1. Show that if \(f : A \to B \) and \(E, F \) are subsets of \(A \), then \(f(E \cup F) = f(E) \cup f(F) \) and \(f(E \cap F) \subseteq f(E) \cap f(F) \).

2. Show that if \(f : A \to B \) and \(G, H \) are subsets of \(B \), then \(f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H) \) and \(f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H) \).

3. (a) Show that if \(f : A \to B \) is injective and \(E \subseteq A \), then \(f^{-1}(f(E)) = E \). Give an example to show that equality need not hold if \(f \) is not injective.

 (b) Show that if \(f : A \to B \) is surjective and \(H \subseteq B \), then \(f(f^{-1}(H)) = H \). Give an example to show that equality need not hold if \(f \) is not surjective.

4. (a) Suppose that \(f \) is an injection. Show that \(f^{-1} \circ f(x) = x \) for all \(x \in D(f) \) and that \(f \circ f^{-1}(y) = y \) for all \(y \in R(f) \).

 (b) If \(f \) is a bijection of \(A \) onto \(B \), show that \(f^{-1} \) is a bijection of \(B \) onto \(A \).

5. Prove that if \(f : A \to B \) is bijective and \(g : B \to C \) is bijective, then the composite \(g \circ f \) is a bijective map of \(A \) onto \(C \).

6. Let \(f : A \to B \) and \(g : B \to C \) be functions.

 (a) Show that if \(g \circ f \) is injective, then \(f \) is injective.

 (b) Show that if \(g \circ f \) is surjective, then \(g \) is surjective.

7. Let \(f, g \) be functions such that \((g \circ f)(x) = x\) for all \(x \in D(f) \) and \((f \circ g)(y) = y\) for all \(y \in D(g) \).

 Prove that \(g = f^{-1} \).

8. Prove that \(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > \sqrt{n} \) for all \(n \in \mathbb{N} \).

9. Prove the second version of Principle of Mathematical Induction:

 Let \(n_0 \in \mathbb{N} \) and let \(P(n) \) be a statement for each natural number \(n \geq n_0 \). Suppose that

 - The statement \(P(n_0) \) is true.
 - For all \(k \geq n_0 \), the truth of \(P(k) \) implies the truth of \(P(k+1) \).

 Then \(P(n) \) is true for all \(n \geq n_0 \).

10. Prove the strong version of Principle of Mathematical Induction:

 Let \(S \) be a subset of \(\mathbb{N} \) such that

 - \(1 \in S \).
 - For every \(k \in \mathbb{N} \), if \(\{1, 2, \cdots, k\} \subseteq S \), then \(k + 1 \in S \).

 Then \(S = \mathbb{N} \).
11. Prove a variation of Principle of Mathematical Induction:

Let S be a subset of \mathbb{N} such that

- $2^k \in S$ for all $k \in \mathbb{N}$.
- If $k \in S$ and $k \geq 2$, then $k - 1 \in S$.

Then $S = \mathbb{N}$.

12. Show that the set $S = \{n \in \mathbb{N} : n \geq 2015\}$ is countably infinite.

13. Prove that if S and T are countably infinite, then $S \cup T$ is countably infinite.

14. Prove that if S is countably infinite and T is finite, then S/T is countably infinite.

15. Suppose that $f : S \to T$ is an injective function, where S is an infinite set. Prove that T is an infinite set.

16. Suppose that $f : S \to T$ is an surjective function, where T is a countably infinite set. Is S an infinite set? Why?

17. Let S be a set. $\mathcal{P}(S)$ is defined to be the collection of all subsets of S.

 (a) Write down $\mathcal{P}(S)$ explicitly if $S = \{1, 2, 3\}$. How many elements does $\mathcal{P}(S)$ contain?

 (b) Use mathematical induction to prove that if the set S has n elements, then $\mathcal{P}(S)$ has 2^n elements.