1 Appendix

Definition (Closed Linear Operator) (1) The graph G(T) of a linear operator T on the domain $\mathcal{D}(T) \subset X$ into Y is the set $(x, Tx) : x \in \mathcal{D}(T)$ } in the product space $X \times Y$. Then T is closed if its graph G(T) is a closed linear subspace of $X \times Y$, i.e., if $x_n \in \mathcal{D}(T)$ converges strongly to $x \in X$ and Tx_n converges strongly to $y \in Y$, then $x \in \mathcal{D}(T)$ and y = Tx. Thus the notion of a closed linear operator is an extension of the notion of a bounded linear operator.

(2) A linear operator T is said be closable if $x_n \in \mathcal{D}(T)$ converges strongly to 0 and Tx_n converges strongly to $y \in Y$, then y = 0.

For a closed linear operator T, the domain $\mathcal{D}(T)$ is a Banach space if it is equipped by the graph norm

$$|x|_{\mathcal{D}(T)} = (|x|_X^2 + |Tx|_Y^2)^{\frac{1}{2}}$$

Example (Closed linear Operator) Let $T = \frac{d}{dt}$ with $X = Y = L^2(0, 1)$ is closed and

 $dom (A) = H^1(0,1) = \{ f \in L^2(0,1) : \text{absolutely continuous functions on } [0,1] \\ \text{with square integrable derivative} \}.$

If $y_n = Tx_n$, then

$$x_n(t) = x_n(0) + \int_0^t y_n(s) \, ds$$

If $x_n \in dom(T) \to x$ and $y_n \to y$ in $L^2(0,1)$, then letting $n \to \infty$ we have

$$x(t) = x(0) + \int_0^t y(s) \, ds,$$

i.e., $x \in dom(T)$ and Tx = y.

In general if for $\lambda I + T$ for some $\lambda \in R$ has a bounded inverse $(\lambda I + T)^{-1}$, then $T : dom(A) \subset X \to X$ is closed. In fact, $Tx_n = y_n$ is equivalent to

$$x_n = (\lambda I + T)^{-1} (y_n + \lambda x_n)$$

Suppose $x_n \to x$ and $y_n \to y$ in X, letting $n \to \infty$ in this, we have $x \in dom(T)$ and $Tx = T(\lambda I + T)^{-1}(\lambda x + y) = y$.

Definition (Dual Operator) Let T be a linear operator X into Y with dense domain $\overline{\mathcal{D}(T)}$. The dual operator of T^* of T is a linear operator on Y^* into X^* defined by

$$\langle y^*, Tx \rangle_{Y^* \times Y} = \langle T^*y^*, x \rangle_{X^* \times X}$$

for all $x \in \mathcal{D}(T)$ and $y^* \in \mathcal{D}(T^*)$.

In fact, for $y^* \in Y^* \ x^* \in X^*$ satisfying

$$\langle y^*, Tx \rangle = \langle x^*, x \rangle$$
 for all $x \in \mathcal{D}(T)$

is uniquely defined if and only if $\mathcal{D}(T)$ is dense. The only if part follows since if $\mathcal{D}(T) \neq X$ then the Hahn-Banach theory there exits a nonzero $x_0^* \in X^*$ such that $\langle x_0^*, x \rangle = 0$ for all $\mathcal{D}(T)$, which contradicts to the uniqueness assumption. If T is bounded with $\mathcal{D}(T) = X$ then T^* is bounded with $||T|| = ||T^*||$.

Examples Consider the gradient operator $T: L^2(\Omega) \to L^2(\Omega)^n$ as

$$Tu = \nabla u = (D_{x_1}u, \cdots D_{x_n}u)$$

with $\mathcal{D}(T) = H^1(\Omega)$. The, we have for $v \in L^2(\Omega)^n$

$$T^*v = -div\,v = -\sum D_{x_k}v_k$$

with domain $\mathcal{D}(T^*) = \{ v \in L^2(\Omega)^n : div v \in L^2(\Omega) \text{ and } n \cdot v = 0 \text{ at the boundary } \partial\Omega \}$. In fact by the divergence theorem

$$(Tu, v) = \int_{\Omega} \nabla u \cdot v \int_{\partial \Omega} (n \cdot v) u \, ds - \int_{\Omega} u(\operatorname{div} v) \, dx = (u, T^* v)$$

for all $v \in C^1(\Omega)$. First, let $u \in H^1_0(\Omega)$ we have $T^*v = -div \, v \in L^2(\Omega)$ since $H^1_0(\Omega)$ is dense in $L^2(\Omega)$. Thus, $n \cdot v \in L^(\partial\Omega)$ and $n \cdot v = 0$.

