THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH2010F Classwork 6

June 12, 2017

Name:

1. Use the Chain Rule to compute the first and second derivatives of the following functions.
(a) $f(x+y, x-y)$,
(b) $g(x / y, y / z)$,

Solution.

(a) $\tilde{f}(x, y)=f(x+y, x-y)$.
$\tilde{f}_{x}=f_{x}+f_{y}$,
$\tilde{f}_{y}=f_{x}-f_{y}$.
$\tilde{f}_{x x}=f_{x x}+f_{x y}+f_{y x}+f_{y y}=f_{x x}+2 f_{x y}+f_{y y}$,
$\tilde{f}_{x y}=f_{x x}-f_{x y}+f_{y x}-f_{y y}=f_{x x}-f_{y y}$,
$\tilde{f}_{y y}=f_{x x}-f_{x y}-f_{y x}+f_{y y}=f_{x x}-2 f_{x y}+f_{y y}$.
(b) $\tilde{g}(x, y, z)=g(u, v)=g(x / y, y / z)$.
$\tilde{g}_{x}=g_{u} \frac{1}{y}=g_{u}(x / y, y / z) \frac{1}{y}$,
$\tilde{g}_{y}=g_{u} \frac{-x}{y^{2}}+g_{v} \frac{1}{z}=g_{u}(x / y, y / z) \frac{-x}{y^{2}}+g_{v}(x / y, y / z) \frac{1}{z}$,
$\tilde{g}_{z}=g_{v} \frac{-y}{z^{2}}=g_{v}(x / y, y / z) \frac{-y}{z^{2}}$.
$\tilde{g}_{x x}=g_{u u} \frac{1}{y} \frac{1}{y}=\frac{1}{y^{2}} g_{u u}(x / y, y / z)$,
$\tilde{g}_{x y}=\left(g_{u u} \frac{-x}{y^{2}}+g_{u v} \frac{1}{z}\right) \frac{1}{y}+g_{u} \frac{-1}{y^{2}}$,
$\tilde{g}_{y y}=g_{u} \frac{2 x}{y^{3}}-\left(g_{u u} \frac{-x}{y^{2}}+g_{u v} \frac{1}{z}\right) \frac{x}{y^{2}}+g_{v u} \frac{1}{z}\left(\frac{-x}{y^{2}}\right)+g_{v v} \frac{1}{z} \frac{1}{z}=g_{u} \frac{2 x}{y^{3}}+g_{u u} \frac{x^{2}}{y^{4}}-g_{u v} \frac{2 x}{y^{2} z}+g_{v v} \frac{1}{z^{2}}$,
$\tilde{g}_{y z}=g_{u v} \frac{-x}{y^{2}} \frac{-y}{z^{2}}-g_{v} \frac{1}{z^{2}}+g_{v v} \frac{1}{z} \frac{-y}{z^{2}}=g_{u v} \frac{x}{y z^{2}}-g_{v} \frac{1}{z^{2}}-g_{v v} \frac{y}{z^{3}}$,
$\tilde{g}_{z z}=g_{v v} \frac{y^{2}}{z^{4}}$.
2. Let u be a solution to the two dimensional Laplace equation. Show that the function

$$
v(x, y)=u\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)
$$

also solves the same equation. Hint: Use $\Delta \log r=0$ where $r=\sqrt{x^{2}+y^{2}}$.
Solution. Let $r=\left(x^{2}+y^{2}\right)^{1 / 2}$. We have

$$
\begin{gathered}
v_{x}=u_{x}(\log r)_{x x}+u_{y}(\log r)_{x y}, \\
v_{x x}=\left(u_{x x}(\log r)_{x x}+u_{x y}(\log r)_{x y}\right)(\log r)_{x x}+u_{x}(\log r)_{x x x}+ \\
\left(u_{y x}(\log r)_{x x}+u_{y y}(\log r)_{x y}\right)(\log r)_{x y}+u_{y}(\log r)_{x x y} \\
v_{y}=u_{x}(\log r)_{x y}+u_{y}(\log r)_{y y} \\
v_{y y}=\left(u_{x x}(\log r)_{x y}+u_{x y}(\log r)_{y y}\right)(\log r)_{x y}+u_{x}(\log r)_{x y y}+ \\
\left(u_{x y}(\log r)_{x x}+u_{y y}(\log r)_{y y}\right)(\log r)_{y y}+u_{y}(\log r)_{y y y}
\end{gathered}
$$

