## Week 7

## Topics covered:

L'Hôpital's Rule (as application of the Cauchy Mean Value Theorem)

## Topics to cover:

- Applications of Lagrange's Mean Value Theorem
- (i) $f^{\prime}(x)>0,<0$ then increasing, decreasing
(ii) curve sketching, (the terminologies "critical point", "point of inflection")
- To prove all the "mean value theorems", we need the Extreme Value Theorem.
- Proof of $n=0$ TT by way of LMVT
- Proof of $n=1$ TT by way of CMVT \& LMVT


## First Application of LMVT

Let $f(x)$ be a function such that $f^{\prime}(x)>0 \forall x \in$ Domain, then
$f(x)$ is strictly increasing. (i.e. whenever $s<t$ in the domain of $f(x)$, then $f(s)<f(t))$.

Remark: Similarly, we have $f^{\prime}(x)<0 \forall x \in$ Domain, then $f(x)$ is strictly decreasing.

## Proof:

Want: Show $f(s)<f(t)$ whenever $s<t$.

Consider $\frac{f(s)-f(t)}{s-t}$.
By using the LMVT, we have $\exists d$ between $s \& t$ such that $\frac{f(s)-f(t)}{s-t}=f^{\prime}(d)$.
Now there are two cases for the word "between", i.e. it means either $s<d<t$ or $t<d<s$

In either case, the denominator is "negative" because $s<t$ if and only if $s-t<$ 0.

Hence it follows that the numerator is also "negative" to make the quotient
$\frac{f(s)-f(t)}{s-t}>0 \ldots$.
Hence $f(s)<f(t)$ as required.

## Application of " $f^{\prime}(x)>0$ implies "strictly increasing" " in "curve sketching.

Recall our old example:
Example: Sketch $f(x)=\frac{1}{x(x-1)}$.

We have (i) $\lim _{x \rightarrow-\infty} f(x)=0^{+}$, (ii) $\lim _{x \rightarrow 0^{-}} f(x)=+\infty$, (iii) $\lim _{x \rightarrow 0^{+}} f(x)=-\infty$, (iv)
$\lim _{x \rightarrow 1^{-}} f(x)=-\infty$, (v) $\lim _{x \rightarrow 1^{+}} f(x)=+\infty$, (vi) $\lim _{x \rightarrow \infty} f(x)=0^{+}$.

## What we don't know

How many "bumps" are there?

By "bump", we mean "local maximum/minimum points". These points are found by
(i) Looking for point(s) $c$ satisfying the equation $f^{\prime}(c)=0$. (Such point $c$ is called a "critical point")
(ii) Checking whether the function is "strictly increasing/decreasing" when $x<c$ and near $c$; "strictly decreasing/increasing" when $x>c$ and near $c$. (The first case means " $c$ is a (local) maximum point", the second case means " $c$ is a (local) minimum point".)
(iii) Sometimes, one can also check for (local) max/min points by considering $f^{\prime \prime}(c)<0$ or $>0$.

## Curve Sketching Example continued

Consider $f(x)=\frac{1}{x(x-1)}$,
Then $f^{\prime}(x)=\frac{-\left(\frac{d}{d x} x(x-1)\right)}{x^{2}(x-1)^{2}}=\frac{-[(x-1)+x]}{x^{2}(x-1)^{2}}=\frac{-(2 x-1)}{x^{2}(x-1)^{2}}$
Solving $f^{\prime}(x)=0$ gives $x=\frac{1}{2}$.

Now when $x<\frac{1}{2}$ and near to it, we get $f^{\prime}(x)>0$. When $x>\frac{1}{2}$ and near to it, we get $f^{\prime}(x)<0$. So $x=\frac{1}{2}$ is a local maximum point.

Definition: A point $c$ in the domain is called a point of "inflection" (or "inflexion"), if for $x<c$ ( $($ and near the point $c), f^{\prime \prime}(x)>0$ and for $x>c$ (and near the point $c$ ), $f^{\prime \prime}(x)<0$. (or vice versa, i.e. $f^{\prime \prime}(x)<0$ first, then $f^{\prime \prime}(x)>0$ next). (In short, it means " $f$ " $(x)$ changes "sign" about the point $c$ ")

