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Introduction
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Advanced Calculus I is all about differentiation of functions
of multiple variables This course consists of two parts:

I 1). The background which includes Euclidean space;
straight lines, plane and quadric surfaces; parametric
curves.

I 2). Differentiation theory which contains partial
differentiation, differentiation; curves, surfaces, and
hypersurfaces; and extremal problems.
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I Office: Rm 228 LSB

I Phone: 3943 7955
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Meeting Schedule

I May 17, 19, 22, 24, 29, 31,

I June 5, 7, 12 14, 19, 21, 23, 26.

Grade

I 10% Assignments (in- and off-class)

I 50% Two tests(no make-up):
Test 1, May 31, Wed 1:30-3:00;
Test 2, June 19, Mon, 1:30-3:00;

I 40% Final Examination (TBA).

Assignment Policy
Problem sets will be assigned and deadline for submission
will be posted. You must attend the tutorial classes where
you work out and hand in additional exercises given by the
tutors in class.
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Chapter 1:

The Euclidean Space
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Section 1.1: The Dot Product

• One dimensional space R: real line. Every point on the
real line is a real number x .

xo x

Figure: Real line
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• Two dimensional space R2: plane. Every point on the
plane is denoted by the coordinate (x , y);

• Set notation: R2 = {(x , y) : x , y ∈ R}.

Cartesian coordinate system:

x

y

o

(x , y)

Figure: Plane
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• Three dimensional space R3 = {(x , y , z) : x , y , z ∈ R}.

Cartesian coordinate system:

   Chap 1 Vector and geometry of space Page 2    
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More generally, we have:

Definition 1.1.1 (Euclidean space Rn)

We define the n-dimensional Euclid space to be

Rn =: {(x1, · · · , xn) : x1, · · · , xn ∈ R},
xi : ith coordinate.

I The zero n-tuple, is denoted as 0 = (0, 0, · · · , 0) from
time to time.
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I Let x,y ∈ Rn, there are two algebraic operations
defined on Rn:

I The addition:

x+ y = (x1 + y1, · · · , xn + yn) ∈ Rn ,

I The scalar multiplication:

αx = (αx1, · · · , αxn) , α ∈ R .

I Rn becomes a n-dimensional vector space over the
field of real number.
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The canonical basis of Rn is given by
e1 = (1, 0, 0, · · · , 0),

e2 = (0, 1, 0, · · · , 0),

· · ·
en = (0, 0, 0, · · · , 1).

Using this basis every n-tuple can be written as the linear
combination of the basis elements in a very simple way,

x = (x1, x2, · · · , xn) = x1e1 + x2e2 + · · · xnen .
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Definition 1.1.2 (Dot product)

For x, y ∈ Rn, the dot product between x and y is
defined by

x · y =
n∑

j=1

xjyj

= x1y1 + x2y2 + · · · xnyn .
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We recall the definition inner product on a vector space V
over reals:

Definition 1.1.3 (Inner product)

Let u, v ,w ∈ V , and α, β ∈ R. We call 〈·, ·〉 to be an
inner product if the following three axioms hold:

(1) 〈u, u〉 ≥ 0 and equals to 0 iff u = 0 ,

(2) 〈u, v〉 = 〈v , u〉 ,
(3) 〈αu + βv ,w〉 = α〈u,w〉+ β〈v ,w〉 .

Noting that (2) and (3), we have that

〈u, αv + βw〉 = α〈u, v〉+ β〈u,w〉 .

One has no difficulty in verifying the dot product is indeed an
inner product operation over Rn. Alternatively one may use
〈x,y〉 to denote x · y.
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With the help of dot product, we can define

Definition 1.1.4 (Euclidean norm)

Let x ∈ Rn, then we define Euclidean norm to be

|x| = (x · x)1/2 =

(
n∑

j=1

x2j

)1/2

=
√

x21 + · · ·+ x2n .
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Theorem 1.1.5 (Cauchy-Schwarz Inequality)

For x, y ∈ Rn, then we have∣∣∣∣∣
n∑

j=1

xjyj

∣∣∣∣∣ ≤
√√√√ n∑

j=1

x2j

√√√√ n∑
j=1

y 2
j ,(

equivalently, |x · y| ≤ |x| · |y|
)
.

Furthermore, equality sign holds if and only if either one
of x, y is zero n-tuple or there is some α 6= 0 such that
y = αx.
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Proof of Theorem 1.1.5:

First assume not all xj ’s are zero in x. Consider the
expression

n∑
j=1

(xjt − yj)
2 ,

which is a sum of squares and so must be non-negative for
all t ∈ R . We can express it as a quadratic polynomial in t
as

p(t) ≡ at2 − 2bt + c ,

where

a =
n∑

j=1

x2j , b =
n∑

j=1

xjyj , c =
n∑

j=1

y 2
j .
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Since a > 0, p(t) tends to ∞ as t → ±∞. Therefore, it is
non-negative if and only if its discriminant is non-positive,
that is, 4b2 − 4ac ≤ 0, which yields |b| ≤

√
ac after taking

square root. Our inequality follows. Moreover, the equality
sign holds if and only if 4b2 − 4ac = 0. In this case the
quadratic equation at2 − 2bt + c = 0 has a (double) root,
say, t1. Going back to the original expression, we have

n∑
j=1

(xjt1 − yj)
2 = 0 ,

which forces t1xj = yj for all j = 1, · · · , n. So we can take
α = t1 in case c =

∑
j y

2
j > 0.

When all xj ’s vanish but not all yj ’s, we exchange x and y
to get the same conclusion. �
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Definition 1.1.6 (Euclidean distance)

Let x, y ∈ Rn, the Euclidean distance is defined as

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

In mathematics, a distance is a rule to assign a
non-negative number to any pair of elements in a set under
consideration. The rule consists of three “axioms”: For
a, b, c in this set,

(1) d(a, b) ≥ 0 , and equal to 0 iff a = b ,

(2) d(a, b) = d(b, a) , and

(3) d(a, b) ≤ d(a, c) + d(c , b).
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Example 1.1.7

Taking d(x, y) = |x− y| for x, y ∈ Rn, please verify that d(·, ·)
is a distance, i.e.

