§ 2 Real Numbers

2.1 Construction of \(\mathbb{R} \)

Construction of \(\mathbb{R} \):

1) Completion of \(\mathbb{Q} \).

Regard \(\mathbb{Q} \) as a metric space with \(d(x,y) = |x-y| \), define \(\mathbb{R} \) to be the completion of \(\mathbb{Q} \).

(Refer to DJ)

2) Axiomatic Approach:

(Roughly speaking: impose/assume properties we need)

(i) Field axioms / Algebraic properties

Field axioms / Algebraic properties:

\((\mathbb{R}, +, \cdot, 0, 1)\) equips with additions + and multiplication \(\cdot \) that satisfy:

(A1) (Commutative law) \(a + b = b + a \) for all \(a, b \in \mathbb{R} \).

(A2) (Associative law) \((a + b) + c = a + (b + c) \) for all \(a, b, c \in \mathbb{R} \).

(A3) (Existence of 0) there exists \(0 \in \mathbb{R} \) such that \(a + 0 = 0 + a \) for all \(a \in \mathbb{R} \).

(A4) (Existence of additive inverse) for all \(a \in \mathbb{R} \), there exists \(b \in \mathbb{R} \) such that \(a + (-a) = 0 \).

(I1) (Commutative law) \(a \cdot b = b \cdot a \) for all \(a, b \in \mathbb{R} \).

(I2) (Associative law) \((a \cdot b) \cdot c = a \cdot (b \cdot c) \) for all \(a, b, c \in \mathbb{R} \).

(I3) (Existence of 1) there exists \(1 \in \mathbb{R} \) such that \(a \cdot 1 = 1 \cdot a \) for all \(a \in \mathbb{R} \).

(I4) (Existence of multiplicative inverse) for all \(a \in \mathbb{R} \setminus \{0\} \), there exists \(b \in \mathbb{R} \) such that \(a \cdot b = b \cdot a = 1 \).

(D) (Distributive law) \(a \cdot (b + c) = a \cdot b + a \cdot c \) and \((b + c) \cdot a = b \cdot a + c \cdot a \) for all \(a, b, c \in \mathbb{R} \).

Idea: Forget everything you learned before, start from those axioms (things accepted to be true) and prove things you suspect to be true.
Theorem:

a) (Uniqueness of additive inverse)

If \(b, c \in \mathbb{R} \) are additive inverses of \(a \in \mathbb{R} \), then \(b = c \).

(Therefore we denote it by \(-a\))

b) (Uniqueness of multiplicative inverse)

If \(b, c \in \mathbb{R} \setminus \{0\} \) are multiplicative inverses of \(a \in \mathbb{R} \setminus \{0\} \), then \(b = c \).

(Therefore we denote it by \(a^* \) or \(\frac{1}{a} \))

Proof:

(a) By assumption, \(a + b = b + a = 0 \) and \(a + c = c + a = 0 \).

Now, \(c = a + c \) \hspace{1cm} (A3)

\[\begin{align*}
& = (b + a) + c \\
& = b + (a + c) \hspace{1cm} (A2) \\
& = b + 0 \\
& = b \hspace{1cm} (A3)
\end{align*} \]

\(\therefore b = c \)

(b) Exercise!

Theorem:

a) (Uniqueness of \(0 \))

If \(z \in \mathbb{R} \) such that \(z + a = 0 \) for all \(a \in \mathbb{R} \), then \(z = 0 \).

b) (Uniqueness of \(0 \))

If \(u \in \mathbb{R} \) such that \(u \cdot a = a \) for all \(a \in \mathbb{R} \), then \(u = 1 \).

c) If \(a \in \mathbb{R} \), \(a \cdot 0 = 0 \)

Proof of (c):

\(a + a \cdot 0 = a \cdot 1 + a \cdot 0 \)

\[\begin{align*}
& = a \cdot (1 + 0) \\
& = a \cdot 1 \\
& = a
\end{align*} \]

\[(-a) + a + a \cdot 0 = -a + a \]

\(\therefore a \cdot 0 = 0 \)

(Think: What do we use in each step?)
Theorem:
If \(a \cdot b = 0 \), then either \(a = 0 \) or \(b = 0 \).

