Another proof of ϵ -neighborhood theorem: Let Y be a manifold in \mathbb{R}^n and let N(Y) be the normal bundle. Let $F: N(Y) \to \mathbb{R}^n$ be the map defined by F(x, v) = x + v. Let Z be the zero section of N(Y). For each (y, 0) in Z, there is a neighborhood U_y of (y, 0) and neighborhood V_y of y such that $F: U_y \to V_y$ is a diffeomorphism. Let G_y be its inverse. By shrinking U_y and V_y , we can assume that $G_y(V_y \cap Y) = U_y \cap Z$. Let $\delta(y) > 0$ small enough so that $B_{\delta(y)}(y)$ is contained in V_y . For each point z in $B_{\delta(y)/2}(y)$, any point closest to z in Y is contained in $B_{\delta(y)}(y) \subseteq V_y$.

 $\{B_{\delta(y)/2}(y)\}$ covers Y and each point z in $B_{\delta(y)/2}(y)$ has a unique point $p(G_y(z))$ in Y which is closest to z, where $p: N(Y) \mapsto Y$ is the projection. Let $Y^{\delta} = \bigcup_{y} B_{\delta(y)/2}(y)$.