(1) |x− y| ≥ 0 and equal to 0 if and only if x = y ,

(2) |x− y| = |y− x| ,
(3) |x− y| ≤ |x− z|+ |z− y| .

Sol. · · ·

21/123



Analytical angle

• By Cauchy-Schwarz Inequality, we know that

x · y
|x||y|

∈ [−1, 1].

• cos t is strictly decreasing from 1 to −1 as t goes from 0
to π, i.e.

π
o t
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Therefore, by what we just said, there exists a unique
θ ∈ [0, π] such that

cos θ = x · y/|x||y| ⇔ x · y = |x||y| cos θ.

Definition 1.1.8 (Angle between x and y)

Let non-zero x, y ∈ Rn, we define the angle θ between x
and y to be

θ = arccos

(
x · y
|x||y|

)
∈ [0, π].
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• Two n-tuples x and y are perpendicular or orthogonal
to each other if x · y = 0.

• In terms of the angle, they are perpendicular if and only
if their angle is π/2. The zero n-tuple is perpendicular to
all n-tuples.

• Let x = cy with c 6= 0, then we have

I θ = 0, if c > 0;

I θ = π, if c < 0.
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Example 1.1.9

Find all n-tuples x that are perpendicular to (1,−1, 2) and
(−1, 0, 3).

Sol: These points satisfy

(1,−1, 2) · x = 0 , (−1, 0, 3) · x = 0 ,

that is, the linear system{
x − y + 2z = 0 ,

−x + 3z = 0 .

We solve this system (see Comments at the end of this
chapter) to get x = (x , y , z) = a(3, 5, 1), a ∈ R. By varying
a, we obtain infinitely many solutions. �
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Section1.2: Vector Representation of Rn

• Visualizing n-tuples for n = 2, 3 as vectors has been used
widely in physics. For instance:

I Physical quantities with magnitude & direction:
velocity, force, displacement.

26/123



• Geometrically, vectors represented by a directed segment−→
AB with initial point A and terminal point B .

   Chap 1 Vector and geometry of space Page 4    

Figure: Vectors in R2 and R3

• Two vectors are equal if there have same length and

direction, so in the above two figures,
−→
AB =

−→
CD.
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• Given the coordinate of A(x1, x2, · · · , xn) ∈ Rn, it is

convenient to denote the vector by
−→
OA, where O is the

origin point. More generally,

Definition 1.2.1
Given two A(x1, · · · , xn),B(y1, · · · , yn) ∈ Rn, the vector
−→
AB algebraically represented by

−→
AB = (y1 − x1, · · · , yn − xn).

This is also called component form of vector.
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Definition 1.2.2 (Magnitude or length)

Given vector ~u = (u1, · · · , un) ∈ Rn, the
magnitude(length) of vector ~u defined to be

|~u| =
√
u2
1 + · · ·+ u2

n .

So the magnitude of
−→
AB is indeed the distance between

A and B .

• Any vector with unit length is called a direction.
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Now we interpret the algebraic operations of Rn:

(1) Indeed, by drawing pictures, it is easy to know that the
“addition operation ”of Rn is accomplished by the
“parallelogram law”.

   Chap 1 Vector and geometry of space Page 5    

Figure: Parallelogram law: addition
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(2) The “scalar multiplication”means changing the vector
by a scale of α.

   Chap 1 Vector and geometry of space Page 5    

Figure: Scalar multiplication
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• How about the substraction ?

Let ~u = (u1, · · · , un), ~v = (v1, · · · , vn) be two vectors in Rn,
then (1) + (2) implies that

~u − ~v = ~u + (−1)~v = (u1 − v1, · · · , un − vn).

   Chap 1 Vector and geometry of space Page 5    

Figure: Parallelogram law: subtraction
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• For u,v, its midpoint is given by (u + v)/2.

~u

~v

~u + ~v

1
2 (~u + ~v)

Figure: Midpoint
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• Now we consider the geometric meaning of analytical
angle between x, y. Indeed, such angle is the same as the
“geometric angle”

To see it, let x = (a, b) and y = (c , d) be two non-zero
vectors in the plane. By the Law of Cosines in
trigonometry (see Comments at the end of this chapter),

(c−a)2+(d−b)2 = (a2+b2)+(c2+d2)−2
√
c2 + d2

√
a2 + b2 cosφ ,

where φ ∈ [0, π] is the “geometric angle” between x and y.
Simplifying, we have

−2(ac + db) = −2
√
c2 + d2

√
a2 + b2 cosφ ,

which is equal to

x · y = |x||y| cosφ .

Comparing with the definition of θ, we have cosφ = cos θ so
that φ = θ. In other words, the geometric angle coincides
with the analytical angle.
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• A vector is uniquely determined by its magnitude and
direction. Each non-zero vector x can be written as

x = |x| ξ,

where |x| is its magnitude and ξ =
x

|x|
its direction.

• Every direction ξ = (ξ1, ξ2, · · · , ξn) can further be
expressed as

ξ = (cosα1, cosα2, · · · , cosαn) ,

where αk ∈ [0, π] are called the direction angles of ξ.
From ξ · ek = cosαk we see that αk is the angle between ξ
and the ek-axis. These cosαk ’s are called the direction
cosines of x.
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Example 1.2.3

Find the magnitude and direction of (1, 2,−7) and determine
the vector (2, a, 6) that is perpendicular to (1, 2,−7).