Proof:
It suffices to show if \(a \neq 0 \), then \(b = 0 \).
By assumption, \(a \cdot b = 0 \)
\[
\frac{1}{a} \cdot (a \cdot b) = \frac{1}{a} \cdot 0
\]
\[
(\frac{1}{a} \cdot a) \cdot b = 0 \quad \text{(M2 and previous theorem)}
\]
\[
1 \cdot b = 0 \quad \text{(M4)}
\]
\[
b = 0 \quad \text{(M3)}
\]

Exercise: Show that \((-1) \cdot (-1) = 1\)

Definition:
- (Subtraction)
 If \(a, b \in \mathbb{R} \), \(a - b \) is defined as \(a + (-b) \).
- (Division)
 If \(a \in \mathbb{R} \) and \(b \in \mathbb{R} \setminus \{0\} \), \(\frac{a}{b} \) is defined as \(a \cdot (\frac{1}{b}) \).

(ii) Order properties of \(\mathbb{R} \)

Order properties of \(\mathbb{R} \):
There is a subset \(\mathbb{P} \subseteq \mathbb{R} \), called the set of positive real numbers, that satisfies
- \(a, b \in \mathbb{P} \Rightarrow a + b \in \mathbb{P} \)
- \(a, b \in \mathbb{P} \Rightarrow a \cdot b \in \mathbb{P} \)
- (Trichotomy property) If \(a \in \mathbb{R} \), then exactly one of the following holds:
 \(\mathbb{P} \), \(a = 0 \), \(-a \notin \mathbb{P} \).

Theorem:
\(1 \in \mathbb{P} \).

Proof:
By the last property and the fact that \(0 \neq 1 \), we have either \(1 \in \mathbb{P} \) or \(-1 \in \mathbb{P} \).
However, if \(-1 \in \mathbb{P} \), then \(1 = (\cdot 1) \cdot (-1) \in \mathbb{P} \) (Contradiction)

(Why? Exercise !)
Definition:
If \(a, b \in \mathbb{R} \),
- if \(a - b \in \mathbb{P} \), then we write \(a > b \) (a is greater than b) or \(b < a \) (b is less than a).
- if \(a - b \in \mathbb{P} \cup \{0\} \), then we write \(a \geq b \) or \(b \leq a \).

Trichotomy property can be reformulated as:
If \(a, b \in \mathbb{R} \), then exactly one of the following holds:
\(a - b \in \mathbb{P} \), \(a - b = 0 \), \(-(a - b) = b - a \in \mathbb{P} \)

(Why? Exercise!)

i.e. \(a \geq b, a = b, a \leq b \)

Theorem:
Let \(a, b, c \in \mathbb{R} \), then
- \(a > b \) and \(b > c \) \(\Rightarrow \) \(a > c \)
- \(a > b \) \(\Rightarrow \) \(a + c > b + c \)
- \(a > b \) and \(c > 0 \) \(\Rightarrow \) \(ca > cb \)
- \(a > b \) and \(c < 0 \) \(\Rightarrow \) \(ca < cb \)

proof: Exercise!

Theorem:
a) If \(a \in \mathbb{R} \setminus \{0\} \), then \(a^2 = a \cdot a > 0 \)
b) If \(n \in \mathbb{N} \), then \(n > 0 \)

proof of (b):
Mathematical Induction.

Exercise:
1) If \(a \in \mathbb{P} \), show that \(\frac{1}{a} \in \mathbb{P} \).
2) If \(a > 1 \), show that \(\frac{1}{a} < 1 \).
3) If \(a, b \in \mathbb{P} \) and \(a > b^2 \), show that \(a > b \).
Theorem:

If $a \in \mathbb{R}$ such that $0 \leq a < \varepsilon$ for every $\varepsilon > 0$, then $a = 0$.

Proof:

Suppose $a > 0$.

Idea:

\[0 < a \]

\[\text{take } \varepsilon = \frac{a}{2} > 0 \text{, then we get contradiction.} \]

Main issues: Why $a > \frac{1}{2}a$?

\[1 - 0 = 1 \in \mathbb{R} \]
\[1 > 0 \]
\[2 = 1 + 1 > 0 + 1 = 1 \]
\[2 > 1 \]
\[1 > \frac{1}{2} \quad \text{(By previous exercise)} \]
\[a > \frac{1}{2} \cdot a \]

Theorem:

If $ab > 0$, then either $a, b > 0$ or $a, b < 0$.

