited, that is, Suppf̂ ⊂ [−B,B], then f can

be represented by f(t) =
∑

k∈Z f
(
k π
B

)
sinc(Bt− kπ).
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Remark. Sample density (or Nyquist rate):
|supp f̂ |

2π
= B/π.

Proof.
WLOG, we assume B = π. Thus, f̂ is a function on [−π, π] which can be expanded as

f̂(ξ) =
∑
k∈Z

cke
−ikξ.

where

ck =
1

2π

∫ π

−π
eikξ f̂(ξ) dξ =

1
√
2π
f(k).

f(t) =
1
√
2π

∫ π

−π
eitξ f̂(ξ) dξ =

1
√
2π

∫ π

−π
eitξ

∑
k∈Z

cke
−ikξ dξ

=
1
√
2π

∑
k∈Z

ck

∫ π

−π
ei(t−k)ξ dξ =

∑
k∈Z

f(k)
sinπ(t− k)
π(t− k)
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I For periodic function f(t) with period 1 and band width M , it can be

represented as

f(t) =
M∑

k=−M
f̂ke

2πikt

I f̂k, k = −M, ...,M discrete, periodic, can be represented as (discrete Fourier)

f̂k =
2M∑
j=0

cje
2πikj/(2M+1),

cj =
M∑

k=−M
f̂ke
−2πkj/(2M+1) = f

(
j

2M + 1

)
.

I Thus, f can also be represented by

f(t) =
1

2M + 1

2M∑
j=0

f

(
j

2M + 1

)
DM

(
t−

j

2M + 1

)
.

where DM (t) =
∑M
k=−M e2πikt =

sin(2M+1)πt
sin(πt)

.

I In practice, M >> 1, but f̂ may only have sparse s modes, i.e. ‖f̂‖0 = s

I Question: can we take fewer samples in time-domain to reconstruct f exactly?
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CS formulation for compressed sampling

Answer:

I Choose t1, ..., tm independently and randomly, uniformly distributed on [0, 1].

I We sample f at t`, ` = 1, ...,m:

y` = f(t`) =
∑
k

e2πikt` f̂k =
∑
k

A`,kxk, ` = 1, ...,m

A`,k = e2πikt` , ` = 1, ...,m, k = −M, ...,M,

I The CS problem is

min ‖x‖0 subject to Ax = y.

I CS: One can reconstruct f with high probability from its m samples

f(t1), ..., f(tm) provided that m ≥ Cs ln(N).

I E Candes, J Romberg, T Tao, Robust Uncertainty Principles: Exact Signal Reconstruction from Highly

Incomplete Frequency Information, 2004
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2. Sparse Approximation for images

I In image processing, we would like to represent an image

y in terms of some elements {a1, ..., aN}

y =
N∑
j=1

xjaj = [a1, ..., aN ]x.

I The elements aj are called atoms, the set {a1, ..., aN}
called dictionary. Usually, they are redundant.

I Examples are wavelets + Fourier basis or + Gabor basis.

I We usually assume that the image is sparse in this

dictionary. That is, we want to find

min ‖x‖0 subject to Ax = y.
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CS application to image processing

I Compression: using the sparse representation

min ‖x‖0 subject to y = Ax,

we only store those s significant coefficients x′is.

I Denoising: Suppose y = Ax+ e, e is the noise with

‖e‖ ≤ η, and Ax is the sparse presentation. We can

reconstruct image x (noiseless) by

min ‖x‖0 subject to ‖Ax− y‖ ≤ η.
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3. Data separation

I Suppose y = y1 + y2 with

y1 = Ax1, y2 = Bx2,

where A = [a1, ..., aN1 ] B = [b1, ..., bN2 ] be the

dictionaries with different nature. For instance, sinunoidal

and spikes.

I Assumption: x1 and x2 are sparse.

I Sparse reconstruction: we can reconstruct xi from

min
x1,x2
‖x1‖0 + ‖x2‖0 subject to y = Ax1 +Bx2.

9 / 16



4. Error correction

I Suppose we need to transmit a vector z ∈ Rn and we want to design a method

to correct transmittion errors.

I Method:

1. Add redundancy: we convert z → v = Bz ∈ RN , N = n+m.

2. Transmit v but it may have error x. We receive w = v + x.

Assumption: the error x is sparse.

3. We choose A ∈ Rm×N such that AB = 0

4. We measure y = Aw = A(v + x) = ABz +Ax = Ax.

5. We obtain x by solving

min ‖x‖0 subject to y = Ax.

6. We recover z by solving overdetermined system Bz = v = w − x. (E.g.

solving BTBz = BT v)

7. Usually, we choose A random Fourier modes, B a complement of A. In

this case, AB = 0.
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5. Statistics

I The goal of statistical regression is to predict an outcome

based on certain input data. It is common to choose the

linear model

y = Ax+ e

Here, A is the predictor matrix, collected from input, y

output data, and e the noise. x is the parameter to be

estimated.

I Example: Ajk is the clinical data of the jth patient such

as blood pressure, weight, DNA data, etc. whereas yj is

the probability that the jth patient suffers a certain

disease, x is the parameters to fit.
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I In many cases, however, only a small number of

parameters contribute towards the effect to be predicted.

This leads to sparsity of x.

I In statistical terms, determining a sparse parameter vector

x corresponds to selecting the relevant explanatory

variables, i.e., the support of x. One also speaks of model

selection.
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I In statistics, one usually considers the so-called LASSO

(least absolute shrinkage and selection operator)

min ‖Az − y‖2 subject to ‖z‖1 ≤ τ.

I Or the Dantzig selector

min ‖z‖1 subject to ‖A∗(Az − y)‖∞ ≤ λ.

I Or Basis pursuit (also called LASSO)

minλ‖z‖1 + ‖Az − y‖22.
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6. Low-Rank Matrix Recovery and Matrix

Completion

I Recover a matrix X ∈ Cn1×n2 from incomplete

information.

I Sparsity is replaced by the assumption that X has low

rank.

I Singular value decomposition of X:

X =
n∑
`=1

σ`u`v
∗
` , n = min{n1, n2}.

Rank X = ‖σ(X)‖0.
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Netflex problem: a matrix completion problem

I Given an incomplete (rating) matrix whose row is the

videos indices and whose column is the customers. The

entry Xjk is the rating of the jth video by the kth

customer.

I Often, if two customers both like some subset of products,

then they will also both like or dislike other subsets of

products (the types of customers are essentially limited).

It is therefore assumed the rating matrix has low rank.

I The given data Y is incomplete, not every customer rates

every video. The support of Y is only on Λ. Thus the

problem is

min Rank (X) subject to Xij = Yij for (i, j) ∈ Λ. 15 / 16



I It can also be approximated by

min ‖X‖∗ subject to Xij = Yij for (i, j) ∈ Λ.

I Where, the nuclear norm is defined by

‖X‖∗ := ‖σ(X)‖1.
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