MATH 2010F Advanced Calculus I, 2016-17
 Solution of Test 1

1. (20 points) Consider the points $(1,3,-2),(2,4,5)$ and $(-3,-2,2)$.
(a) Find the magnitude and direction of $(1,3,-2) \times(2,4,5)$.
(b) Find the area of the triangle with vertices at these points.
(c) Find the volume of the parallelepiped with vertices at these points together with $(0,0,0)$.

Solution.

(a) By definition,

$$
(1,3,-2) \times(2,4,5)=(23,-9,-2)
$$

Hence the magnitude is

$$
\sqrt{23^{2}+9^{2}+2^{2}}=\sqrt{614}
$$

and the direction is

$$
\frac{1}{\sqrt{614}}(23,-9,-2)
$$

(b) Let
$\mathbf{u}=(2,4,5)-(1,3,-2)=(1,1,7) \quad$ and $\quad \mathbf{v}=(-3,-2,2)-(1,3,-2)=(-4,-5,4)$
Then the area is

$$
\frac{1}{2}|\mathbf{u} \times \mathbf{v}|=\frac{1}{2}|(39,-32,-1)|=\frac{1}{2} \sqrt{2546}
$$

(c) The volume is

$$
|(-1,-3,2) \cdot(\mathbf{u} \times \mathbf{v})|=55
$$

2. (15 points) The line

$$
l: x=3+2 t, y=2 t, z=t
$$

intersects the plane

$$
\mathcal{P}: x+3 y-z=-4
$$

at a point A.
(a) Find the coordinates of A;
(b) Further find the equation of the line which is contained in the plane \mathcal{P}, passes through A, and is perpendicular to the line l.

Solution.

(a) To find the coordinates of A, it suffice to solve the following equation:

$$
(3+2 t)+3(2 t)-t=-4
$$

which gives $t=-1$. Thus, $A=(1,-2,-1)$.
(b) Observe that the direction of l is $\mathbf{u}:=(2,2,1)$ and the normal direction of the plan \mathcal{P} is $\mathbf{v}:=(1,3,-1)$. Thus, the direction of the line we want is

$$
\mathbf{u} \times \mathbf{v}=(-5,3,4)
$$

Thus, the line which is contained in the plane \mathcal{P}, passes through A, and is perpendicular to the line l is:

$$
l^{\prime}: x=1-5 t, y=-2+3 t, z=-1+4 t
$$

3. (15 points) Let l_{1} be the line passing $A(2,4,0)$ and $B(3,1,1)$, and l_{2} be the line passing $C(1,1,3)$ and $D(0,5,1)$. Let $E \in l_{1}$ and $F \in l_{2}$, find points E and F so that the line passing E and F is perpendicular to l_{1} and l_{2}. Solution.
Note that

$$
l_{1}: x=2+t, y=4-3 t, z=t
$$

and

$$
l_{2}: x=1-t, y=1+4 t, z=3-2 t
$$

Thus, we can denote E and F by

$$
E=(2+e, 4-3 e, e), \quad F=(1-f, 1+4 f, 3-2 f)
$$

Let \mathbf{u} and \mathbf{v} be direction of l_{1} and l_{2} respectively. Then

$$
\begin{aligned}
& (E-F) \cdot \mathbf{u}=0 \\
& (E-F) \cdot \mathbf{v}=0
\end{aligned}
$$

Consequently, we obtain that

$$
\left\{\begin{array}{l}
e=-4 \\
f=\frac{11}{3}
\end{array}\right.
$$

Thus, $E=(-2,16,-4)$ and $F=\left(\frac{-8}{3}, \frac{47}{3}, \frac{-13}{3}\right)$.
4. (15 points) Find the "standard forms" of the quadratic equation

$$
x^{2}+2 x y+y^{2}+2 y=-6,
$$

and describe its solution set.

Solution.

The matrix associated to the quadratic form is

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Its determinant vanishes, so the curve is a parabola. To remove the mixed term, we first note that its eigenvalues are given by $\lambda_{1}=0$ and $\lambda_{2}=2$.
For each of the above eigenvalues, we solve for an associated eigenvector:

For λ_{1}, an eigenvector is given by $(1,-1)$. For λ_{2}, an eigenvector is given by $(1,1)$. Therefore, by the change of variables

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right],
$$

we have

$$
\begin{aligned}
x^{2}+2 x y+y^{2}+2 y+6= & \left(x^{\prime}+y^{\prime}\right)^{2}+2\left(x^{\prime}+y^{\prime}\right)\left(-x^{\prime}+y^{\prime}\right)+\left(-x^{\prime}+y^{\prime}\right)^{2}+2\left(-x^{\prime}+y^{\prime}\right)+6 \\
= & \left(x^{\prime 2}+y^{\prime 2}+2 x^{\prime} y^{\prime}\right)+\left(-2 x^{\prime 2}+2 y^{\prime 2}\right)+\left(x^{\prime 2}+y^{\prime 2}-2 x^{\prime} y^{\prime}\right) \\
& +2\left(-x^{\prime}+y^{\prime}\right)+6 \\
= & 4 y^{\prime 2}-2 x^{\prime}+2 y^{\prime}+6 .
\end{aligned}
$$