Sol: The magnitude of (1, 2,−7) is

|(1, 2,−7)| =
√

12 + 22 + (−7)2 =
√

54 ,

and its direction is (1, 2,−7)/
√

54. By orthogonality,

0 = (1, 2,−7) · (2, a, 6) = 2 + 2a − 42 = 0 ,

which implies a = 20. The vector (2, 20, 6) is perpendicular
to (1, 2,−7). �

36/123



Example 1.2.4

Consider the triangle with vertices at
A(1, 2),B(3, 4),C (0,−1). Find the direction of the vector
pointing at the midpoint of the side connecting (1, 2) and
(3, 4) from (0,−1).

B(1, 2)

C(3, 4)

A(0,−1)

D
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Sol: Firstly, we translate (0,−1) to the origin so that the
triangle is congruent to the one whose vertices are
((1, 2)− (0,−1), (3, 4)− (0,−1), (0,−1)− (0,−1), that is,
(1, 3), (3, 5), (0, 0). The midpoint of the side from (1, 3) and
(3, 5) is given by

1

2
((1, 3) + (3, 5)) = (2, 4) ,

and its direction is given by

(2, 4)√
22 + 42

=
(2, 4)√

20
=

(1, 2)√
5

.

(No need to simplify further.) �
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Example 1.2.5

(a). Find the magnitude and direction of the vector from
(1,−1) to (−2, 5).

(b). Find all directions that are perpendicular to the vector in
(a).

Sol: (a). The magnitude and direction of the vector from
(1,−1) to (−2, 5) are the same as those of the position
vector (−2, 5)− (1,−1) = (−3, 6). Its magnitude is given by

|(−3, 6)| =
√

(−3)2 + 62 = 3
√

5 ,

and the direction is given by

(−3, 6)

3
√

5
=

(−1, 2)√
5

.

(No need to simplify further.)
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(b). A vector (a, b) perpendicular to (−3, 6) satisfies

(−3, 6) · (a, b) = −3a + 6b = 0 .

For instance, we may take a = 2, b = 1 so (2, 1) is one
choice. Then the direction vectors can be taken to be :

(2, 1)√
5

, −(2, 1)√
5

.

(Again no need to simplify.) �
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Section 1.3: Euclidean Motions

Definition 1.3.1 (Euclidean motion)

A Euclidean motion is a map from Rn to itself of the
form

Tx = Ax + b ,

where b ∈ Rn and A is an n × n-matrix, that preserves
the distance between two points, that is, for x, y ∈ Rn,

|Tx− Ty| = |x− y| .

Here in Ax the vector x should be understood as a
column vector.
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• Recall that a square matrix R is called an orthogonal
matrix if R ′R = RR ′ = I , where R ′ is the transpose of R
and I is the identity matrix.

Proposition 1.3.2

A map Tx = Ax + b is a Euclidean motion if and only if
A is an orthogonal matrix.

Proof. In the following we use 〈x,y〉 instead x · y to denote
the dot product. First of all, let T be a Euclidean motion.
Then it follows from the definition that

|x− y| = |Tx− Ty| = |Ax− Ay| = |A(x− y)|,

which yields immediately that
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|A(x + y)|2 = 〈A(x + y),A(x + y)〉
= |x + y|2

= |x|2 + 2〈x,y〉+ |y|2 .

On the other hand, a direct calculation shows that

〈A(x + y),A(x + y)〉 = 〈Ax + Ay,Ax + Ay〉
= |Ax|2 + 2〈Ax,Ay〉+ |Ay|2.

By comparing, we see that for all x,y,

〈A′Ax,y〉 = 〈Ax,Ay〉 = 〈x,y〉 ,

which implies that A′A = I . Thus A is a orthogonal matrix.

Finally, this relation also shows that T is a Euclidean
motion whenever A is orthogonal. �
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• Here are some examples of Euclidean motions.
(1). Take A to be the identity and b a nonzero vector.
Then Tx = x + b is a translation. The origin is moved to b
after the motion.
(2). When n = 2, the Euclidean motion

Tx =

[
1 0
0 −1

] [
x1
x2

]
is the reflection with respect to the x-axis and

Tx =

[
−1 0
0 1

] [
x1
x2

]
is the reflection with respect to the y -axis. (In matrix form
the vector x is understood as a column vector.) On the
other hand, given any plane in R3, one may consider the
reflection with respect to this plane. For instance,

Tx =

1 0 0
0 1 0
0 0 −1

x1x2
x3


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is the reflection with respect to the xy -plane in R3. The
reflection with respect to any straight line in R2 or with
respect to any plane in R3 can be defined similarly.

(3). The (counterclockwise) rotation of angle θ in R2 is
given by the Euclidean motion

Tx =

[
cos θ − sin θ
sin θ cos θ

] [
x1
x2

]
, θ ∈ (0, 2π) .

In R3, one can perform a rotation around a fixed axis. For
instance, the rotation

Tx =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

x1x2
x3


takes the z-axis as its axis of rotation.
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• The composition of two Euclidean motions is still
Euclidean motion.

Indeed, let Tx = Ax + b and Sx = Bx + c be two
Euclidean motions. Its composition is given by

STx = B(Ax+b) + c = Cx+d , C ≡ BA, d = Bb+ c .

As

C ′C = (BA)′BA

= A′B ′BA

= A′IA

= I ,

we conclude that ST is again a Euclidean motion.
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• Each Euclidean motion admits an inverse. Indeed,
letting Ux = A−1x− A−1b which is obviously an Euclidean
motion, we have

UTx = A−1(Ax + b)− A−1b = x .

• In the following we study the structure of Euclidean
motions for n = 2, 3. Apparently it suffices to look at the
orthogonal matrix A.

47/123



Theorem 1.3.3
In R2, every orthogonal matrix can be written as

(1) [
cos θ − sin θ
sin θ cos θ

]
,

or

(2) [
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

]
, θ ∈ [0, 2π) .