Question: Does this function have a point of inflexion?
Answer: No, because $\frac{d}{d x}\left(\frac{-(2 x-1)}{x^{2}(x-1)^{2}}\right)=-\left(\frac{x^{2}(x-1)^{2} 2-(2 x-1) \frac{d}{d x}\left[x^{2}(x-1)^{2}\right]}{x^{4}(x-1)^{4}}\right)$

$$
-\left(\frac{x^{2}(x-1)^{2} 2-(2 x-1)[2 x(x-1)\{2 x-1\}]}{x^{4}(x-1)^{4}}\right)=0
$$

$$
\begin{gathered}
x^{2}(x-1)^{2} 2=(2 x-1)^{2}[2 x(x-1)] \\
x(x-1)=(2 x-1)^{2} \\
x^{2}-x=4 x^{2}-4 x+1 \\
0=3 x^{2}-3 x+1 \\
\text { I.e. } x=\frac{3 \pm \sqrt{9-12}}{6}
\end{gathered}
$$

This has no solution. So there is no "inflection points".

## Proof of Taylor's Theorem continued

## - Done via EVT \&

- LMVT \&
- CMVT


## We will explain them one by one.

A technical result:

## * Extreme Value Theorem

Assumption: $f:[a, b] \rightarrow R$ is a continuous function.
Conclusion: $f$ has global (or "absolute") max/min values.



Left picture - a global max. attained inside the interval, global min. attained at the right end-point.
Right picture - both global max. and min. are attained at end-points.

Question: What do we mean by global abs. max value?
A point $c$ in the domain of $f(x)$ is called a "global" maximum point, if $f(c) \geq$ $f(x), \forall x$ in domain of $f(x)$
The value $f(c)$ is called the "global" max. value of the function.

Similarly, one can define "global minimum point" and "value".

## Terminology:

One can summarized both maximum and minimum in the word "extremum".
(Using this word, we can say "The EVT guarantees that any continuous function defined on $[a, b]$ has global extrema ("extrema" is the plural of "extremum")")

## Remarks (for the EVT):

- Continuity is sufficient (we don't need "differentiability")
- Domain must be of the form $[a, b]$. $((a, b],[a, b),(a, b)$, etc. wouldn't work!)
- Pure existence theorem (it doesn't tell you how to find the max/min points)
- Using this, we can prove LMVT (via the RT)

Question: Do you remember the statement of RT?

## Rolle's Theorem

The following picture explains Rolle's Theorem:


Rolles' Theorem says: "If a function $f(x)$ satisfies (1), (2), (3) below, then $\exists c \in$ $(a, b)$ such that $f^{\prime}(c)=0 . .^{\prime \prime}$ (In other words, the tangent line at the point $x=c$ is horizontal (or parallel to the $x$-axis)).
Assumptions for RT: (1) $f:[a, b] \rightarrow R$ is continuous, (2) $f:(a, b) \rightarrow R$ is differentiable, (3) $f(a)=f(b)$.

## From RT to LMVT

(Idea) Rewrite $\frac{f(b)-f(a)}{b-a}=f^{\prime}(d) \quad$ (notice that we have a quotient on the lefthand side!) in the form of some function $p(x)$ satisfying $(*) p(a)=p(b)$ so that we can use Rolle's Theorem to get $p^{\prime}(c)=0$.

Question: Can we do that?
Answer: Look at Cauchy Mean Value Theorem (which is more complicated than Lagrange's Mean Value Theorem) to get an idea. CMVT says: For some $e$ between $a$ \& $b$

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(e)}{g^{\prime}(e)}
$$

Let's rewrite it in the form $(f(b)-f(a)) g^{\prime}(e)-(g(b)-g(a)) f^{\prime}(e)=0$

We think this way: If we consider the function

$$
q(x)=(f(b)-f(a)) g(x)-(g(b)-g(a)) f(x)
$$

Then perhaps it will satisfies the assumptions of the Rolle's Theorem.

That is, we have to check:
(i) $q(b)=$ ? (ii) $q(a)=$ ?

It turns out that $q(a)=q(b)$. (Check it yourself !) Therefore the assumptions of Rolle's Theorem are satisfied. It follows that there exists $e$ between $a \& b$ such that:

$$
q^{\prime}(e)=0
$$

But $q^{\prime}(x)=(f(b)-f(a)) g^{\prime}(x)-(g(b)-g(a)) f^{\prime}(x)$
So substituting $x=e$, we obtain

$$
0=q^{\prime}(e)=(f(b)-f(a)) g^{\prime}(e)-(g(b)-g(a)) f^{\prime}(e)
$$

Rearranging, we obtain

$$
\frac{(f(b)-f(a))}{(g(b)-g(a))}=\frac{f^{\prime}(e)}{g^{\prime}(e)}
$$

This is what we wanted to prove.

