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Partial fraction decomposition – Long Division 
There is “dictionary” between “rational numbers” and “rational functions”.  
 
For rational numbers, there are two types, i.e. proper rational numbers and improper 
rational numbers. 
 
Examples are: 3/4 (proper rational number), 4/3 (improper rational number). 
 
Now, by long division, one can convert any improper rational number to become a 
proper rational number (plus) an integer. 
 

E.g. 4
3

= 1 + 1
3
 

 
In the same way, one can always use long division to convert an improper rational 

function (i.e. a rational function 𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥)  satisfying deg𝑝𝑝(𝑥𝑥) ≥ deg 𝑞𝑞(𝑥𝑥) ) into the sum 

of a “polynomial” and a “proper rational function”.) 
 
Example: 

𝑥𝑥3 + 2𝑥𝑥 + 1
𝑥𝑥2 + 1  

= 𝑥𝑥 +
𝑥𝑥 + 1
𝑥𝑥2 + 1

 

Here the red-colored term is a polynomial. The yellow-colored term is a “proper” 
rational function.  
 
 
 

To compute integral of the form ∫  𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥)

𝑑𝑑𝑥𝑥, where 𝑝𝑝(𝑥𝑥) and 𝑞𝑞(𝑥𝑥) are polynomials 

and deg𝑝𝑝(𝑥𝑥) < deg 𝑞𝑞(𝑥𝑥), we first perform  



 
 
Cases for Proper Rational Functions 
To integrate rational functions, the above discussion tells us that we need only to 
consider “proper rational function” (because integration of polynomial is easy). 
 

Now 𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥) is “proper” and we have the following cases: 

1. 𝑞𝑞(𝑥𝑥) has only simple, linear factors. 
2. 𝑞𝑞(𝑥𝑥) has only simple irreducible factors. 
3. 𝑞𝑞(𝑥𝑥) has repeated linear factors. 
4. 𝑞𝑞(𝑥𝑥) has repeated irreducible quadratic factors. 
5. Combination of 3 and 4 above. 

 
Now we deal with these 4 cases one by one, via examples: 

1. 𝑥𝑥+1
(𝑥𝑥−1)(𝑥𝑥−3)(𝑥𝑥+7)

= 𝐴𝐴1
𝑥𝑥−1

+ 𝐴𝐴2
𝑥𝑥−3

+ 𝐴𝐴3
𝑥𝑥+7

 

2. 𝑥𝑥+2
(𝑥𝑥2+𝑥𝑥+1)(𝑥𝑥2+1) = 𝐴𝐴1+𝐵𝐵1𝑥𝑥

𝑥𝑥2+𝑥𝑥+1
+ 𝐴𝐴2+𝐵𝐵2𝑥𝑥

𝑥𝑥2+1
, 

3. 𝑥𝑥+1
(𝑥𝑥−1)2(𝑥𝑥−3)3 = 𝐴𝐴1

(𝑥𝑥−1)2 + 𝐴𝐴2
𝑥𝑥−1

+ 𝐵𝐵1
(𝑥𝑥−3)3 + 𝐵𝐵2

(𝑥𝑥−3)2 + 𝐵𝐵3
𝑥𝑥−3

 

4. 𝑥𝑥+2
(𝑥𝑥2+𝑥𝑥+1)2(𝑥𝑥2+1)3 = 𝐴𝐴1+𝐵𝐵1𝑥𝑥

(𝑥𝑥2+𝑥𝑥+1)2   
+ 𝐴𝐴2+𝐵𝐵2𝑥𝑥

𝑥𝑥2+𝑥𝑥+1
+ 𝐶𝐶1+𝐷𝐷1𝑥𝑥

(𝑥𝑥2+1)3 + 𝐶𝐶2+𝐷𝐷2𝑥𝑥
(𝑥𝑥2+1)2 + 𝐶𝐶3+𝐷𝐷3𝑥𝑥

𝑥𝑥2+1
  

5. 𝑥𝑥+2
(𝑥𝑥2+𝑥𝑥+1)2(𝑥𝑥−1)2 = 𝐴𝐴1+𝐵𝐵1𝑥𝑥

(𝑥𝑥2+𝑥𝑥+1)2   
+ 𝐴𝐴2+𝐵𝐵2𝑥𝑥

𝑥𝑥2+𝑥𝑥+1
+ 𝐶𝐶1

(𝑥𝑥−1)2 + 𝐶𝐶2
𝑥𝑥−1

 

 
A computational Example  
(A good internet website with an interactive calculator for this is: 
http://www.emathhelp.net/calculators/algebra-2/partial-fraction-decomposition-
calculator/) 
 

Find partial fraction decomposition of 𝑥𝑥+7
(𝑥𝑥2+1)(𝑥𝑥2+𝑥𝑥+1)2. 