Remark: Case (1) is a genuine rotation for θ ∈ (0, 2π) and
reduces to the identity at θ = 0. Case (2) is the reflection
with respect to the x-axis and then followed by a rotation.
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Proof. Let

A =

[
a b
c d

]
.

By orthogonality A′A = I we have

a2 + c2 = 1 , b2 + d2 = 1 , ab + cd = 0 .

Since a is a number between −1 and 1, we can find a unique
θ ∈ [0, 2π) such that a = cos θ, c = sin θ. Then either

b = − sin θ, d = cos θ

or
b = sin θ, d = − cos θ,

so (a) or (b) must hold. �
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In the following we consider the three dimensional case.
Denote by Rz(θ) the rotation around the z-axis by an angle
θ:

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , rotation around the z-axis.

Similarly we define

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , rotation around the x-axis,

and

Ry (θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 , rotation around the y-axis.
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Also we denote reflection with respect to the xy -plane:

Lz =

1 0 0
0 1 0
0 0 −1

 , reflection with respect to the xy -plane,

Lx =

−1 0 0
0 1 0
0 0 1

 , reflection with respect to the yz-plane,

and

Ly =

1 0 0
0 −1 0
0 0 1

 , reflection with respect to the xz-plane.
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Theorem 1.3.4
* In R3, every orthogonal matrix can be written as

(a) Rz(α)Rx(β)Rz(γ) , or

(b) Rz(α)Rx(β)Rz(γ)Lz ,

for some α, β, and γ.

Proof. The details are omitted.
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Section 1.4: The Cross Product in R3

Definition 1.4.1 (Cross product)

Let u, v ∈ R3, define the cross product of
u = (u1, u2, u3) and v = (v1, v2, v3) to be

u× v = (u2v3 − u3v2,−u1v3 + u3v1, u1v2 − u2v1)

≡
( ∣∣∣∣u2 u3

v2 v3

∣∣∣∣ , − ∣∣∣∣u1 u3
v1 v3

∣∣∣∣ , ∣∣∣∣u1 u2
v1 v2

∣∣∣∣ ).

• The cross product defines a new 3-vector by two given
3-vectors. Remember the negative sign in the second term.

• There is no such product in the general dimension. The
cross product is important due to its relevance in physics.
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• In particular, we have

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2 .

Theorem 1.4.2 (Properties of cross product)

For u, v,w ∈ R3,

(a) (αu + βv)×w = αu×w + βv×w , ∀α, β ∈ R.
(b) u× v = −v× u . In particular, u× u = 0 .

(c) (u× v)×w = u× (v×w) is not always true.
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Proof. The proofs of Theorem (a) and (b) are
straightforward from definition.

As for (c), which asserts that the associative law does not
hold, an example suffices:

(e1 × e2)× e2 = −e1 , e1 × (e2 × e2) = 0.
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• We know that a vector is completely determined by its
magnitude and direction. Thus we consider the direction and
magnitude of the cross product.

•(Geometric Property) Using the definition of the cross
product, one can verify directly that

u · (u× v) = 0 , v · (u× v) = 0 ,

so
(αu + βv) · (u× v) = 0 ,

that is, it is perpendicular to the two dimensional subspace
spanned by the vectors u and v.
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Moreover, we have:

• The direction of u× v is determined by the right hand
rule. That is, with the thumb making a right angle with
the other four fingers of your right hand, first point the four
fingers along the direction of u and then move them to v in
an angle less than π. The direction of u× v is where your
thumb points to.

How about the magnitude of cross product ?
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Theorem 1.4.3
For u, v ∈ R3,

|u× v| = |u||v| sin θ, θ ∈ [0, π] ,

where θ is the angle between u and v.

Proof. The proof depends on the identity

|u× v|2 = |u|2|v|2 − (u · v)2 .

Indeed, by brute force

|u× v|2 = (u2v3 − u3v2)2 + (u1v3 − u3v1)2 + (u1v2 − u2v1)2

= u2
2v

2
3 + u2

3v
2
2 + u2

1v
2
3 + u2

3v
2
1 + u2

1v
2
2 + u2

2v
2
1

− 2u2v3u3v2 − 2u1v3u3v1 − 2u1v2u2v1.
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On the other hand,

|u|2|v|2 − (u · v)2

= (u2
1 + u2

2 + u2
3)(v 2

1 + v 2
2 + v 2

3 )− (u1v1 + u2v2 + u3v3)2

= u2
2v

2
3 + u2

3v
2
2 + u2

1v
2
3 + u2

3v
2
1 + u2

1v
2
2 + u2

2v
2
1

− 2u2v3u3v2 − 2u1v3u3v1 − 2u1v2u2v1,

whence the identity holds. Now, by the Cosine Law,

|u× v| =
√
|u|2|v|2 − |u|2|v|2 cos2 θ

= |u||v|| sin θ|
= |u||v| sin θ ,

as sin θ ≥ 0 on [0, π].
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• In conclusion the magnitude and direction of the
decomposition of the cross product is given by

u× v = |u||v| sin θ n ,

where n is the unit vector determined by the right hand
rule (when u and v are linearly independent, that is, when
sin θ 6= 0).
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Corollary 1.4.4

Let a,b, c ∈ R3, then it holds that

(1) The area of the parallelogram spanned by a and b is
equal to |a× b|.

(2) The area of the triangle with two sides given by a
and b is equal to 1

2
|a× b|.

(3) The volume of the parallelepiped spanned by a,b
and c is equal to

V = |c · (a× b)| .
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Proof. (1) follows immediately from Theorem 1.5 and (2)
from (1).

To prove (3), we may assume a and b lie on the xy -plane
after a rotation. The volume of the parallelepiped is given
by the product of the area of the parallelogram spanned by
a and b with its height. Now |a× b| is equal to the area of
this parallelogram. On the other hand, its height is given
by |c · e3|. Therefore, letting α be the angle between c and
the z-axis,

|w · (a× b)| = |c||a× b|| cosα|
= |a× b| |c · e3|
= V .

