MATH 4050 Real Analysis

Tutorial 11 (April 5, 7)

The following were discussed in the tutorial this week.

1. Let E_n be an increasing sequence of subsets of \mathbb{R} (not necessarily measurable). Set $E = \bigcup_{n=1}^{\infty} E_n$. Show that

$$\lim_{n} m^*(E_n) = m^*(E),$$

where m^* is the (Lebesgue) outer measure.

Remark: If each E_n is measurable, the result is already known. This result and the outer regularity of m^* can be used to prove the limit above.

- 2. We prove the change of variable formula for Lebesgue integral in several steps. Let $g : [a,b] \to [c,d]$ be a monotone increasing absolutely continuous function such that g(a) = c and g(b) = d.
 - (a) Show that for any G_{δ} set $G \subseteq [c, d]$,

$$m(G) = \int_{g^{-1}(G)} g'(x) dx$$

- (b) Let $H = \{x \in [a, b] : g'(x) \neq 0\}$. If $E \subseteq [c, d]$ has measure zero, show that $g^{-1}(E) \cap H$ has measure zero.
- (c) If $E \subseteq [c, d]$ is measurable, show that $F := g^{-1}(E) \cap H$ is measurable and

$$m(E) = \int_F g' = \int_a^b \chi_E(g(x))g'(x)dx.$$

(Note that $g^{-1}(E)$ and hence $\chi_E(g(x))$ may not be measurable.)

(d) If f is a non-negative measurable function on [c, d], show that $(f \circ g)g'$ is measurable on [a, b] and

$$\int_{c}^{d} f(y)dy = \int_{a}^{b} f(g(x))g'(x)dx.$$

Prove the corresponding result where f is integrable.

3. A function $f : [a, b] \to \mathbb{R}$ is said to be singular if for almost every $x \in [a, b]$, f'(x) exists and is equal to 0.

Example: Cantor function

4. Show that if f is both absolutely continuous and singular on [a, b], then f is a constant on [a, b].

(Hint: Use Luzin N property and (2) in tutorial 10.)

- 5. Lebesgue decomposition theorem:
 - (a) If f is an increasing function on [a, b], then there exist an absolutely continuous increasing function g and a singular increasing function h on [a, b] such that f = g + h. Moreover the decomposition is unique up to constants.
 - (b) If f is a function of bounded variation on [a, b], then there exist an absolutely continuous function g and a singular function of bounded variation h on [a, b] such that f = g + h. Moreover the decomposition is unique up to constants.