Proof of the five cases in “Step 1” makes uses of complex numbers – one can show that (if one 

allows for complex number solutions) any degree 𝑛𝑛 polynomial has exactly 𝑛𝑛 roots. Also, 

whenever 𝑎𝑎 + 𝑏𝑏√−1 is a root, then 𝑎𝑎 − 𝑏𝑏√−1 is also a root. Such pair, when multiplied, forms 

the “irreducible quadratic factor” (𝑥𝑥 − �𝑎𝑎 + 𝑏𝑏√−1��𝑎𝑎 − 𝑏𝑏√−1�. (Note: In this discussion, we 

assume that 𝑎𝑎, 𝑏𝑏 are real numbers.) 

http://www.emathhelp.net/calculators/algebra-2/partial-fraction-decomposition-calculator/
http://www.emathhelp.net/calculators/algebra-2/partial-fraction-decomposition-calculator/


Since the denominator has two irreducible quadratic factors, i.e. 𝑥𝑥2 + 1 and 𝑥𝑥2 +
𝑥𝑥 + 1. The first of them is a “simple” quadratic factor, the other is a “repeated” one. 
 
So the form of the partial fraction decomposition is 

𝑥𝑥 + 7
(𝑥𝑥2 + 1)(𝑥𝑥2 + 𝑥𝑥 + 1)2 =

𝐴𝐴𝑥𝑥 + 𝐵𝐵
𝑥𝑥2 + 𝑥𝑥 + 1

  +
𝐶𝐶𝑥𝑥 + 𝐷𝐷

(𝑥𝑥2 + 𝑥𝑥 + 1)2   
+
𝐸𝐸𝑥𝑥 + 𝐹𝐹
𝑥𝑥2 + 1

  

Forming common denominator on the right-hand side gives: 
𝑥𝑥 + 7

(𝑥𝑥2 + 1)(𝑥𝑥2 + 𝑥𝑥 + 1)2

=
(𝑥𝑥2 + 1)(𝑥𝑥2 + 𝑥𝑥 + 1)(𝐴𝐴𝑥𝑥 + 𝐵𝐵) + (𝑥𝑥2 + 1)(𝐶𝐶𝑥𝑥 + 𝐷𝐷) + (𝑥𝑥2 + 𝑥𝑥 + 1)2(𝐸𝐸𝑥𝑥 + 𝐹𝐹)(𝑥𝑥2 + 1)(𝑥𝑥2 + 𝑥𝑥 + 1)2

(𝑥𝑥2 + 1)(𝑥𝑥2 + 𝑥𝑥 + 1)2  

Comparing the numerators on the left-hand side and on the right-hand side gives 
𝑥𝑥 + 7 = (𝑥𝑥2 + 1)(𝑥𝑥2 + 𝑥𝑥 + 1)(𝐴𝐴𝑥𝑥 + 𝐵𝐵) + (𝑥𝑥2 + 1)(𝐶𝐶𝑥𝑥 + 𝐷𝐷) + (𝑥𝑥2 + 𝑥𝑥 + 1)2(𝐸𝐸𝑥𝑥

+ 𝐹𝐹) 
Expand right-hand side: 
𝑥𝑥 + 7 = 𝑥𝑥5𝐴𝐴 + 𝑥𝑥5𝐸𝐸 + 𝑥𝑥4𝐴𝐴 + 𝑥𝑥4𝐵𝐵 + 2𝑥𝑥4𝐸𝐸 + 𝑥𝑥4𝐹𝐹 + 2𝑥𝑥3𝐴𝐴 + 𝑥𝑥3𝐵𝐵 + 𝑥𝑥3𝐶𝐶 + 3𝑥𝑥3𝐸𝐸

+ 2𝑥𝑥3𝐹𝐹 + 𝑥𝑥2𝐴𝐴 + 2𝑥𝑥2𝐵𝐵 + 𝑥𝑥2𝐷𝐷 + 2𝑥𝑥2𝐸𝐸 + 3𝑥𝑥2𝐹𝐹 + 𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵 + 𝑥𝑥𝐶𝐶
+ 𝑥𝑥𝐸𝐸 + 2𝑥𝑥𝐹𝐹 + 𝐵𝐵 + 𝐷𝐷 + 𝐹𝐹 