�
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Example 1.4.5

Determine if the four points

A(1, 0, 1), B(2, 4,−6), C (3,−1, 5), D(1,−9, 19) ,

lie on the same plane in R3.

Sol: Well, they lie on the same plane if and only if the
parallelepiped formed by these vectors has zero volume. We
compute the volume using this corollary after subtracting
the first vector from the last three vectors (to make sure
that the vectors are based at the origin):

(1, 4,−7) ·
(
(2,−1, 4)× (0,−9, 18)

)
= (1, 4,−7) · (18,−36,−18)

= 0 ,

so they lie on the same plane. �
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Chapter 2:

Lines, Planes, and
Quadratic Surfaces
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Section 2.1: Hyperplanes

Definition 2.1.1 (Zero set)

Given a function f in n-many variables, we let

Σ = {x ∈ Rn : f (x) = 0},

be its zero set of f . It is also called the solution set of
f as one can also view f (x) = 0 as solving an equation.

• When expressed in the form

Σc = {x ∈ Rn : f (x) = c},

which corresponds to the zero set of the function f − c , this
set is called the level set of the function f at c .
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Now we consider the linear equation in Rn, n ≥ 1,

a1x1 + a2x2 + · · ·+ anxn = b , a1, a2, · · · , an, b ∈ R .

Here it is implicitly assumed at least one of the coefficients
aj ’s is non-zero.

• It is called a homogeneous linear equation when b = 0
and a non-homogeneous linear equation when b 6= 0.

• Using the dot product, we can write a linear equation in
the form

a · x = b , a ∈ Rn , b ∈ R .
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Definition 2.1.2 (Hyperplane)

Let a = (a1, · · · , an) ∈ Rn, then the solution set

H = {x = (x1, x2, · · · , xn) ∈ Rn : a · x = b },

is called the hyperplane associated to the equation.

• Generally, the vector a is named as normal vector.

• When n = 2, the hyperplane is called the straight line
or simply the line associated to the equation.

• When n = 3, it is called the plane associated to the
equation.
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How to write down the equation of a hyperplane ?

• A hyperplane is completely determined when its normal
vector and a point on it are known. In other words, letting
a = (a1, a2, · · · , an) be a vector that is perpendicular to the
plane and p a point on the plane, the equation of the
hyperplane is given by

a · (x− p) = 0.
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Example 2.1.3

Find the equation of the plane which is parallel to the plane
2x − 7y + z = 0 and passing through the point (1, 2, 3).

Sol: By parallel we mean these two planes have the same
normal direction. Therefore, the sought-after plane has
normal (2,−7, 1) and, as it passes through (1, 2, 3),
b = (2,−7, 1) · (1, 2, 3) = −9. The equation for the plane is
given by

(2,−7, 1) · ((x , y , z)− (1, 2, 3)) = 0 ,

that is, 2x − 7y + z = −9.
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Example 2.1.4

Find the straight line passing through (−1, 2) and is
perpendicular to the straight line 2x + 5y = −9.

Sol: The normal direction of the line 2x + 5y = −9 is
(2, 5), so the normal direction of our straight line is (5,−2)
(you may choose (−5, 2) as well). Therefore, the equation
of our straight line is

(−5, 2) · ((x , y)− (−1, 2)) = 0, or − 5x + 2y = 9 .
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• For n = 3, it is apparent three points determine a plane
uniquely unless they are collinear.

How to find the equation of the hyperplane passing
certain points ?

• In higher dimension(n ≥ 4), it is more tedious to describe
the conditions that n points determined a hyperplane in
geometric terms.
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Generally, given linearly independent points
p1,p2, · · · ,pn ∈ Rn, in order to determine the equation of
the hyperplane passing through these points it suffices to
determine its normal direction a, which should satisfy the
linear system

(p1−pn)·a = 0 , (p2−pn)·a = 0 , · · · , (pn−1−pn)·a = 0 .

• This is a system of n unknowns and n − 1 equations, so it
is always solvable.

• When the n − 1 points pj − pn, j = 1, · · · , n − 1, are
linearly independent, it is known that the solution is one
dimensional, that is, it is spanned by a single vector, and
we can take it to be the normal. Therefore, the problem of
determining the hyperplane is reduced to solving a linear
system.
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When n = 3, we can take advantage of the cross product.
Now we need to solve (p1 − p3) · a = 0 and
(p2 − p3) · a = 0. We see that a normal direction is given
by (p1 − p3)× (p2 − p3).

Theorem 2.1.5
The equation for the plane passing three non-collinear
points p1,p2,p3 is given by(

(p1 − p3)× (p2 − p3)
)
·
(
(x , y , z)− p3

)
= 0 .
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Example 2.1.6

Find the equation of the plane passing through the points

p1(0, 1, 1), p2(2, 3, 0), p3(2, 3, 4) .

Sol: A direct calculation shows

(p1 − p3)× (p2 − p3)

= ((0, 1, 1)− (2, 3, 4))× ((2, 3, 0)− (2, 3, 4))

= (−2,−2,−3)× (0, 0,−4)

= (8,−8, 0),

so the equation is given by

(8,−8, 0)·((x , y , z)− (2, 3, 4)) = 8(x−2)−8(y−3)+0(z−4) = 0,

that is, x − y + 1 = 0 .
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Example 2.1.7

Find the equation of the plane passing through the points

p1(1, 1, 1), p2(2,−1, 0), p3(0,−3, 4) .

Sol: Although the cross product approach may be used, let
us follow the general approach. First, we bring (1, 1, 1) to
the origin.

p2 − p1 = (2,−1, 0)− (1, 1, 1) = (1,−2,−1),

p3 − p1 = (0,−3, 4)− (1, 1, 1) = (−1,−4, 3).
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The normal direction of the plane (a, b, c) is perpendicular
to these two vectors,

(1,−2,−1) · (a, b, c) = 0, (−1,−4, 3) · (a, b, c) = 0 ,

which gives

a − 2b − c = 0, a + 4b − 3c = 0 .

