
 
MATH 1010A Notes 

 
Week 7 (Day 1) 

 
Topics covered 
 Relationship between Extreme Value Theorem (EVT), Rolle’s Theorem (RT), 

Lagrange’s Mean Value Theorem (LMVT), Cauchy’s Mean Value Theorem 
(CMVT), L’Ho�pital’s Rule (L’H), Taylor’s Theorem (TT) 

 The idea (which we will outline below) is: EVT ⇒RT ⇒ CMVT ⇒ LMVT ⇒ TT 

( “⇒” means “leads to” or “implies”) 

 Illustrated the Intermediate Value Theorem (IVT) via the example 𝑥𝑥17 +
100𝑥𝑥2 + 107 = 0. 

 
Main Idea behind all the theorems like RT, LMVT, CMVT, L’H, TT are “existence 
theorems” (i.e. theorems which says “something” exists, but don’t tell you how to 
find it). 
 
The first of such existence theorems is: 
 

Intermediate Value Theorem 
Instead of writing down the theorem, we outline how it can used. 
Suppose we asked: 
Question 
Show that the equation 𝑥𝑥17 + 100𝑥𝑥2 + 107 = 0 has a solution. 
 
Answer: 
We let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥17 + 100𝑥𝑥2 + 107. Then one sees that 𝑓𝑓(−10) < 0 and 𝑓𝑓(0) >
0. Now 𝑓𝑓(𝑥𝑥) is a continuous function, so the curve 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) must intersect the 
𝑥𝑥 −axis at some point between 𝑥𝑥 = −10 and 𝑥𝑥 = 0. 
In other words, the equation 𝑥𝑥17 + 100𝑥𝑥2 + 107 = 0 must have a solution in 
(−10,0). 
 
This “method” is based on the 
 
Theorem (Intermediate Value Theorem) 



Assume 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → 𝑅𝑅 is continuous. Suppose that 𝑓𝑓(𝑎𝑎) < 0 and 𝑓𝑓(𝑏𝑏) > 0 (or 
𝑓𝑓(𝑎𝑎) > 0 and 𝑓𝑓(𝑏𝑏) < 0). 
Conclusion: The equation 𝑓𝑓(𝑥𝑥) = 0 has at least one solution in (𝑎𝑎, 𝑏𝑏). 
 
Similar to this theorem is the Extreme Value Theorem 
 
Theorem (Extreme Value Theorem) 
Assume: 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → 𝑅𝑅 is continuous. Then there is an absolute maximum/minimum 
value in [𝑎𝑎, 𝑏𝑏]. I.e. 
∃𝑐𝑐 ∈ [𝑎𝑎, 𝑏𝑏]   such that    𝑓𝑓(𝑐𝑐) ≥ 𝑓𝑓(𝑥𝑥)    ∀𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]   (𝑐𝑐 is “absolute maximum 
point”) 
∃𝑑𝑑 ∈ [𝑎𝑎, 𝑏𝑏]   such that    𝑓𝑓(𝑑𝑑) ≤ 𝑓𝑓(𝑥𝑥)    ∀𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]   (𝑐𝑐 is “absolute maximum 
point”). 
 
Remark: 
This EVT is the main engine behind the proofs of RT, LMVT, CMVT, TT. 
 

Taylor’s Theorem 
Recall that Taylor’s Theorem is one of the central results in Calculus. It tells us that 
we can “approximate” a function 𝑓𝑓(𝑥𝑥) by a “polynomial” in (𝑥𝑥 − 𝑐𝑐). 
 
It says: “Under some conditions (which we’ll specify later), 

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑐𝑐) + 𝑓𝑓′(𝑐𝑐)(𝑥𝑥 − 𝑐𝑐) + 𝑓𝑓′′(𝑐𝑐)
2!

(𝑥𝑥 − 𝑐𝑐)2 + ⋯+ 𝑓𝑓(𝑛𝑛)(𝑐𝑐)
𝑛𝑛!

(𝑥𝑥 − 𝑐𝑐)𝑛𝑛 + 𝐸𝐸𝑛𝑛(𝑥𝑥, 𝑐𝑐). “ 

 
(Here the notation 𝑓𝑓(𝑛𝑛)(𝑐𝑐) means “ 𝑛𝑛𝑡𝑡ℎ —derivative of the function 𝑓𝑓(𝑥𝑥) 
evaluated at 𝑥𝑥 = 𝑐𝑐. “ So it is a “number”!) 
 