Expanding the right-hand side and then collect up like terms (i.e. terms of the form 
𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2,⋯, we get: 
𝑥𝑥 + 7 = 𝑥𝑥5(𝐴𝐴 + 𝐸𝐸) + 𝑥𝑥4(𝐴𝐴 + 𝐵𝐵 + 2𝐸𝐸 + 𝐹𝐹) + 𝑥𝑥3(2𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 + 3𝐸𝐸 + 2𝐹𝐹) + 𝑥𝑥2(𝐴𝐴

+ 2𝐵𝐵 + 𝐷𝐷 + 2𝐸𝐸 + 3𝐹𝐹) + 𝑥𝑥(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 + 𝐸𝐸 + 2𝐹𝐹) + 𝐵𝐵 + 𝐷𝐷 + 𝐹𝐹 
Coefficients of the 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2,⋅terms on the left-hand side and on the right-hand side 
should be equal, so we get the following system of equations: 

𝐴𝐴 + 𝐸𝐸 = 0,   
𝐴𝐴 + 𝐵𝐵 + 2𝐸𝐸 + 𝐹𝐹 = 0,  

2𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 + 3𝐸𝐸 + 2𝐹𝐹 = 0, 
𝐴𝐴 + 2𝐵𝐵 + 𝐷𝐷 + 2𝐸𝐸 + 3𝐹𝐹 = 0, 
𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 + 𝐸𝐸 + 2𝐹𝐹 = 1, 

𝐵𝐵 + 𝐷𝐷 + 𝐹𝐹 = 7 
Solving it, we get that 𝐴𝐴 = 1,𝐵𝐵 = 8,𝐶𝐶 = 7,𝐷𝐷 = 6,𝐸𝐸 = −1,𝐹𝐹 = −7. 
Therefore,  

𝑥𝑥+7
(𝑥𝑥2+1)(𝑥𝑥2+𝑥𝑥+1)2 = 𝑥𝑥+8

𝑥𝑥2+𝑥𝑥+1
  + 7𝑥𝑥+6

(𝑥𝑥2+𝑥𝑥+1)2   
+ (−1)𝑥𝑥−7

𝑥𝑥2+1
. 

Next, we have 
Step 2 
Integrate term by term the expressions obtained in the partial fraction decomposition. 
Take our five examples again, we have 



1. 𝑥𝑥+1
(𝑥𝑥−1)(𝑥𝑥−3)(𝑥𝑥+7)

= 𝐴𝐴1
𝑥𝑥−1

+ 𝐴𝐴2
𝑥𝑥−3

+ 𝐴𝐴3
𝑥𝑥+7

 

2. 𝑥𝑥+2
(𝑥𝑥2+𝑥𝑥+1)(𝑥𝑥2+1) = 𝐴𝐴1+𝐵𝐵1𝑥𝑥

𝑥𝑥2+𝑥𝑥+1
+ 𝐴𝐴2+𝐵𝐵2𝑥𝑥

𝑥𝑥2+1
, 

3. 𝑥𝑥+1
(𝑥𝑥−1)2(𝑥𝑥−3)3 = 𝐴𝐴1

(𝑥𝑥−1)2 + 𝐴𝐴2
𝑥𝑥−1

+ 𝐵𝐵1
(𝑥𝑥−3)3 + 𝐵𝐵2

(𝑥𝑥−3)2 + 𝐵𝐵3
𝑥𝑥−3

 

4. 𝑥𝑥+2
(𝑥𝑥2+𝑥𝑥+1)2(𝑥𝑥2+1)3 = 𝐴𝐴1+𝐵𝐵1𝑥𝑥

(𝑥𝑥2+𝑥𝑥+1)2   
+ 𝐴𝐴2+𝐵𝐵2𝑥𝑥

𝑥𝑥2+𝑥𝑥+1
+ 𝐶𝐶1+𝐷𝐷1𝑥𝑥

(𝑥𝑥2+1)3 + 𝐶𝐶2+𝐷𝐷2𝑥𝑥
(𝑥𝑥2+1)2 + 𝐶𝐶3+𝐷𝐷3𝑥𝑥

𝑥𝑥2+1
  

5. 𝑥𝑥+2
(𝑥𝑥2+𝑥𝑥+1)2(𝑥𝑥−1)2 = 𝐴𝐴1+𝐵𝐵1𝑥𝑥

(𝑥𝑥2+𝑥𝑥+1)2   
+ 𝐴𝐴2+𝐵𝐵2𝑥𝑥

𝑥𝑥2+𝑥𝑥+1
+ 𝐶𝐶1

(𝑥𝑥−1)2 + 𝐶𝐶2
𝑥𝑥−1

 

 
For 1, after integrating the right-hand side, we get 𝐴𝐴1 ln|𝑥𝑥 − 1| + 𝐴𝐴2 ln|𝑥𝑥 − 3| +
𝐴𝐴3 ln|𝑥𝑥 + 7| + 𝐶𝐶. Similar result holds for 3. 
 