The key is $\Delta \log r=0$ and observe that

$$
\log (r)_{x x x}+\log (r)_{x y y}=(\Delta \log (r))_{x}=0
$$

Then we have

$$
\Delta v(x, y)=\left((\log r)_{x x}^{2}+(\log r)_{x y}^{2}\right) \Delta u\left(x /\left(x^{2}+y^{2}\right), y /\left(x^{2}+y^{2}\right)\right)=0
$$

and the desired conclusion follows. This is called the Kelvin's transform.
3. Express the one dimensional wave equation

$$
\frac{\partial^{2} f}{\partial t^{2}}-c^{2} \frac{\partial^{2} f}{\partial x^{2}}=0, \quad c>0 \text { a constant }
$$

in the new variables

$$
\xi=x-c t, \quad \eta=x+c t .
$$

Then show that the general solution to this equation is

$$
f(x, t)=\varphi(x-c t)+\psi(x+c t)
$$

where φ and ψ are two arbitrary twice differentiable functions on \mathbb{R}.

Solution. Write $f(x, t)=\tilde{f}(\xi, \eta)=\tilde{f}(x-c t, x+c t)$. We have $f_{x}=\tilde{f}_{\xi}+\tilde{f}_{\eta}, f_{t}=-c \tilde{f}_{\xi}+c \tilde{f}_{\eta}, f_{x x}=$ $\tilde{f}_{\xi \xi}+2 \tilde{f}_{\xi \eta}+\tilde{f}_{\eta \eta}$, and $f_{t t}=c^{2} \tilde{f}_{\xi \xi}-2 c^{2} \tilde{f}_{\xi \eta}+c^{2} \tilde{f}_{\eta \eta}$.
Therefore,

$$
\frac{\partial^{2} f}{\partial t^{2}}-c^{2} \frac{\partial^{2} f}{\partial x^{2}}=\left(c^{2} \tilde{f}_{\xi \xi}-2 c^{2} \tilde{f}_{\xi \eta}+c^{2} \tilde{f}_{\eta \eta}\right)-c^{2}\left(\tilde{f}_{\xi \xi}+2 \tilde{f}_{\xi \eta}+\tilde{f}_{\eta \eta}\right)=-4 c^{2} \tilde{f}_{\xi \eta}
$$

The differential equation is simplified to

$$
\tilde{f}_{\xi \eta}=0
$$

Now, $\left(\tilde{f}_{\xi}\right)_{\eta}=0$ implies \tilde{f}_{ξ} is independent of η. Therefore, $\tilde{f}_{\xi}=\varphi_{1}(\xi)$ for some φ_{1}. Fix $\xi_{0} \in \mathbb{R}$ then

$$
f(\xi, \eta)-f\left(\xi_{0}, \eta\right)=\int_{\xi_{0}}^{\xi} \varphi_{1}(t) d t
$$

Consequently,

$$
f(x, y)=\varphi(\xi)+\psi(\eta)
$$

where

$$
\varphi(\xi)=\int_{\xi_{0}}^{\xi} \varphi_{1}(t) d t, \quad \text { and } \quad \psi(\eta)=f\left(\xi_{0}, \eta\right)
$$

4. Find the directional derivative of each of the following functions at the given point and direction:
(a) $x^{2}+y^{3}+z^{4}, \quad(3,2,1) ;(-1,0,4) / \sqrt{17}$.
(b) $e^{x y}+\sin \left(x^{2}+y^{2}\right), \quad(1,-3) ;(1,1) / \sqrt{2}$.

Solution.

(a)

$$
\begin{aligned}
D_{\xi} f & =\xi \cdot \nabla f \\
& =\left.\frac{(-1,0,4)}{\sqrt{17}} \cdot\left(2 x, 3 y^{2}, 4 z^{3}\right)\right|_{(3,2,1)} \\
& =\frac{(-1,0,4)}{\sqrt{17}} \cdot(6,12,4) \\
& =\frac{10}{\sqrt{17}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
D_{\xi} f & =\xi \cdot \nabla f \\
& =\left.\frac{(1,1)}{\sqrt{2}} \cdot\left(y e^{x y}+2 x \cos \left(x^{2}+y^{2}\right), x e^{x y}+2 y \cos \left(x^{2}+y^{2}\right)\right)\right|_{(1,-3)} \\
& =\frac{(1,1)}{\sqrt{2}} \cdot\left(-3 e^{-3}+2 \cos 10, e^{-3}-6 \cos 10\right) \\
& =\frac{-2 e^{-3}-4 \cos 10}{\sqrt{2}} \\
& =-\sqrt{2}\left(e^{-3}+2 \cos 10\right)
\end{aligned}
$$