Finally, let $\tilde{x}=-2 x^{\prime}$ and $\tilde{y}=2 y^{\prime}$, we have

$$
\begin{aligned}
x^{2}+2 x y+y^{2}+2 y & =4 y^{\prime 2}-2 x^{\prime}+2 y^{\prime}+6 \\
& =\tilde{y}^{2}+\tilde{x}+\tilde{y}+6 \\
& =\left(\tilde{y}+\frac{1}{2}\right)^{2}+\tilde{x}+\left(6-\frac{1}{4}\right) \\
& =u+v^{2}+c
\end{aligned}
$$

where $u=\tilde{x}, v=\tilde{y}+1 / 2$ and $c=23 / 4$.
5. (15 points) The folium of Descartes in parametric form is given by

$$
x=\frac{3 a t}{1+t^{3}}, \quad y=\frac{3 a t^{2}}{1+t^{3}}, \quad a>0 .
$$

(a) Show that it defines a regular curve on $(-\infty,-1)$ and $(-1, \infty)$;
(b) Find its velocity and tangent line at $t=-2$;
(c) Verify that it is the solution set to

$$
x^{3}+y^{3}=3 a x y .
$$

Solution.

(a) We differentiate x, y to get

$$
x^{\prime}(t)=\frac{3 a-6 a t^{3}}{\left(1+t^{3}\right)^{2}}, \quad y^{\prime}(t)=\frac{6 a t-3 a t^{4}}{\left(1+t^{3}\right)^{2}} .
$$

One finds that $\left(x^{\prime}(t), y^{\prime}(t)\right) \neq(0,0)$ for all $t \neq 1$. It defines a regular curve.
(b) Its velocity at $t=-2$ is

$$
\left(x^{\prime}(-2), y^{\prime}(-2)\right)=\left(\frac{51 a}{49}, \frac{-60 a}{49}\right)
$$

and the tangent line at that point is

$$
l: x=\frac{6 a}{7}+\frac{51 a}{49} t, y=\frac{-12 a}{7}-\frac{60 a}{49} t
$$

(c) When $x=\frac{3 a t}{1+t^{3}}, y=\frac{3 a t^{2}}{1+t^{3}}$, we have

$$
\begin{aligned}
x^{3}+y^{3} & =\frac{27 a^{3} t^{3}\left(1+t^{3}\right)}{\left(1+t^{3}\right)^{3}} \\
& =\frac{27 a^{3} t^{3}}{\left(1+t^{3}\right)^{2}} \\
& =3 a x y
\end{aligned}
$$

6. (10 points) Given a parametric curve $\gamma(t)=\left(\cos ^{3} t, \sin ^{3} t\right), \quad t \in[0, \pi]$, find its length over $t \in[0, \pi]$.

Solution.

The length function of γ is

$$
\begin{aligned}
\Lambda(t) & =\int_{0}^{t}\left|\gamma^{\prime}(z)\right| d z \\
& =\int_{0}^{t} \sqrt{\left(3 \cos ^{2} z \sin z\right)^{2}+\left(3 \sin ^{2} z \cos z\right)^{2}} d z \\
& =\frac{3}{2} \int_{0}^{t}|\sin 2 z| d z \\
& =\frac{3}{4} \int_{0}^{2 t}|\sin z| d z \\
& = \begin{cases}\frac{3}{4}(1-\cos 2 t), & t \in\left[0, \frac{\pi}{2}\right) \\
\frac{3}{4}(3+\cos 2 t), & t \in\left[\frac{\pi}{2}, \pi\right]\end{cases}
\end{aligned}
$$

so

$$
L=\Lambda(\pi)=3
$$

7. (10 points) A projectile is fired with angle of inclination $\pi / 6$ from a 1 km -cliff to reach 3 km from the base of the cliff. What should be the initial velocity?

Solution.

Denote g the gravitational constant. Now we let $\mathbf{a}(t)=(0,-g), \mathbf{r}(0)=(0,1), \mathbf{v}(0)=$ $c\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right)$, where $c \in \mathbb{R}$ is the initial velocity.
Integrating $\mathbf{a}(t)$ to get $\mathbf{v}(t)$:

$$
\begin{aligned}
\mathbf{v}(t) & =\int_{0}^{t} \mathbf{a}(\tau) d \tau+\mathbf{v}(0) \\
& =(0,-g t)+c\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right) \\
& =\left(\frac{\sqrt{3} c}{2}, \frac{c}{2}-g t\right) .
\end{aligned}
$$

Again, integrating $v(t)$ to get $x(t)$:

$$
\begin{aligned}
\mathbf{x}(t) & =\int_{0}^{t} v(\tau) d \tau+x(0) \\
& =\left(\frac{\sqrt{3} c}{2} t, \frac{c}{2} t-\frac{1}{2} g t^{2}\right)+(0,1) \\
& =\left(\frac{\sqrt{3} c}{2} t, \frac{c}{2} t-\frac{1}{2} g t^{2}+1\right) .
\end{aligned}
$$

From $\mathbf{x}\left(t_{0}\right)=(3,0)$, we find

$$
\frac{\sqrt{3} c}{2} t_{0}=3 \quad \text { and } \quad t_{0}=\sqrt{\frac{2 \sqrt{3}+2}{g}} .
$$

Thus

$$
c=\frac{2 \sqrt{3}}{t_{0}}=\frac{2 \sqrt{3} \sqrt{g}}{\sqrt{2 \sqrt{3}+2}}
$$

and the initial velocity is

$$
v(0)=\left(\frac{3 \sqrt{g}}{\sqrt{2 \sqrt{3}+2}}, \frac{\sqrt{3} \sqrt{g}}{\sqrt{2 \sqrt{3}+2}}\right) .
$$