 
Remarks:  
 The left-hand side (LHS) is a given function which we want to “approximate”. 

The right-hand side (RHS) is a polynomial in (𝑥𝑥 − 𝑐𝑐), together with an error 
term. The LHS is difficult to compute, if the function is complicated. But once we 
know “all” the derivatives of “𝑓𝑓(𝑥𝑥)”, at the point 𝑥𝑥 = 𝑐𝑐, we can compute the 

right-hand side i.e. 𝑓𝑓(𝑐𝑐) + 𝑓𝑓′(𝑐𝑐)(𝑥𝑥 − 𝑐𝑐) + 𝑓𝑓′′(𝑐𝑐)
2!

(𝑥𝑥 − 𝑐𝑐)2 + ⋯+ 𝑓𝑓(𝑛𝑛)(𝑐𝑐)
𝑛𝑛!

(𝑥𝑥 − 𝑐𝑐)𝑛𝑛  

This is only an “approximation” because there is still an error term. 



 The error term has a special form which is 𝑓𝑓
(𝑛𝑛+1)(𝑑𝑑)
(𝑛𝑛+1)!

(𝑥𝑥 − 𝑐𝑐)𝑛𝑛+1  (where 𝑑𝑑  is 

some number lying between 𝑥𝑥 and 𝑐𝑐.) 
 The number 𝑐𝑐 is something which we can choose. We usually choose some 

simple-to-compute numbers. 
 
Taylor’s Theorem and Lagrange’s Mean Value Theorem 
Taylor’s Theorem (we will indicate how it is proved in the next notes) is actually just a 
clever combination of Lagrange’s Mean Value Theorem (LMVT) and Cauchy’s Mean 
Value Theorem (CMVT). 
 
But before everything, we have to describe what Lagrange’s Mean Value Theorem & 
Cauchy’s Mean Value Theorem are. 
 
These two theorems, i.e. LMVT & CMVT are related to something known as the 
Rolle’s Theorem, outlined below. 
 
Rolle’s Theorem 
The following picture explains Rolle’s Theorem: 

 

Rolles’ Theorem says: “If a function 𝑓𝑓(𝑥𝑥) satisfies (1), (2), (3) below, then ∃𝑐𝑐 ∈
(𝑎𝑎, 𝑏𝑏) such that 𝑓𝑓′(𝑐𝑐) = 0.” (In other words, the tangent line at the point 𝑥𝑥 = 𝑐𝑐 is 
horizontal (or parallel to the 𝑥𝑥 −axis)).  
 
Remark: Of course, there may be more than one such point! 
 
Assumptions for Rolle’s Theorem: 

a b c 



1. 𝑓𝑓(𝑥𝑥) is differentiable in (𝑎𝑎, 𝑏𝑏). (This assumption is needed, because in the 
conclusion, we have the expression 𝑓𝑓′(𝑐𝑐) = 0) 

2. 𝑓𝑓(𝑥𝑥) is continuous on [a,b] (This is “technical assumption”) 
3. 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏). 
 
 
As mentioned above, Rolle’s Theorem, when “rotated”, gives the Lagrange’s Mean 
Value Theorem. 
 
Lagrange’s Mean Value Theorem 
It says: “If a function satisfies only (1) and (2) below, then ∃𝑑𝑑 ∈ (𝑎𝑎, 𝑏𝑏) such that: 

𝑓𝑓′(𝑑𝑑) = 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

.” 

 

 

Assumptions for LMVT 
1. 𝑓𝑓(𝑥𝑥) is differentiable in (𝑎𝑎, 𝑏𝑏). (This assumption is needed, because in the 

conclusion, we have the expression 𝑓𝑓′(𝑐𝑐) = something.) 
2. 𝑓𝑓(𝑥𝑥) is continuous on [𝑎𝑎, 𝑏𝑏].  (This is again a “technical assumption”). 
 