Using c as the parameter, we solve this system to get
a = 5c/3 and b = c/3. That is, the vector (5/3, 1/3, 1)c is
perpendicular to the plane. Taking c = 3, our plane
satisfies the equation

(5, 1, 3) · ((x , y , z)− (1, 1, 1)) = 0, i.e., 5x + y + 3z = 9 .

�
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Let H be a hyperplane and p a point outside the
hyperplane, then the distance from p to H is defined as

dist(p,H) = min
x∈H
|p− x|.

Now we derive a formula for the distance from a point to
a hyperplane.

Theorem 2.1.8 (Distance from point to hyperplane)

Let p ∈ Rn and H = {x ∈ Rn : a · x = b} be a
hyperplane in Rn. The distance from p to the
hyperplane is given by

dist(p,H) =
|a · p− b|
|a|

.
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Proof. We note that the distance is equal to the length of
the line segment from p perpendicular to the hyperplane.

Let q be the point on the plane so that p− q is
perpendicular to the hyperplane. We have two equations,
namely,

a · q = b , p− q = λa , λ ∈ R .

The first equation means q is a point on the plane and the
second equation means p− q points to the normal direction
of the hyperplane. We plug q = p− λa in the first equation
to get

a · (p− λa) = b ,

which yields

λ =
a · p− b

|a|2
.

79/123



It follows that

q = p− λa = p− a · p− b

|a|2
a,(

projection of p onto the hyperplane
)
.

As the distance from p to the hyperplane is given by
|p− q|, we conclude that it is given by

dist(p,H) =
|a · p− b|
|a|

.

�
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Corollary 2.1.9

Let a · x = b and a · x = c be two parallel planes. The
distance between them is given by |b − c |/|a|.

Proof. The distance from a point p on the second plane to
the first one is given by |a · p− b|/|a|, and the formula
follows after noting a · p = c .
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Example 2.1.10

Let H : 2x + 5y − z + w = 2 be a hyperplane in R4 and
P(1, 2, 0,−3) a point lying outside the hyperplane.

(a) Find the point on the hyperplane that realizes the distance
between p and H .

(b) Find the distance from P to H .
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Sol: We apply the formulas:

a · p = (2, 5,−1, 1) · (1, 2, 0,−3) = 9,

and

λ =
a · p− b

|a|2
=

9− 2

31
=

7

31
,

hence

q = p−λa = (1, 2, 0,−3)− 7

31
(2, 5,−1, 1) =

1

31
(17, 27, 7,−100) ,

which is the answer to (a) and

|p− q| =
7√
31

,

is the answer to (b). �

83/123



Section 2.2: Straight Lines

A straight line is determined by its direction and a point
it passes through.

Definition 2.2.1 (Straight Lines)

Given p ∈ Rn and a non-zero ξ ∈ Rn, a straight line
passing through p along the direction determined by ξ
is given by the set of points

{x ∈ Rn : x = p + ξt , t ∈ R}.
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• ξ can not be zero, otherwise the straight line would
degenerate into a single point;

• In some old texts, the equation of a straight line is
expressed as

x1 − p1
ξ1

=
x2 − p2
ξ2

= · · · =
xn − pn
ξn

,

which is an alternate description that the straight line
passing p with slope ξ.
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For R3, we have the following theorem:

Theorem 2.2.2

I Any straight line is the intersection of two linearly
independent planes in R3.

I Conversely, the solution set of two linear equations
with different normal directions is a straight line for
some p and ξ.
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Example 2.2.3

Find the expression for the straight lines which is the
intersection of the planes{

x + y + z = 1,

2x − y + 6z = 5, .

Sol: We may take z as the “time parameter” and write the
system as {

x + y = 1− z ,

2x − y = 5− 6z .

Solve this equation to get

x =
1

3
(6− 7z) , y =

1

3
(−3 + 4z) .
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Writing t = z , the straight line is given by

(x , y , z) =

(
1

3
(6− 7t),

1

3
(−3 + 4t), t

)
= (2,−1, 0) +

(
−7

3
,

4

3
, 1

)
t , t ∈ R.

It passes through (2,−1, 0) at t = 0 with constant velocity
(−7/3, 4/3, 1).
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Alternatively, we can take y as the time parameter. We
write {

x + z = −y + 1,

2x + 6z = 5 + y ,

which gives

x =
1

4
(1− 7z) , z =

1

4
(3 + 3y) ,

so the straight line can be described as

(x , y , z) =

(
1

4
, 0,

3

4

)
+

(
−7

4
, 1,

3

4

)
t , t ∈ R .

Observing (
−7

4
, 1,

3

4

)
=

3

4

(
−7

3
,

4

3
, 1

)
,

we see that they represent the same set.
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Alternatively, we can take y as the time parameter. We
write {

x + z = −y + 1,

2x + 6z = 5 + y ,

which gives

x =
1

4
(1− 7z) , z =

1

4
(3 + 3y) ,

so the straight line can be described as

(x , y , z) =

(
1

4
, 0,

3

4

)
+

(
−7

4
, 1,

3

4

)
t , t ∈ R .

Observing (
−7

4
, 1,

3

4

)
=

3

4

(
−7

3
,

4

3
, 1

)
,

we see that they represent the same set.
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Only now the particle starts at (1/4, 0, 3/4) with constant
velocity (−7/4, 1, 3/4). Although in these two formulas the
motions are different, the geometry is the same. �

Remark It is not hard to see that either x , y or z can be
chosen to be the time parameter as long as the 2× 2-matrix
obtained after moving the chosen variable to the other side
is non-singular.
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• Let x,y ∈ Rn. The straight line passing through x and y
is given by

x + t(y− x) = (1− t)x + ty, t ∈ R.