(iii) Completeness properties of \mathbb{R}

Definition:

Let S be a nonempty subset of \mathbb{R}.

- S is said to be bounded above (below) if there exists $u \in \mathbb{R}$ ($\ell \in \mathbb{R}$) such that $s \leq u$ ($s \geq \ell$) for all $s \in S$. Each u (ℓ) is called an upper bound (a lower bound) of S.

- S is said to be bounded if it is both bounded above and below.

- If S is bounded above (below), then $u \in \mathbb{R}$ ($\ell \in \mathbb{R}$) is said to be a supremum (infimum) or a least upper bound (greatest lower bound) of S if it satisfies

 (i) u (ℓ) is an upper (a lower) bound of S,

 (ii) if u' (ℓ') is an upper (a lower) bound of S, then $u \leq u'$ ($\ell \leq \ell'$).

We denote u and ℓ by $\sup S$ and $\inf S$ (By showing the uniqueness of them).
Lemma: (Alternative definition of supremum)
Let S be a nonempty subset of \mathbb{R}.
$\sup S = u$ if and only if u satisfies
(i) $s \leq u$ for all $s \in S$ (i.e. u is an upper bound)
(ii) If $v < u$, then there exists $s' \in S$ such that $v < s'$
(Remark: How about $\inf S$?)
Idea:

proof:
(i) \iff (i) trivial
(ii) \iff (ii) contrapositive

Lemma: (Another alternative definition)
Let S be a nonempty subset of \mathbb{R}.
$\sup S = u$ if and only if u satisfies
(i) $s \leq u$ for all $s \in S$ (i.e. u is an upper bound)
(ii) for all $\varepsilon > 0$, there exists $s' \in S$ such that $u - \varepsilon < s'$
proof:
(ii) \Rightarrow (i): Consider $\varepsilon = u - v$ (i.e. $v = u - \varepsilon$)

Example:
Let $S = \{x \in \mathbb{R} : x \geq 1\}$, show that $\sup S = 1$.
(i) Clearly, 1 is an upper bound of S.
(ii) Let $\varepsilon > 0$, then take $s = 1 - \frac{\varepsilon}{2} \in S$, we have $1 - \varepsilon < s$
$\therefore \sup S = 1$.
(Note $1 \notin S$, i.e. $\sup S$ is NOT necessary in S.)

Completeness properties of \mathbb{R}:
If S is a nonempty subset of \mathbb{R} and it is bounded above, then $\sup S$ exists.
Axiomatic Construction of \mathbb{R}:

The set of all real numbers \mathbb{R}, that has (is assumed to have) the following properties:

1. Field axioms / Algebraic properties
2. Order properties
3. Completeness properties

Exercise:

Prove that

1) If S is a nonempty subset of \mathbb{R} and it is bounded below, then $\inf S$ exists.
 (Hint: Consider $-S = \{-s : s \in S\}$)

2) If A and B are nonempty subsets of \mathbb{R} and $a \leq b$ for all $a \in A$ and $b \in B$,
 then $\sup A \leq \inf B$.

3) If S is a nonempty subset of \mathbb{R} and it is bounded above, then $\sup (a+S) = \sup S + a$
 where $a+S = \{a+s : s \in S\}$

2.2 Archimedian Property and Related Application

Theorem 1 (Archimedian property)

If $x \in \mathbb{R}$, then there exists $n_x \in \mathbb{N}$ such that $x < n_x$.

proof:

Suppose the contrary, $x \geq n$ for all $n \in \mathbb{N}$ (i.e. x is an upper bound of \mathbb{N}).

By completeness property, there exists $u = \sup \mathbb{N}$.

\[\begin{array}{c}
 \underline{x} \quad \underline{u} \quad \underline{u+1} \\
 \uparrow \quad \uparrow \quad \uparrow \\
 \text{u-1 is not an upper bound} \\
 \downarrow \quad \downarrow \\
 \underline{m} \quad \underline{u} \quad \underline{u+1} \\
 \text{there exists } m \in \mathbb{N} \text{ such that } m > u - 1 \\
 \text{(i.e. } m+1 > u = \sup \mathbb{N} \text{) Contradiction!}
\end{array}\]
Corollary:
If $S = \{ \frac{1}{n} : n \in \mathbb{N} \}$, then $\inf S = 0$.