For 2 and 4, use simple substitution and trigonometric substitution. 
 
Trigonometric Integrals 
The next topic we discussed briefly is “trigonometric integrals”. In many scientific 
disciplines, one needs to compute integrals of the form 
 ∫ 𝑓𝑓(𝑥𝑥) cos(𝑛𝑛𝑥𝑥)  𝑑𝑑𝑥𝑥,   
 ∫ 𝑓𝑓(𝑥𝑥) sin(𝑚𝑚𝑥𝑥)  𝑑𝑑𝑥𝑥,   
 ∫ sin𝑛𝑛 𝑥𝑥 cos𝑚𝑚 𝑥𝑥 𝑑𝑑𝑥𝑥 
 
One reason for this, especially for the first two types of integrals is due to something 
known as “Fourier series” which we briefly outline in the Appendix.: 
 
Also important in Engineering are the integrals of the form 

∫ cosn 𝑥𝑥 sinm 𝑥𝑥  𝑑𝑑𝑥𝑥 
 
We now discuss how to compute this kind of integrals. 
 
There are two cases 
1) 𝑛𝑛 or 𝑚𝑚 is odd number. In this case, we can single out one copy of sin 𝑥𝑥 or cos 𝑥𝑥 

and get 𝑑𝑑(− cos 𝑥𝑥) or 𝑑𝑑 sin 𝑥𝑥.g. ∫ sin2 𝑥𝑥 cos3 𝑥𝑥  𝑑𝑑𝑥𝑥 =  ∫ sin2 𝑥𝑥 cos2 𝑥𝑥  𝑑𝑑 cos 𝑥𝑥  
2) If both 𝑛𝑛 and 𝑚𝑚 are even numbers, then we try to make use of the following 

double-angle formulas to “reduce” the “degree” of sin 𝑥𝑥 or cos 𝑥𝑥 by “one”. 
sin(2𝑥𝑥) = 2 sin 𝑥𝑥 cos 𝑥𝑥 

cos(2𝑥𝑥) = cos2 𝑥𝑥 − sin2 𝑥𝑥 = 2 cos2 𝑥𝑥 − 1 = 1 − 2 sin2 𝑥𝑥 



 
Two Examples: 
1) ∫ sin2 𝑥𝑥 cos3 𝑥𝑥 = ∫ sin2 𝑥𝑥 cos2 𝑥𝑥  𝑑𝑑 sin 𝑥𝑥 
(Note that the term “𝑑𝑑 sin 𝑥𝑥” comes from part of the term cos3 𝑥𝑥 𝑑𝑑𝑥𝑥) 
 Having done this, then we have  

∫ sin2 𝑥𝑥 cos2 𝑥𝑥  𝑑𝑑 sin 𝑥𝑥 = ∫ sin2 𝑥𝑥  (1 − sin2 𝑥𝑥)𝑑𝑑 sin 𝑥𝑥 = ∫ 𝑢𝑢2(1 − 𝑢𝑢2)𝑑𝑑𝑢𝑢       
 This can be easily integrated. 
2) ∫ sin2 𝑥𝑥 cos4 𝑥𝑥  𝑑𝑑𝑥𝑥 = ∫ sin2 𝑥𝑥  (cos2 𝑥𝑥)2𝑑𝑑𝑥𝑥 = ∫ (sin 𝑥𝑥 cos 𝑥𝑥)2(cos2 𝑥𝑥)𝑑𝑑𝑥𝑥 

= � sin2( 2𝑥𝑥) �
1 + cos(2𝑥𝑥)

2
�𝑑𝑑𝑥𝑥 = ⋯ 

(Note that we have managed to rewrite “integration” of “two EVEN powers” to 
“integration of one EVEN power, i.e. ∫ sin2(2𝑥𝑥)𝑑𝑑𝑥𝑥” and “integration of one ODD and 
one EVEN power, i.e. ∫ sin2(2𝑥𝑥) cos(2𝑥𝑥)𝑑𝑑𝑥𝑥 Proceeding in this way will finally lead 
to the answer). 
 