• The segment connecting x,y ∈ Rn is given by

x + t(y− x) = (1− t)x + ty, t ∈ [0, 1].

Example 2.2.4

Consider the triangle whose vertices are
A(0, 0), B(2, 0), C (1, 1). Find

(1) Its medium from A,

(2) Its height from A.

(3) * Its bisector from A.
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Sol: (1) The midpoint of the side BC is given by

((2, 0) + (1, 1))/2 = (3, 1)/2.

The vector (3, 1) points to the direction of the median. As
the median passes A(0, 0), the median is given by the set{

(3, 1)t : t ∈
[

0,
1

2

]}
.
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(2) Let AD be the height from A where D is on the side
BC . Let D be

(2, 0) + t((1, 1)− (2, 0)) = (2− t, t)

where t is to be specified. The direction of
−→
BC points in

(1, 1)− (2, 0) = (−1, 1).

Noting
−→
AD⊥

−→
BC , we have

(−1, 1) · (2− t, t) = 0 ,

which is readily solved to get t = 1. We conclude that
D = C and the height coincides with AC . In other words,
this is a perpendicular triangle with the right angle at C .
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(3)* Let θ = ∠CAB . The lengths of AB and AC are given
by 2 and

√
2 respectively. By the Cosine Law,

cos θ =
(2, 0) · (1, 1)

2
√

2
=

√
2

2
.

Using the half angle formula,

cos
θ

2
=

(
1 + cos θ

2

)1/2

= a , a =

√
2 +
√

2

2
.

The direction of the bisector is given by(
cos

θ

2
, sin

θ

2

)
= (a, b), b =

√
1− a2 =

√
2−
√

2

2
.
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On the other hand, BC is given by

(2, 0) + ((1, 1)− (2, 0))s = (2− s, s), s ∈ [0, 1].

The line (0, 0) + t(a, b) hits BC at

t(a, b) = (2− s, s).

Solving for t and s, we get

t = 2/(a + b), s = 2b/(a + b).

We conclude that the bisector at A is given by{
(a, b)t : t ∈

[
0,

2

a + b

]}
.

�
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Section 2.3: Quadratic hypersurfaces

Definition 2.3.1 (Quadratic hypersurfaces)

A quadric hypersurface is defined as the zero set Σ
of a quadratic equation

n∑
j ,k=1

ajkxjxk +
n∑

j=1

bjxj + c = 0,

where not all ajk ’s are zero.
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Now we consider the quadratic curves in R2. Then
we write the quadratic equation as

ax2 + 2bxy + cy 2 + dx + ey = f , (2.1)

and denotes it solution set by γ.

• We can also express the above quadratic equation in the
form

(x , y)

[
a b
b c

] [
x
y

]
+ dx + ey = f .

• To study the geometry of γ we simplify the equation by
rotating the coordinates which do not change the shape of
γ.
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Theorem 2.3.2
For any symmetric 2× 2-matrix

A =

[
a b
b c

]
,

there is a rotation

R =

[
cos θ − sin θ
sin θ cos θ

]
such that

R ′AR =

[
cos θ sin θ
− sin θ cos θ

] [
a b
b c

] [
cos θ − sin θ
sin θ cos θ

]
=

[
λ 0
0 µ

]
,

where λ and µ are eigenvalues of the symmetric matrix.
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continued.

Consequently, letting[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
u
v

]
,

then we have

ax2 + 2bxy + cy 2 = λu2 + µv 2 .
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Proof.

R ′AR =

[
cos θ sin θ
− sin θ cos θ

] [
a b
b c

] [
cos θ − sin θ
sin θ cos θ

]

=

a cos2 θ + 2b sin θ cos θ + c sin2 θ b cos 2θ +
c − a

2
sin 2θ

b cos 2θ +
c − a

2
sin 2θ a sin2 θ + c cos2 θ − b sin 2θ

 .
We can always choose some θ0 ∈ [0, π) such that

b cos 2θ0 +
c − a

2
sin 2θ0 = 0,

so that R ′AR = D where D is a diagonal matrix

D =

[
λ 0
0 µ

]
.
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From
R ′AR e1 = λe1, R ′AR e2 = µe2 ,

we see that
Ax = λx, Ay = µy ,

where
x = Re1, y = Re2 .

It shows that λ and µ are in fact the eigenvalues of A. �

101/123



By introducing the new variables u, v as described in this
theorem, our quadratic equation turns into another
quadratic equation

λu2 + µv 2 + du + ev = f , (2.2)

for different d and e. Since the shape of γ remains
unchanged under rotations, it suffices to study quadratic
equation with the form (2.2).
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Theorem 2.3.3
Consider equation (2.2). It holds that

(1). If λ and µ are of the same sign, there is a Euclidean
motion under which the equation assumes the form

|λ|x2 + |µ|y 2 = c , c ∈ R.

Consequently, γ is either an ellipse (c > 0), a point
(c = 0) or an empty set (c < 0).

(2). If λ and µ are of different sign, there is a Euclidean
motion under which the equation assumes the form

|λ|x2 − |µ|y 2 = c , c ∈ R .

Consequently, γ is either a hyperbola (c 6= 0), or the
union of two intersecting straight lines (c = 0).
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continued.

(3). If one of λ, µ is zero, there is a Euclidean motion
under which the equation assumes the form

|λ|x2 + ay = c , a, c ∈ R .

Consequently, γ is either a parabola (a 6= 0), two parallel
straight lines (a = 0, c > 0), the empty set (a = 0, c <
0) or a straight line (a = c = 0).
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Remark We note that

λµ = ac − b2 = detA .

• λ and µ are of the same sign iff ac − b2 > 0.

• They are of opposite sign iff ac − b2 < 0.