Proof:
S is nonempty and bounded below by 0.
By Archimedean property, for all $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon$ (i.e. $\frac{1}{n} < \varepsilon$)

$$0 \leq \frac{1}{n} < \varepsilon = 0 + \varepsilon$$

$$\therefore \inf S = 0.$$

From the proof, we can also observe that:
If $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $0 < \frac{1}{n_0} < \varepsilon$.

Corollary: (Refined statement of Archimedean property)
If $y > 0$, there exists $n_y \in \mathbb{N}$ such that $ny - 1 < y < ny$.

Proof:
Let $E_y = \{ m \in \mathbb{N} \mid y < m \}$

Idea:

$$\lfloor y \rfloor, \lfloor y \rfloor + 1, \lfloor y \rfloor + 2, \ldots \in E_y$$

L_x : floor function that gives the largest integer not greater than x (i.e. $L_x \leq x$)

Main issue: How to show the existence of n_y?

Archimedean property $\Rightarrow E_y \neq \emptyset$

Well ordering property of \mathbb{N} $\Rightarrow E_y$ has a least element n_y

Then $ny - 1 \notin E_y$ and so $ny - 1 < y$.

Existence of n_y: By Archimedean property

Existence of n_y: By well ordering property
Theorem: (Existence of \(\sqrt{2} \))

There exists a positive real number \(x \) such that \(x^2 = 2 \).

Proof:

Let \(S = \{ s \in \mathbb{R} : s > 0, s^2 < 2 \} \)
- \(\emptyset \neq S \neq \emptyset \)
- \(S \) is bounded above by \(2 \). (If there exists \(s \in S \) such that \(s > 2 \), then \(s^2 > 4 \) !)

\[\sup S \] exists and we define \(x = \sup S \).

Claim: \(x^2 = 2 \).

(By Trichotomy property, we only need to show \(x < 2 \) and \(x > 2 \) are NOT true !)

1. \(\text{Suppose } x^2 > 2 \) (\(\Rightarrow x > \sqrt{2} \))

 Idea: Show that there exists \(n \in \mathbb{N} \) such that \(\frac{x}{\sqrt{2}} \) is another upper bound of \(S \)
 (which leads contradiction)

 Find \(n \in \mathbb{N} \) such that \((x - \frac{1}{n})^2 < 2 \)

 \[x^2 - \frac{2x}{n} + \frac{1}{n^2} < 2 \]

 \[(x - 2) + \frac{1}{n} < \frac{2}{n} \]

 \[\frac{x^2 - 2}{2n} < \frac{1}{n} \]

 \(\frac{x^2 - 2}{2n} > 0 \), by collary of Archimedean property, \(\frac{1}{n} \) has solution for \(n \in \mathbb{N} \).

 \((x - \frac{1}{n})^2 > s^2 \) \(\forall s \in S \) and \(x - \frac{1}{n}, s > 0 \Rightarrow x - \frac{1}{n} > s \) (Contradiction !)

2. \(\text{Suppose } x^2 < 2 \) (\(\Rightarrow x < \sqrt{2} \))

 Exercise!
Theorem: \(\mathbb{Q} \) is dense in \(\mathbb{R} \).

If \(x, y \in \mathbb{R} \) and \(x < y \), then there exists \(r \in \mathbb{Q} \) such that \(x < r < y \).

proof:
Without loss of generality, assume \(x > 0 \).

Idea:
\[\text{length} = y - x > \frac{1}{n} \quad \text{for some} \ n \in \mathbb{N} \]

\[x \quad \text{y} \]

\[\text{length} = ny - nx > 1 \]

\[mx \quad m \quad ny \]

there exists \(m \in \mathbb{N} \) such that \(mx < m < ny \)

\[x < \frac{m}{n} < y \]

\[r \in \mathbb{Q} \quad \text{What we need!} \]

Similar result:

Theorem:
If \(x, y \in \mathbb{R} \) and \(x < y \), then there exists \(p \in \mathbb{R} \setminus \mathbb{Q} \) such that \(x < p < y \).