𝒕𝒕 − Substitution 
This is a very clever substitution invented by Weierstrass. This substitution is for 
computing indefinite integral of the form: 

� rational function of sin 𝑥𝑥 & cos 𝑥𝑥  𝑑𝑑𝑥𝑥 

Examples: 

1) ∫ sin𝑥𝑥+2cos𝑥𝑥
3 sin𝑥𝑥−5cos𝑥𝑥

 𝑑𝑑𝑥𝑥 

2) ∫ 𝑑𝑑𝑥𝑥
2+sin𝑥𝑥

 

 

In such cases, the idea is to let 𝑡𝑡 = tan �𝑥𝑥
2
� . 

Then we have 

𝑑𝑑𝑥𝑥 =
2𝑑𝑑𝑡𝑡

1 + 𝑡𝑡2
 

by direct computation of 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 and using the formula 1 + tan2 𝑥𝑥 = sec2 𝑥𝑥. 

 
And by considering a right-angled triangle of base length 1, height 𝑡𝑡, hypotenuse 

length √1 + 𝑡𝑡2, angle 𝑥𝑥/2, we obtain the formulas 

sin 𝑥𝑥 = 2𝑑𝑑
1+𝑑𝑑2

, cos 𝑥𝑥 = 1−𝑑𝑑2

1+𝑑𝑑2
. 



 
Using them, one can “rewrite” a rational function of “sine” and “cosine” as a rational 
function of 𝑡𝑡. 
 
Example: 

�
sin 𝑥𝑥

sin 𝑥𝑥 + 2cos 𝑥𝑥
𝑑𝑑𝑥𝑥 = �

2𝑡𝑡
1 + 𝑡𝑡2

2𝑡𝑡
1 + 𝑡𝑡2 + 2(1 − 𝑡𝑡2

1 + 𝑡𝑡2)
⋅

2𝑑𝑑𝑡𝑡
1 + 𝑡𝑡2

 

Now one can use “partial fraction decomposition” to compute  

�
2𝑡𝑡

1 + 𝑡𝑡2
2𝑡𝑡

1 + 𝑡𝑡2 + 2(1 − 𝑡𝑡2
1 + 𝑡𝑡2)

⋅
2𝑑𝑑𝑡𝑡

1 + 𝑡𝑡2
 

 

Appendix (Fourier Series) 
Given a periodic function, i.e. a function 𝑓𝑓(𝑥𝑥) satisfying 𝑓𝑓(𝑥𝑥 + 𝑇𝑇) = 𝑓𝑓(𝑥𝑥) for all 
𝑥𝑥 ∈ ℝ, one has the following “representation” (The yellow-colored formula simply 
means “after time 𝑇𝑇, the value of the function 𝑓𝑓(𝑥𝑥 + 𝑇𝑇) is the same as that at 𝑥𝑥, 
i.e. 𝑓𝑓(𝑥𝑥).) 
 
Such function can be represented as a “sum” of “more elementary periodic functions”, 
i.e. the sine and the cosine functions in the following way. 
 

𝑓𝑓(𝑥𝑥) "="𝑎𝑎0 + 𝑎𝑎1 cos 𝑥𝑥 + 𝑎𝑎2 cos 2𝑥𝑥 + ⋯   + ⋯+ 𝑏𝑏1 sin 𝑥𝑥 + 𝑏𝑏2 sin 2𝑥𝑥 + ⋯ 
 
The following webpage has more information if you are interested in this topic: 
http://www.intmath.com/fourier-series/fourier-graph-applet.php 
 
Remark: 
We put “quote and quote” on the equality sign, because this equality is something 
special. Here, the main idea here is that a “periodic” function should be “representable” 
by some elementary “building blocks” which are also “periodic”. Now we know that 
the sine, cosine functions are “periodic”. Indeed, they form the basic building blocks 
of any periodic functions. 
 
To compute the numbers 𝑎𝑎0,𝑎𝑎1,⋯ ,𝑎𝑎𝑛𝑛,⋯ we need to compute integrals of the form 

∫ 𝑓𝑓(𝑥𝑥) cos𝑛𝑛𝑥𝑥 𝑑𝑑𝑥𝑥,∫ 𝑓𝑓(𝑥𝑥) sin𝑚𝑚𝑥𝑥𝑑𝑑𝑥𝑥 
 
They can be computed by, for example, using integration by parts. 

http://www.intmath.com/fourier-series/fourier-graph-applet.php