Next, if we change slightly the Lagrange’s Mean Value Theorem, we get  
 
Cauchy’s Mean Value Theorem 
It says 
Assumptions: 
1. Let 𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥) be two differentiable functions in (𝑎𝑎, 𝑏𝑏).  
2. Let 𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥) be continuous on [𝑎𝑎, 𝑏𝑏]. 

a b c 



3. Let 𝑔𝑔′(𝑥𝑥) ≠ 0 ∀𝑥𝑥 ∈ (𝑎𝑎, 𝑏𝑏). (This guarantees that the denominator is not zero.) 
Then we have the Conclusion: 

∃𝜉𝜉 ∈ (𝑎𝑎, 𝑏𝑏):      
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑏𝑏) − 𝑔𝑔(𝑎𝑎) =

𝑓𝑓′(𝜉𝜉)
𝑔𝑔′(𝜉𝜉)

 

 
 

 
First Application of Cauchy’s Mean Value Theorem – L’H𝐨𝐨�pital’s Rule 
 
To explain what the L’Ho�pital’s Rule is, let’s consider two examples. 
 
Example 1 

Find lim
𝑥𝑥→0

sin𝑥𝑥
𝑥𝑥

. 

 

This is a limit of the form 0
0
. The L’Ho�pital’s Rule says: “we can compute it via the 

procedure, lim
𝑥𝑥→0

sin𝑥𝑥
𝑥𝑥

= lim
𝑥𝑥→0

𝑑𝑑sin𝑥𝑥
𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥

 

(if the limit on the right-hand side exists). 
 

Now the right-hand side is lim
𝑥𝑥→0

𝑑𝑑sin𝑥𝑥
𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥

= lim
𝑥𝑥→0

cos𝑥𝑥
1

= 1. 

 

Hence the limit lim
𝑥𝑥→0

sin𝑥𝑥
𝑥𝑥

= 1. 

 
Question: What does the L’Ho�pital’s Rule say? 
Answer: In the simplest case, it says the following: 
 

Suppose lim
𝑥𝑥→𝑐𝑐

𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

 is of the form 0
0
 or ∞

∞
, (where 𝑐𝑐 is either a finite number or 

represents ±∞ ). Further, suppose that lim
𝑥𝑥→𝑐𝑐

𝑓𝑓′(𝑥𝑥)
𝑔𝑔′(𝑥𝑥)

 exists, then 

lim
𝑥𝑥→𝑐𝑐

𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

= lim
𝑥𝑥→𝑐𝑐

𝑓𝑓′(𝑥𝑥)
𝑔𝑔′(𝑥𝑥)

. 

 
The Proof: 



(Idea) For simplicity, we assume that 𝑓𝑓(𝑐𝑐) = 0,𝑔𝑔(𝑐𝑐) = 0, where 𝑐𝑐 is a finite no (We 
will not prove the other cases). 
 
The idea is to apply Cauchy’s Mean Value Theorem and get 

𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑐𝑐)
𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑐𝑐)

=
𝑓𝑓′(𝑑𝑑)
𝑔𝑔′(𝑑𝑑)

   ∃𝑑𝑑  between 𝑐𝑐   & 𝑥𝑥 

 
(“𝑑𝑑  between 𝑐𝑐   & 𝑥𝑥” means “𝑐𝑐 < 𝑑𝑑 < 𝑥𝑥   or   𝑥𝑥 < 𝑑𝑑 < 𝑐𝑐”) 

Now, remembering that 𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

= 𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑐𝑐)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑐𝑐)

, (since 𝑓𝑓(𝑐𝑐) = 0,𝑔𝑔(𝑐𝑐) = 0), we obtain 

from the two formulas above that 
𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

=
𝑓𝑓′(𝑑𝑑)
𝑔𝑔′(𝑑𝑑)

  ∃𝑑𝑑  between 𝑐𝑐   & 𝑥𝑥  

Finally, we let 𝑥𝑥 → 𝑐𝑐 on the left-hand side to get 

lim
𝑥𝑥→𝑐𝑐

𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)  = lim

𝑥𝑥→𝑐𝑐

𝑓𝑓′(𝑑𝑑)
𝑔𝑔′(𝑑𝑑)  ∃𝑑𝑑  between 𝑐𝑐   & 𝑥𝑥                                      (1) 