proof:

\[\sqrt{2} \text{ is irrational (Why?)} \]

\[\text{length} = \frac{1}{n} (y - x) > \frac{1}{n} \quad \text{for some} \ n \in \mathbb{N} \]

\[x/\sqrt{2} \quad y/\sqrt{2} \]

\[\text{length} = \frac{m}{n} (y - x) > 1 \]

\[mx/\sqrt{2} \quad m \quad ny/\sqrt{2} \]

\[x < \frac{m}{n} < y \]

\[r \in \mathbb{R} \setminus \mathbb{Q} \]

Same trick!
23. Intervals

Notations:

If \(a < b \), then

\((a, b) = \{ x \in \mathbb{R} : a < x < b \} \) \quad \text{open interval}

\[[a, b] = \{ x \in \mathbb{R} : a \leq x \leq b \} \quad \text{closed interval} \quad \text{finite interval}
\]

\((a, b] = \{ x \in \mathbb{R} : a < x \leq b \} \) \quad \text{half open (closed) interval}

\([a, \infty) = \{ x \in \mathbb{R} : a \leq x \} \)

\((-\infty, b] = \{ x \in \mathbb{R} : x < b \} \) \quad \text{infinite open interval}

Note: \(\infty, -\infty \notin \mathbb{R} \), ONLY convention.

Characterization Theorem:

If \(S \subseteq \mathbb{R} \) that contains at least two points and has the property

\[x, y \in S \text{ and } x < y \Rightarrow \exists z \in [x, y] \subseteq S \quad (\ast) \]

then \(S \) is an interval.

Idea: Can \(S \) be such a subset of \(\mathbb{R} \)?

\[\begin{array}{c}
S \\
\underbrace{\vphantom{\sum} {x}}_{<} \underbrace{\vphantom{\sum} {y}}_{>}
\end{array} \]

No! There exists \(x, y \in S \) with \(x < y \) and \(a \notin [x, y] \) such that \(a \notin S \).

Property \(\ast \) governs that \(S \) must be "something nice" (an interval).

proof:

There are 4 cases:

1. \(S \) is bounded, let \(a = \inf S \) and \(b = \sup S \), then \(S = (a, b) \) or \([a, b] \) or \([a, b) \) or \((a, b] \)

2. \(S \) is bounded above but NOT bounded below, let \(b = \sup S \), then \(S = (a, b) \) or \((-\infty, b] \)

3. \(S \) is bounded below but NOT bounded above, let \(a = \inf S \), then \(S = (a, \infty) \) or \([a, \infty) \)

4. \(S \) is unbounded, then \(S = \mathbb{R} = (-\infty, \infty) \).

Exercise!
Definition:

A sequence of intervals I_n, $n \in \mathbb{N}$, is said to be nested if $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots \supseteq I_n \supseteq I_{n+1} \supseteq \ldots$

(Here, I_n is NOT necessary to be closed)

Examples:

1) If $I_n = [0, \frac{1}{n}]$, then the sequence is nested. Furthermore, $\bigcap_{n=1}^{\infty} I_n = \{0\}$.

2) If $I_n = (0, \frac{1}{n})$, then the sequence is nested. However, $\bigcap_{n=1}^{\infty} I_n = \varnothing$.

Theorem: (Nested Interval Property)

If $I_n = [a_n, b_n]$, $n \in \mathbb{N}$, is a nested sequence of closed intervals, then there exists $p \in \mathbb{R}$ such that $p \in I_n$ for all $n \in \mathbb{N}$.

Proof:

Let $A = \{a_n : n \in \mathbb{N}\}$ and $B = \{b_n : n \in \mathbb{N}\}$.

Exercise: Show that A is bounded above (by b).

- B is bounded below (by a).

\[a \leq a_n \leq a \quad \text{and} \quad b \geq b_n \geq b \]

\[\sup A \leq a_n \leq \inf B \]

\[a_n \rightarrow a, \quad b_n \rightarrow b \]

: $\sup A$ and $\inf B$ exist and $\sup A \geq \inf B$

Exercise: Show that for all $p \in [\sup A, \inf B]$, $p \in I_n$ for all $n \in \mathbb{N}$.

(As we can see, p is NOT unique, but it is the case if we further impose a condition.)