• One of λ, µ vanishes iff ac − b2 = 0.
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Proof. (1). If λ and µ are of the same sign. By
multiplying −1 to this equation if necessary, we may
assume they are positive. By completing square, it becomes

λ

(
x +

d

2λ

)2

+ µ

(
y +

e

2µ

)2

= g , g = f +
d2

2λ
+

e2

4µ
.

Therefore, after a translation

u = x +
d

2λ
, v = y +

e

2µ
,

we achieve at λu2 + µv 2 = g . When g > 0, this is the
standard form for an ellipse. When g = 0, it degenerates
into a single point. When g < 0, this equation has no
solution, so γ is an empty set.
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(2). If λ and µ are of opposite sign. By multiplying −1 to
this equation if necessary, we may assume λ is positive and
µ is negative. Following the discussion in the first case, we
arrive at |λ|u2 − |µ|v 2 = g . When g 6= 0, γ is a hyperbola.
When g = 0, it is the union of the straight lines defined by√

|λ|u +
√
|µ|v = 0 ,

√
|λ|u −

√
|µ|v = 0 .
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(3). If one of λ, µ is zero, by switching the x- and y -axis if
necessary, we may assume λ > 0 and µ = 0 so that the
equation becomes

λx2 + dx + ey + f = 0 ,

for some new f . A partial completing square yields

λ

(
x +

d

2λ

)2

+ ey + f − d2

4λ
= 0 .

Hence, after a horizontal translation, the equation becomes
λx2 + ey = f . It is a parabola as long as e 6= 0. When
e = 0 and f > 0, γ consists of two vertical lines x = ±

√
f .

It is empty when e = 0 and f < 0. It is the y -axis when
e = f = 0.

Therefore we have completely classified the curves defined
by quadratic equations of two variables. �
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Ellipse

   Chap 2 Linear and quadratic objects in space Page 23    
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Hyperbola

   Chap 2 Linear and quadratic objects in space Page 24    
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Parabola

   Chap 2 Linear and quadratic objects in space Page 22    
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Steps of transforming a quadratic equation into the
“standard form” are:

Step 1. Solve the characteristic equation

det

[
a − λ b
b c − λ

]
= 0 ,

to determine the two eigenvalues λ1 and λ2 including
multiplicity.
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Step 2. Solve the linear systems[
a b
b d

] [
u1
v1

]
= λ1

[
u1
v1

]
and [

a b
b d

] [
u2
v2

]
= λ2

[
u2
v2

]
to obtain two orthogonal unit eigenvectors (u1, v1) and
(u2, v2).

113/123



Step 3. The change of variables[
x
y

]
=

[
u1 u2
v1 v2

] [
u
v

]
will convert the equation in x , y into one in u, v without
mixed term uv .

Step 4. Completing square to bring it into the standard
form.
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Example 2.3.4

Transform the equation

2xy − x + 3y = 1

to the standard form and determine its solution set.

Sol: We have a = c = 0 and b = 1 so ac − b2 = −1 < 0 and
there are two eigenvalues with opposite sign. In fact, the
characteristic polynomial is λ2 − 1 = 0 so the two
eigenvalues are 1 and −1 with corresponding eigenvector
(1, 1) and (−1, 1) so that

R =

√
2

2

[
1 −1
1 1

]
.

This is the rotation by 45◦. Note that the factor
√

2/2 is
for normalization.
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Letting [
x
y

]
=

√
2

2

[
1 −1
1 1

] [
u
v

]
,

that is,

x =

√
2

2
(u − v), y =

√
2

2
(u + v) ,

2xy − x + 3y − 1 = u2 − v 2 −
√

2

2
(u − v) +

3
√

2

2
(u + v)− 1

= u2 − v 2 +
√

2u + 2
√

2v − 1

= (u +

√
2

2
)2 − (v −

√
2)2 +

1

2
,

where in the last step we complete square. Letting
x ′ = u +

√
2 and y ′ = v +

√
2, the equation finally achieves

the standard form x2 − y 2 = −1
2

which is a hyperbola after
replacing (x ′, y ′) by (x , y).
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The situation for all other dimensions is similar. Indeed, we
need the following basic result in linear algebra.

Theorem 2.3.5
For any n × n symmetry matrix A, there is an
orthogonal matrix R such that

R ′AR = D

where D is a diagonal matric whose diagonal elements
are precisely the eigenvalues of A (counting multiplicity)
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For simplicity, we only consider quadratic equation in R3.
Using this result, a suitable Euclidean motion would bring
the general quadratic equation into

λx2 + µy 2 + νz2 + dx + ey + fz = g . (2.3)

and further classification according to the sign of the
eigenvalues can be carried out as in the two variable case.
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Theorem 2.3.6
(1). If λ, µ, ν are of the same sign, there is a Euclidean
motion to transform (2.3) to

|λ|x2 + |µ|y 2 + |ν|z2 = g , g ∈ R . (ellipsoid)

(2). If two of λ, µ, ν are of the same sign and one in
opposite sign, there is a Euclidean motion to transform
(2.3) to

|λ|x2 + |µ|y 2 − |ν|z2 = g , g ∈ R .

( hyperboloid of one sheet g > 0, elliptical cone g = 0,
hyperboloid of two sheets g < 0).
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(3). If two of λ, µ, ν are of the same sign and the third
one is zero, there is a Euclidean motion to transform
(2.3) to

|λ|x2+|µ|y 2+fz = g , f , g ∈ R(elliptical paraboloid)

(4). If one of λ, µ, ν is zero and the other two are in
opposite sign, there is a Euclidean motion to transform
(2.3) to

|λ|x2−|µ|y 2+fz = g , f , g ∈ R (hyperbolic paraboloid)

(5). If exactly two of λ, µ, ν are zero, there is a Eu-
clidean motion to transform (2.3) to

|λ|x2 + ey = g , e, g ∈ R (paraboloid)

120/123



Quadratic Surfaces
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Quadratic Surfaces

Figure: Parabloid
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The End!
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