THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2050A Tutorial 8

- 1. Show that there does not exist a function $f: \mathbb{R} \to \mathbb{R}$ continuous on \mathbb{Q} but discontinuous on $\mathbb{R}\backslash\mathbb{Q}$. (**Hints:** Write $\mathbb{Q} = \{r_n\}_{n=1}^{\infty}$. Use the continuity of f on \mathbb{Q} and the density of \mathbb{Q} to construct a nested sequence of closed bounded intervals I_n such that $r_n \notin I_{n+1}$ and that f is continuous on $\bigcap_{n=1}^{\infty} I_n$.)
- 2. If $f:[0,1]\to\mathbb{R}$ is continuous and has only rational (respectively,irrational) values, must f be a constant?
- 3. Let $f:[0,1] \to [0,1]$ be continuous. Show that f has a fixed point. $(c \in [0,1]$ is said to be fixed point of f is f(c) = c.)
- 4. Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be a (not necessarily continuous) function with the property that for every $x \in I$, the function f is bounded on a neighborhood $V_{\delta}(x)$ of x. Prove that f is bounded on I. Can the closedness condition be dropped?
- 5. Determine if the following functions are uniformly continuous:

(a)
$$f(x):(0,1)\to\mathbb{R}$$
 defined by $f(x)=\frac{1}{x}$,

(b)
$$f:[0,\infty)\to\mathbb{R}$$
 defined by $f(x)=\sqrt{x}$,

(c)
$$f:[0,M)\to\mathbb{R}$$
 defined by $f(x)=x^2$, where $M>0$,

(d)
$$f:[0,\infty)\to\mathbb{R}$$
 defined by $f(x)=x^2$,

(e)
$$f: \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = \frac{1}{x^2 + 1}$,

(f)
$$f: \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = \cos(x^2)$.

```
Write an (011) = 3 mn n=1
     f 3 continuous od r, => = = 8, >0 sit (fax)-f(y) 1 ≥ 1 × y ε (r,-δ,, r,+δ,)
   We may take &, small enough st (r,-0, r,+0,) = (0,1).
     let nz:= mm { nel ; rn e (r,-5,, r,+8,) \ sr,} }
     We know that no >1.
      f is continuous at f_{n_2} \Rightarrow \exists \ \overline{\partial}_2 > 0 \ \text{st.} \ |f(x) - f(y)| < \frac{1}{2} \ \forall \ x,y \in (r_{n_2} - \delta_2, \gamma_{n_2} + \overline{\partial}_2)
     let n3 == mm & ne / : rn & (rn-02/rn+02) \ frn2 } }.
      We know that n3 > n2 and we repeat the process.
   In tact, we claim the following
    \exists a sequence of open intervals \{I_n\}_{n=1}^{\infty} (i.e. In are epen intervals ^{\dagger}) st.
 O I, DI2DI3D.... (if the interval is (a,b), (a,b) = [a,b])
   3) If on-typic to Y xiyo Ik
We assert that the sequence exists if for each SI,__, In? st. O and D and B
  hold, we can find Inti sh. [I, Iz., Intil satisfies of and of and of and of
Given SILIZ... IN 3 satisty of O. B and B, Let m= mn { K= N : [K \in IN ] }, then m > N+1 (why?)
       . I Swall o st. |f(x)-f(y) | < Nt1 & xiy & ( Ym-8 NAL , Tm+8 NAL )
      We can take som small enough at Irm-Sour, rm+ Tour, I C IN 18 r N+17.
       Then take I Nti = ( Tm-ENti , Tm + BN+1)
     You can omit assertion by selecting Entil according to some specific rules.
     By the assertion, we obtain the Sequence. Now TER # 4 by Nested interval Thm.
     But TK & IK = ) Every element in R. Ik. is irrational number.
      DIE should be smothern herawe DI Ix = [a,b] for some a,b but DA [a,b] = 4
        o'. a=b ERIQ and P. Ik & sington.
    Doesn't matter it RIZE 13 smylton or not, thre TERIZE
(my 3) f 3 continuous at & if re il. Ik. let's assume to each open interval Ik= (4k, bk)
      its boundary pls axibic are rationals, which can be done in construction if sex 9243.
```