# THE CHINESE UNIVERSITY OF HONG KONG 

Department of Mathematics

## MATH2010F Classwork 7

June 14, 2017

## Name:

1. Use the differential of an appropriate function to obtain an approximate value and then compare it with the actual one. You may use a calculator.

$$
\sin 29^{\circ} \times \tan 46^{\circ}
$$

Solution. Let $f(\theta, \phi)=\sin \theta \tan \phi ;(\theta, \phi)=\left(30^{\circ}, 45^{\circ}\right)=(\pi / 6, \pi / 4) ;(d \theta, d \phi)=\left(-1^{\circ}, 1^{\circ}\right)=(-\pi / 180, \pi / 180)$. Therefore,

$$
\begin{aligned}
d f & =\cos \theta \tan \phi d \theta+\sin \theta \sec ^{2} \phi d \phi \\
& =\frac{\sqrt{3}}{2} \times 1 \times\left(-\frac{\pi}{180}\right)+\frac{1}{2} \times \frac{1}{\left(\frac{\sqrt{2}}{2}\right)^{2}} \times \frac{\pi}{180} \\
& =(1-\sqrt{3} / 2) \frac{\pi}{180} .
\end{aligned}
$$

and hence the approximate value is given by

$$
f(\pi / 6, \pi / 4)+(1-\sqrt{3} / 2) \frac{\pi}{180}=\frac{1}{2}+(1-\sqrt{3} / 2) \frac{\pi}{180}
$$

2. The height and the radius of the base of a cylinder are measured with error up to 0.1 and 0.2 respectively. Find the approximate and exact maximum error of its volume.

Solution. Let the volume be $V$, the radius be $r$ and the height be $h$. They are related by

$$
V=\pi r^{2} h
$$

For small changes in $r$ and $h$, we use the approximate change

$$
d V=2 \pi r h d r+\pi r^{2} d h
$$

To calculate the approximate maximum error, we take $d r=0.2 r$ and $d h=0,1 h$,

$$
d V=2 \pi r h(0.2 r)+\pi r^{2}(0.1 h)=0.5 V
$$

Therefore, the approximate maximum error is given by $0.5 \mathrm{~V} / \mathrm{V}=0.5$.
On the other hand, the exact maximum error is

$$
\frac{\Delta V}{V}=\frac{\pi(r+0.2 r)^{2}(h+0.1 h)-\pi r^{2} h}{V}=\frac{0.584 V}{V}=0.584
$$

3. Find the tangent plane and the normal line of each of the surfaces at the given point:
(a)

$$
x y^{2}-y z^{2}+6 x y z=6, \quad P(1,1,1)
$$

(b)

$$
x^{2} y z-e^{x y+1}=0, \quad P(-1,1,1)
$$

You should verify that they are differential surface near the given point first.

## Solution.

(a) Let $f(x, y, z)=x y^{2}-y z^{2}+6 x y z$. Then $\nabla f=\left(y^{2}+6 y z, 2 x y-z^{2}+6 x z,-2 y z+6 x y\right)$ and $\nabla f(1,1,1)=$ $(7,7,4) \neq(0,0,0)$. By Theorem $6.2 f=6$ defines a surface near $(1,1,1)$. The tangent plane at $(1,1,1)$ is given by

$$
(7,7,4) \cdot((x, y, z)-(1,1,1))=0
$$

that is, $7 x+7 y+4 z=18$. The normal line at $(1,1,1)$ is given by

$$
(1,1,1)+t(7,7,4), \quad t \in \mathbb{R}
$$

(b) Write $g(x, y, z)=x^{2} y z-e^{x y+1}$. Then

$$
\nabla g=\left(2 x y z-y e^{x y+1}, x^{2} z-x e^{x y+1}, x^{2} y\right)
$$

We have $\nabla g(-1,1,1)=(-3,2,1) \neq(0,0,0)$. Hence $g=0$ defines a surface near $(-1,1,1)$. The tangent plane at $(-1,1,1)$ is given by

$$
(-3,2,1) \cdot((x, y, z)-(-1,1,1))=0
$$

or $-3 x+2 y+z=6$. The normal line at $(-1,1,1)$ is given by

$$
(-1,1,1)+t(-3,2,1), \quad t \in \mathbb{R}
$$

4. Use implicit differentiation to find the first and $\frac{\partial^{2} z}{\partial x \partial y}, \frac{\partial^{2} z}{\partial x^{2}}$ of $z=z(x, y)$ :
(a)

$$
x+y+z=e^{z}
$$

(b)

$$
z^{3}-3 x y z=-1
$$

(c)

$$
\sin (x+y)-6 \cos (y+z)=x
$$

## Solution.

(a) First we get $1+z_{x}=z_{x} e^{z}$, or

$$
z_{x}=\frac{1}{e^{z}-1}
$$

Then $z_{x x}=z_{x x} e^{z}+\left(z_{x}\right)^{2} e^{z}$ which gives

$$
z_{x x}=\frac{\left(z_{x}\right)^{2} e^{z}}{1-e^{z}}
$$

Similarly we get

$$
z_{y}=\frac{1}{e^{z}-1}
$$

and

$$
z_{y y}=\frac{\left(z_{y}\right)^{2} e^{z}}{1-e^{z}}
$$

Finally, differentiate both sides with respect to $y$ to $1+z_{x}=z_{x} e^{z}$ yields

$$
z_{x y}=\frac{z_{x} z_{y} e^{z}}{1-e^{z}}
$$

(b)

$$
\begin{gathered}
z_{x}=\frac{y z}{z^{2}-x y} \\
z_{x x}=\frac{-2 z\left(z_{x}\right)^{2}+2 y z_{x}}{z^{2}-x y} \\
z_{y}=\frac{x z}{z^{2}-x y} \\
z_{y y}=\frac{-2 z\left(z_{y}\right)^{2}+2 x z_{y}}{z^{2}-x y} \\
z_{x y}=\frac{-2 z z_{x} z_{y}+3 z+3 y z_{y}+3 x z_{x}}{z^{2}-x y}
\end{gathered}
$$

(c)

$$
\begin{gathered}
z_{x}=\frac{1-\cos (x+y)}{6 \sin (y+z)} \\
z_{x x}=\frac{\sin (x+y)-6 \cos (y+z) z_{x}^{2}}{6 \sin (y+z)} \\
z_{y}=-\frac{\cos (x+y)+6 \sin (y+z)}{6 \sin (y+z)} \\
z_{y y}=\frac{\sin (x+y)-6 \cos (y+z)\left(1+z_{y}\right)^{2}}{6 \sin (y+z)} \\
z_{x y}=\frac{\sin (x+y)-6 \cos (y+z) z_{x}\left(1+z_{y}\right)}{6 \sin (y+z)}
\end{gathered}
$$

