THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH2010F Classwork 8

June 19, 2017

Name:

1. Find the condition that z can be viewed as a function of x, y locally with the relation $F(x z, y z)=0$. Then find z_{x}.

Solution. Let $G(x, y, z)=F(u, v)=F(x z, y z)$. By the chain rule,

$$
G_{z}=x F_{u}(x z, y z)+y F_{v}(x z, y z)
$$

Now, by Implicit Function Theorem, z is a function of x, y in the relation $G(z)=0$ if $G_{z} \neq 0$, i.e.

$$
x F_{u}(x z, y z)+y F_{v}(x z, y z) \neq 0
$$

When this holds, differentiate both sides with respect to x to $F(x z, y z)=0$ yields

$$
F_{u} \cdot\left(z+x z_{x}\right)+F_{v} \cdot\left(y z_{x}\right)=0
$$

Therefore,

$$
z_{x}=-\frac{z F_{u}(x z, y z)}{x F_{u}(x z, y z)+y F_{v}(x z, y z)}
$$

Differentiate both sides with respect to x to $F_{u} \cdot\left(z+x z_{x}\right)+F_{v} \cdot\left(y z_{x}\right)=0$ yields

$$
F_{u u} \cdot\left(z+x z_{x}\right)^{2}+F_{u v} \cdot\left(z+x z_{x}\right)\left(y z_{x}\right)+F_{u} \cdot\left(2 z_{x}+x z_{x x}\right)+F_{v u} \cdot\left(y z_{x}\right)\left(z+x z_{x}\right)+F_{v v} \cdot\left(y z_{x}\right)^{2}+F_{v} \cdot\left(y z_{x x}\right)=0 .
$$

Therefore,

$$
z_{x x}=-\frac{F_{u u} \cdot\left(z+x z_{x}\right)^{2}+F_{u v} \cdot\left(z+x z_{x}\right)\left(y z_{x}\right)+2 F_{u} \cdot z_{x}+F_{v u} \cdot\left(y z_{x}\right)\left(z+x z_{x}\right)+F_{v v} \cdot\left(y z_{x}\right)^{2}}{x F_{u}+y F_{v}}
$$

2. (a) Whether the following system defines a curve in \mathbb{R}^{3}, if so please find the first derivatives of γ :

$$
x+y+z=0, \quad x+y^{2}+z^{4}=1
$$

(b) Explain why the following system defines a curve $\gamma(z)=(x(z), y(x), z)$ at $P(1,-1,2)$ locally and then find the first derivatives of it:

$$
x^{2}+y^{2}=\frac{1}{2} z^{2}, \quad x+y+z=2 .
$$

Solution.

(a) The Jacobian matrix associated to the functions $g(x, y, z)=x+y+z=0$ and $h(x, y, z)=x+y^{2}+z^{4}=0$ is given by

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 y & 4 z^{3}
\end{array}\right]
$$

We claim that this matrix has rank 2 at each $(x, y, z) \in \mathbb{R}^{3}$ satisfying the system. For, each $(x, y, z) \in \mathbb{R}^{3}$ satisfying the system, if $\left|\begin{array}{cc}1 & 1 \\ 1 & 2 y\end{array}\right| \neq 0$, then the matrix has rank 2 ; if $\left|\begin{array}{cc}1 & 1 \\ 1 & 2 y\end{array}\right|=0$, then $y=1 / 2$. Therefore, since (x, y, z) satisfies the system, we have

$$
x+\frac{1}{2}+z=0, \quad x+\frac{1}{4}+z^{4}=1
$$

which implies $z^{4}-z=5 / 4$. Now if $\left|\begin{array}{cc}1 & 1 \\ 1 & 4 z^{3}\end{array}\right|=0$, then $z=4^{-1 / 3}$, and one checks that $4^{-4 / 3}-4^{-1 / 3} \neq$ 5/4. Therefore, $\left|\begin{array}{cc}1 & 1 \\ 1 & 4 z^{3}\end{array}\right| \neq 0$ if $\left|\begin{array}{cc}1 & 1 \\ 1 & 2 y\end{array}\right|=0$. As a result, this matrix is of rank 2 everywhere. By Theorem 6.5, the solution set always defines a curve everywhere.
When $y \neq 1 / 2$, the curve is parametrized by $z:(x(z), y(z), z)$. Its tangent is $\left(x^{\prime}(z), y^{\prime}(z), 1\right)$, where $\left(x^{\prime}, y^{\prime}\right)$ can be obtained by differentiating both sides of the two defining functions $g(x(z), y(z), z)=0$ and $h(x(z), y(z), z)=0$ with respect to z, that is, $x^{\prime}+y^{\prime}+1=0$ and $x^{\prime}+2 y y^{\prime}+4 z^{3}=0$. We get

$$
x^{\prime}=\frac{-2 y+4 z^{3}}{2 y-1}, \quad y^{\prime}=\frac{-4 z^{3}+1}{2 y-1} .
$$

(b) The Jacobian matrix associated to the functions $g(x, y, z)=x^{2}+y^{2}-\frac{1}{2} z^{2}=0$ and $h(x, y, z)=x+y+$ $z-2=0$ is given by

$$
\left[\begin{array}{ccc}
2 x & 2 y & -z \\
1 & 1 & 1
\end{array}\right]
$$

which is equal to

$$
\left[\begin{array}{ccc}
2 & -2 & -2 \\
1 & 1 & 1
\end{array}\right]
$$

at $(1,-1,2)$. Since $\left|\begin{array}{cc}2 & -2 \\ 1 & 1\end{array}\right| \neq 0$, the matrix has rank 2 at P. By Theorem 6.5 , the curve can be parametrized as $(x(z), y(z), z)$. Differentiating both sides with respect to z to $g(x(z), y(z), z)=0$ and $h(x(z), y(z), z)=0$ yields $2 x x^{\prime}+2 y y^{\prime}-z=0$ and $x^{\prime}+y^{\prime}+1=0$. At $P(1,-1,2)$, we have $2 x^{\prime}-2 y^{\prime}-2=0$ and $x^{\prime}+y^{\prime}+1=0$. We have $x^{\prime}=0$ and $y^{\prime}=-1$. The tangent vector at P is $\left(x^{\prime}, y^{\prime} z^{\prime}\right)=(0,-1,1)$ and the tangent line passing through P is given by

$$
(1,-1,2)+(0,-1,1) t, \quad t \in \mathbb{R}
$$