Theorem:

Furthermore, if $\inf [b_n - a_n] = 0$, then there exists unique $p \in \mathbb{R}$ such that $p \in I_n$ for all $n \in \mathbb{N}$.

Proof:

Suppose $p, q \in I_n$ for all $n \in \mathbb{N}$ and $p \leq q$, i.e., $a_n \leq p \leq q \leq b_n$.

Then $q - p \leq b_n - a_n$ for all $n \in \mathbb{N}$, i.e., $q - p$ is a lower bound of $[b_n - a_n : n \in \mathbb{N}]$.

Therefore, $0 \leq q - p \leq \inf [b_n - a_n] = 0$

\[q - p = 0, \quad \text{i.e.,} \quad q = p. \]
Theorem: (Uncountability of \(\mathbb{R} \))

The set \(\mathbb{R} \) is uncountable.

proof:

It suffices to show \([0,1]\) is uncountable.

Suppose the contrary, \(I \) is countable and \(I = \{x_i, x_2, \ldots, x_n, \ldots\} \).

Construct a sequence of closed intervals:

Step 1: Choose \(I_1 \in [0,1] \) such that \(x_i \notin I_1 \) (How?)

Inductive step: Choose \(I_n \in I \) such that \(I_n \subseteq I_{n-1} \) and \(x_i \notin I_n \) (How?)

By the construction, \(I_n \) is a nested sequence of intervals,

\(\Rightarrow \) there exists \(p \in I \) such that \(p \notin I_n \) for all \(n \in \mathbb{N} \).

However \(p \in I \Rightarrow p = x_n \) for some \(n \in \mathbb{N} \)

(Contradicts to \(p \notin I_n \))

Binary Representation

Example:

\(0.625 \in [0,1] \)

\[x = \frac{1}{2} + \frac{1}{8} \]

\[= 1 \times \frac{1}{2} + 0 \times \left(\frac{1}{2} \right)^3 + 1 \times \left(\frac{1}{2} \right)^3 + 0 \times \left(\frac{1}{2} \right)^3 + \cdots \]

\[\therefore \ 0.625 \text{ has a binary representation } (10100\ldots) \] (Remark: 0.101_4 in secondary school)

Theorem:

If \(x \in [0,1] \), then there exists a sequence \(\{a_n\} \) of zeros or ones such that

\[\frac{a_1}{2} + \frac{a_2}{2^2} + \cdots + \frac{a_n}{2^n} \leq x \leq \frac{a_1}{2} + \frac{a_2}{2^2} + \cdots + \frac{a_n}{2^n} + \frac{a_{n+1}}{2^{n+1}} \text{ for all } n \in \mathbb{N}. \]

In this case, we write \(x = (a_1a_2\ldots a_n\ldots)_2 \).
proof:

Idea: Bisection!

Let \(x \in [0,1] \)

Step 1:

Let \(I_1 = [0,1] \)

\(x \) lies on the right subinterval of \(I_1 \), then we take \(a_1 = 1 \)

Step 2:

Let \(I_2 = [\frac{1}{2}, 1] \)

\(x \) lies on the left subinterval of \(I_2 \), then we take \(a_2 = 0 \)

\(\vdots \)

Repeating \(I_{2n} = [\frac{q_n}{2} + \frac{q_{n+1}}{2}, \frac{q_n}{2} + \frac{q_{n+1}}{2} + \frac{q_{n+1}}{2}] \)

and \(a_{2n} \) is determined by whether \(x \) lies on the left or right subinterval of \(I_{2n} \).

The result follows from the fact that \(x \in I_n \) for all \(n \in \mathbb{N} \).

Only trouble:

\[x = 0.625 \]

\[0.625 = (101000 \ldots)_2 \text{ or } (100111 \ldots)_2 \]

\(0.625 = 0 \text{ or } 1 \) ?

Consequence: \(0.625 = (101000 \ldots)_2 \) or \((100111 \ldots)_2 \)

\(\therefore \) Binary representation is Not unique.

However, conversely, given a sequence / representation \((a,a_2,a_3,\ldots)_2\), it corresponds to a unique real number in \([0,1]\).

Why ? Simply because of the nested property of \(\mathbb{R} \).

Exercise:

Figure out the decimal representation.

Remark: Think why \(0.999 \ldots = 1 \) ?