THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH2010F Classwork 5

June 7, 2017

Name:

1. Find

$$
\frac{\partial^{3} u}{\partial x \partial y \partial z}, \quad \text { where } u(x, y, z)=e^{x y z}
$$

Solution.

$$
\begin{aligned}
\frac{\partial^{3} u}{\partial x \partial y \partial z} & =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial z}\right)\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}\left(x y e^{x y z}\right)\right) \\
& =\frac{\partial}{\partial x}\left(x e^{x y z}+x^{2} y z e^{x y z}\right) \\
& =e^{x y z}+x y z e^{x y z}+2 x y z e^{x y z}+x^{2} y^{2} z^{2} e^{x y z} \\
& =\left(1+3 x y z+x^{2} y^{2} z^{2}\right) e^{x y z}
\end{aligned}
$$

2. (a) A harmonic function is a function satisfies the Laplace equation

$$
\Delta u \equiv\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}}\right) u=0
$$

Show that all n-dimensional harmonic functions form a vector space.
(b) Find all harmonic functions which are polynomials of degree ≤ 2 for the two dimensional Laplace equations. Show that they form a subspace and determine its dimension.

Solution. (a) Let u and v be two harmonic functions. By linearity, we have

$$
\Delta(\alpha u+\beta v)=\alpha \Delta u+\beta \Delta v=0
$$

so all harmonic functions form a vector space.
(b) Let $p(x, y)=a+b x+c y+d x^{2}+2 e x y+f y^{2}$ be a general polynomial of degree 2 . If it is harmonic,

$$
0=\Delta p(x, y)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) p(x, y)=2 d+2 f=0
$$

Therefore, it is harmonic if and only $d=-f$. Writing in the form

$$
p(x, y)=a+b x+c y+d\left(x^{2}-y^{2}\right)+2 e x y
$$

we see that the space of all harmonic polynomials of degree ≤ 2 is spanned by $1, x, y, x^{2}-y^{2}$, and $x y$. These five functions are linearly independent, so the dimension of this subspace is 5 .
3. Consider the function

$$
g(x, y)=\sqrt{|x y|} .
$$

Show that g_{x} and g_{y} exist but g is not differentiable at $(0,0)$.
Solution. $g_{x}(0,0)=\lim _{x \rightarrow 0} \frac{g(x, 0)-g(0,0)}{x}=0$.
Similarly, $g_{y}(0,0)=0$. However,

$$
\frac{g(x, y)-g(0,0)}{\sqrt{x^{2}+y^{2}}}=\frac{\sqrt{|x y|}}{\sqrt{x^{2}+y^{2}}}
$$

When $(x, y)=(t, t)$, then

$$
\lim _{t \rightarrow 0} \frac{\sqrt{|t t|}}{\sqrt{t^{2}+t^{2}}}=\frac{1}{\sqrt{2}} \neq 0
$$

Therefore, g is not differentiable at $(0,0)$.
4. Consider the function $j(x, y)=\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{x^{2}+y^{2}}\right)$ for $(x, y) \neq(0,0)$ and $j(0,0)=0$. Show that it is differentiable at $(0,0)$ but its partial derivatives are not continuous there.

Solution.

$$
j_{x}(0,0)=\lim _{x \rightarrow 0} \frac{j(x, 0)-j(0,0)}{x}=\lim _{x \rightarrow 0} x \sin \frac{1}{x^{2}}=0
$$

Similarly, $j_{y}(0,0)=0$. If j is differentiable at $(0,0)$, its differential must vanish there. We have

$$
\left|\frac{j(x, y)-j(0,0)-0}{\sqrt{x^{2}+y^{2}}}\right|=\left|\sqrt{x^{2}+y^{2}} \sin \frac{1}{x^{2}+y^{2}}\right| \leq \sqrt{x^{2}+y^{2}} \rightarrow 0
$$

as $(x, y) \rightarrow(0,0)$, which shows that j is differentiable at $(0,0)$.

Next, for $(x, y) \neq(0,0)$,

$$
j_{x}(x, y)=2 x \sin \frac{1}{x^{2}+y^{2}}-\frac{2 x}{x^{2}+y^{2}} \cos \frac{1}{x^{2}+y^{2}} .
$$

When $(x, 0) \rightarrow(0,0)$,

$$
j_{x}(x, 0)=2 x \sin \frac{1}{x^{2}}-\frac{2}{x} \cos \frac{1}{x^{2}}
$$

which does not tend to $j_{x}(0,0)=0$. Therefore, j_{x} is not continuous at $(0,0)$. Similarly, j_{y} is also not continuous at $(0,0)$.