## Proof of LMVT

Coming back, we observe that the conclusion of LMVT, i.e.

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(d) \exists d \text { between } a \& b
$$

can be understood as CMVT with $g(x)=x$. That is the following:

$$
\frac{f(b)-f(a)}{b-a}=\frac{f^{\prime}(d)}{\left.\frac{d}{d x} x\right|_{x=d}}=\frac{f^{\prime}(d)}{1}
$$

Now we repeat our idea used to prove the CMVT before and rewrite the fraction in the following form:

$$
(f(b)-f(a)) g(x)-(b-a) f^{\prime}(d)=0
$$

This leads us to consider the function $p(x)$ defined by

$$
p(x)=(f(b)-f(a)) x-(b-a) f(x)
$$

Again, we try to check whether $p(a)=p(b)$ so that we can apply Rolle's Theorem.

Substituting $x=a$ and $x=b$ in $p(x)$ gives

$$
\begin{aligned}
& p(a)=(f(b)-f(a)) a-(b-a) f(a)=\cdots \\
& p(b)=(f(b)-f(a)) b-(b-a) f(b)=\cdots
\end{aligned}
$$

So $p(a)=p(b)$. Therefore Rolle's Theorem says:
$\exists d$ between $a \& b$ such that $p^{\prime}(d)=0$, i.e.

$$
(f(b)-f(a))-(b-a) f^{\prime}(d)=0
$$

Which is what we wanted to prove.

## Relations to Taylor's Theorem

## Two very simple cases of TT are:

$n=0$ case.

If we let $x=b$, and $a=c$, we obtain

$$
f^{\prime}\left(c^{*}\right)=\frac{f(x)-f(c)}{x-c}
$$

I.e.

$$
\begin{gathered}
f(x)=f^{\prime}\left(c^{*}\right)(x-c)+f(c) \\
=f(c)+f^{\prime}\left(c^{*}\right)(x-c) .
\end{gathered}
$$

I.e.

$$
f(x)=f(c)+\text { Error term } .
$$

Error term $=\frac{f^{\prime}\left(c^{*}\right)}{1!}(x-c)^{1}$
Remark: The $n=0$ TT is just LMVT!

## The $n=1$ Taylor's Theorem

Can we improve on the $n=0$ Taylore' Theorem (i.e. approximating the function $y=f(x)$ by the horizontal line $y=f(c)$ ?)

Answer: Yes. We can try next $f(x)=f(c)+f^{\prime}(c)(x-c)+$ Error,
Where this time, the "Error" term is of the form

$$
Q(x-c)^{2}
$$

where $Q$ is some number which we want to find.

Why? Because when $x$ is near to $c, x-c$ is a number whose absolute value is less than 1 , so $(x-c)^{2}<|x-c|$

Rearranging, we obtain

$$
f(x)-f(c)-f^{\prime}(c)(x-c)=Q(x-c)^{2}
$$

Goal: Find a formula for the number " $Q$ ".

To see this: Rewrite the above equation as

$$
\frac{f(x)-f(c)-f^{\prime}(c)(x-c)}{(x-c)^{2}}=Q
$$

Question: How to find this number $Q$ ?

Interpret the above as "CMVT", i.e.
Let $A(x)=f(x)-f(c)-f^{\prime}(c)(x-c)$,

$$
B(x)=(x-c)^{2}
$$

Then the above formula (LHS) is:

$$
\frac{A(x)-A(c)}{B(x)-B(c)}=\frac{A^{\prime}(d)}{B^{\prime}(d)}=\frac{f^{\prime}(d)-f^{\prime}(c) 1}{2(d-c)}
$$

for some (or $\exists$ ) $d \in(c, x)$ or $(x, c)$.
where $d$ depends on $c$ and $x$. Next, we use Cauchy Mean Value Theorem again to get

$$
\frac{\left(\frac{1}{2}\right) f^{\prime}(d)-\left(\frac{1}{2}\right) f^{\prime}(c)}{d-c}=\left(\frac{1}{2}\right) f^{\prime \prime}(e) \exists e \text { between } d \& c .
$$

Similarly, one can prove Taylor's Theorem for $n=2,3,4, \cdots$ by repeated use of CMVT and LMVT.

For example when $n=2$, we get

$$
\frac{f(x)-f(c)-f^{\prime}(c)(x-c)-\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}}{(x-c)^{3}}
$$

This expression, when we apply CMVT twice, then LMVT, will be equal to

$$
\left(\frac{1}{3!}\right) f^{\prime \prime \prime}(\eta)
$$