 
But “𝑐𝑐 < 𝑑𝑑 < 𝑥𝑥  or  𝑥𝑥 < 𝑑𝑑 < 𝑐𝑐”, so in either case, when 𝑥𝑥 → 𝑐𝑐,  it follows that 𝑑𝑑 →
𝑐𝑐. This means the right-hand side of the above line becomes 

lim
𝑥𝑥→𝑐𝑐

𝑓𝑓′(𝑑𝑑)
𝑔𝑔′(𝑑𝑑)

= lim
𝑑𝑑→𝑐𝑐

𝑓𝑓′(𝑑𝑑)
𝑔𝑔′(𝑑𝑑)

 

We can now “rename” 𝑑𝑑 to be 𝑥𝑥 and obtain 

lim
𝑑𝑑→𝑐𝑐

𝑓𝑓′(𝑑𝑑)
𝑔𝑔′(𝑑𝑑)

= lim
𝑥𝑥→𝑐𝑐

𝑓𝑓′(𝑥𝑥)
𝑔𝑔′(𝑥𝑥)

                                                                        (2) 

Combining (1) and (2), we obtain 

lim
𝑥𝑥→𝑐𝑐

𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥) =  lim

𝑥𝑥→𝑐𝑐

𝑓𝑓′(𝑥𝑥)
𝑔𝑔′(𝑥𝑥)

  

 
This is what wanted to prove.  

 
Example 2 

Find lim
𝑥𝑥→0

� 1
sin2 𝑥𝑥  

+  cos
2 𝑥𝑥

sin2 𝑥𝑥
− 2

𝑥𝑥2
� 

 
This one is of the form ∞−∞. 
 
In cases like ∞−∞,∞∞, 00, we first rewrite them in the form 

∞
∞

   or  0
0

. After doing this, we use L’Ho�pital’s Rule. 



 

In this example, 1
sin2 𝑥𝑥  

+  cos
2 𝑥𝑥

sin2 𝑥𝑥
− 2

𝑥𝑥2
= 𝑥𝑥2+𝑥𝑥2 cos2 𝑥𝑥−2sin2 𝑥𝑥

𝑥𝑥2 sin2 𝑥𝑥
 

 

Now the limit of 𝑥𝑥
2+𝑥𝑥2 cos2 𝑥𝑥−2sin2 𝑥𝑥

𝑥𝑥2 sin2 𝑥𝑥
 as 𝑥𝑥 → 0, is of the form 0

0
. 

I.e. lim
𝑥𝑥→0

𝑥𝑥2+𝑥𝑥2 cos2 𝑥𝑥−2sin2 𝑥𝑥
𝑥𝑥2 sin2 𝑥𝑥

  is of the form 0
0
. 

 

Applying several times L’Ho�pital’s Rule will give the answer −1
3
. 

 
(Alternative Method) 

An easier method is to use the approximations sin 𝑥𝑥 ≈ 𝑥𝑥 − �𝑥𝑥
3

3!
� ;    cos 𝑥𝑥 ≈ 1 − �𝑥𝑥

2

2!
� 

 
Doing this, we obtain 
 

𝑥𝑥2 + 𝑥𝑥2 cos2 𝑥𝑥 − 2 sin2 𝑥𝑥
𝑥𝑥2 sin2 𝑥𝑥

≈
𝑥𝑥2 + 𝑥𝑥2 �1 − �𝑥𝑥

2

2!��
2

− 2�𝑥𝑥 − �𝑥𝑥
3

3!��
2

𝑥𝑥2 �𝑥𝑥 − �𝑥𝑥
3

3!��
2

=
1 + �1 − �𝑥𝑥

2

2!��
2

− 2�1 − �𝑥𝑥
2

3!��
2

𝑥𝑥2 �1 − �𝑥𝑥
2

3!��
2  

=
−1 + �𝑥𝑥

2

4 � + �2
3� − �𝑥𝑥

2

18�

1 − �𝑥𝑥
2

3 � + �𝑥𝑥
4

36�
 

Finally, we take the limit 𝑥𝑥 → 0 of the last expression, which gives 

lim
𝑥𝑥→0

−1 + �𝑥𝑥
2

4 � + �2
3� − �𝑥𝑥

2

18�

1 − �𝑥𝑥
2

3 � + �𝑥𝑥
4

36�
= −

1
3

 


