THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH2010F Classwork 9

June 21, 2017

Name:

1. Find all maximum/minimum points of the function

$$
z=x y \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}},
$$

in its natural domain.
Solution. The natural domain is $\left\{(x, y): 1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} \geq 0\right\}$ and the function vanishes on its boundary. Computing z_{x} and z_{y},

$$
\begin{aligned}
& z_{x}=\frac{y\left(1-\frac{2 x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)}{\sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}}} \\
& z_{y}=\frac{x\left(1-\frac{x^{2}}{a^{2}}-\frac{2 y^{2}}{b^{2}}\right)}{\sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}}} .
\end{aligned}
$$

The critical points are $(0,0),(\pm a / \sqrt{3}, \pm b / \sqrt{3})$. At these points:

$$
\begin{gathered}
z(0,0)=0, z\left(\frac{a}{\sqrt{3}},-\frac{b}{\sqrt{3}}\right)=-\frac{a b}{3 \sqrt{3}}=z\left(-\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}\right), \\
z\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}\right)=\frac{a b}{3 \sqrt{3}}=z\left(-\frac{a}{\sqrt{3}},-\frac{b}{\sqrt{3}}\right) .
\end{gathered}
$$

Therefore, maximum points of z are $(a / \sqrt{3}, b / \sqrt{3})$ and $(-a \sqrt{3},-b \sqrt{3})$ with maximum value $\frac{a b}{3 \sqrt{3}}$ and minimum points of z are $(a / \sqrt{3},-b / \sqrt{3})$ and $(-a \sqrt{3}, b \sqrt{3})$ with minimum value $-\frac{a b}{3 \sqrt{3}}$.
2. Determine whether the following problems have maximum or minimum in \mathbb{R}^{2}. Not need to find them.
(a) $g(x, y)=x^{3}+y^{3}-3 x y$,
(b) $h(x, y)=x^{4}+y^{4}-x^{2}-x y-y^{2}$,

Suggestion: Theorem 7.2 and its corollaries would be useful.

Solution. (a) Take $y=0$, then $g(x, 0)=x^{3}$, which tends to ∞ as x tends to ∞, and tends to $-\infty$ as x tends to $-\infty$. Therefore, g has no maximum nor minimum.
(b) Since $x^{4}+y^{4} \geq 2 x^{2} y^{2}, x^{4}+y^{4} \geq \frac{1}{2}\left(x^{2}+y^{2}\right)^{2}$. Therefore, $h(x, y) \rightarrow \infty$ uniformly as $x^{2}+y^{2} \rightarrow \infty$, and hence h has no maximum while h has minimum.
3. Find all maximum/minimum points of the function $u=x^{2}-x y+y^{2}-2 x+y$.

Solution. Note that

$$
x^{2}-x y+y^{2}=\frac{1}{2}\left(x^{2}+y^{2}\right)+\frac{1}{2}(x-y)^{2} \geq \frac{1}{2}\left(x^{2}+y^{2}\right)
$$

Therefore, $u \rightarrow \infty$ uniformly as $x^{2}+y^{2} \rightarrow \infty$, hence u has no maximum while is minimum exists. From

$$
u_{x}=2 x-y-2, \quad u_{y}=-x+2 y+1
$$

the only critical point is $(1,0)$, and it must be the minimum.