Definition (Hilbert space Adjoint operator) Let X, Y be Hilbert spaces and T be a linear operator X into Y with dense domain $\mathcal{D}(T)$. The Hilbert self adjoint operator of T^* of T is a linear operator on Y into X defined by

$$(y, Tx)_Y = (T^*y, x)_X$$

for all $x \in \mathcal{D}(T)$ and $y \in \mathcal{D}(T^*)$. Note that if we let $T': Y^* \to X^*$ is the dual operator of T, then

$$T^*R_{Y^*\to Y} = R_{X^*\to X}T$$

where $R_{X^* \to X}$ and $R_{Y^* \to Y}$ are the Riesz maps.

Examples (self-adjoint operator) Let $X = L^2(\Omega)$ and T be the Laplace operator

$$Tu = \Delta u = \sum_{k=1}^{n} D_{x_k x_k} u$$

with domain $\mathcal{D}(T) = H^2(\Omega) \cap H^1_0(\Omega)$. Then T is sel-adjoint, i.e., $T^* = T$. In fact

$$(Tu,v)_X = \int_{\Omega} \Delta u \, v \, dx = \int_{\partial \Omega} ((n \cdot \nabla u)v - (n \cdot \nabla v)u) \, ds + \int_{\Omega} \Delta v \, u \, dx = (x, T^*v)$$

for all $v \in C^1(\Omega)$.

Let us denote by $F: X \to X^*$, the duality mapping of X, i.e.,

$$F(x) = \{x^* \in X^* : \langle x, x^* \rangle = |x|^2 = |x^*|^2\}$$

By Hahn-Banach theorem, F(x) is non-empty. In general F is multi-valued. Therefore, when X is a Hilbert space, $\langle \cdot, \cdot \rangle$ coincides with its inner product if X^* is identified with X and F(x) = x.

Let H be a Hilbert space with scalar product (ϕ, ψ) and X be a real, reflexive Banach space and $X \subset H$ with continuous dense injection. Let X^* denote the strong dual space of X. H is identified with its dual so that $X \subset H = H^* \subset X^*$. The dual product $\langle \phi, \psi \rangle$ on $X \times X^*$ is the continuous extension of the scalar product of H restricted to $X \times H$.

Theorem (Alligned Element) Let X be a normed space. For each $x_0 \in X$ there exists an $f \in X^*$ such that

$$f(x_0) = |f|_{X^*} |x_0|_X.$$

<u>Proof:</u> Let $S = \{\alpha x_0 : \alpha \in R\}$ and define $f(\alpha x_0) = \alpha |x_0|_X$. By Hahn-Banach theorem there exits an extension $F \in X^*$ of f such that $F(x) \leq |x|$ for all $x \in X$. Since

$$-F(x) = F(-x) \le |-x| = |x|,$$

we have $|F(x)| \leq |x|$, in particular $|F|_{X^*} \leq 1$. On the other hand, $F(x_0) = f(x_0) = |x_0|$, thus $|F|_{X^*} = 1$ and $F(x_0) = f(x_0) = |F||x_0|$. \Box

The following proposition contains some further important properties of the duality mapping F.

Theorem (Duality Mapping) (a) F(x) is a closed convex subset.

(b) If X^* is strictly convex (i.e., balls in X^* are strictly convex), then for any $x \in X$, F(x) is single-valued. Moreover, the mapping $x \to F(x)$ is demicontinuous, i.e., if $x_n \to x$ in X, then $F(x_n)$ converges weakly star to F(x) in X^* .

(c) Assume X be uniformly convex (i.e., for each $0 < \epsilon < 2$ there exists $\delta = \delta(\epsilon) > 0$ such that if |x| = |y| = 1 and $|x - y| > \epsilon$, then $|x + y| \le 2(1 - \delta)$). If x_n converges weakly to x and $\limsup_{n \to \infty} |x_n| \le |x|$, then x_n converges strongly to x in X.

(d) If X^* is uniformly convex, then the mapping $x \to F(x)$ is uniformly continuous on bounded subsets of X.

Proof: (a) Closeness of F(x) is an easy consequence of the follows from the continuity of the duality product. Choose $x_1^*, x_2^* \in F(x)$ and $\alpha \in (0, 1)$. For arbitrary $z \in X$ we have $(\text{using } |x_1^*| = |x_2^*| = |x|) \langle z, \alpha x_1^* + (1-\alpha) x_2^* \rangle \leq \alpha |z| |x_1^*| + (1-\alpha) |z| |x_2^*| = |z| |x|$, which shows $|\alpha x_1^* + (1-\alpha) x_2^*| \leq |x|$. Using $\langle x, x^* \rangle = \langle x, x_1^* \rangle = |x|^2$ we get $\langle x, \alpha x_1^* + (1-\alpha) x_2^* \rangle = \alpha \langle x, x_1^* \rangle + (1-\alpha) \langle x, x_2^* \rangle = |x|^2$, so that $|\alpha x_1^* + (1-\alpha) x_2^*| = |x|$. This proves $\alpha x_1^* + (1-\alpha) x_2^* \in F(x)$. (b) Choose $x_1^*, x_2^* \in F(x), \alpha \in (0, 1)$ and assume that $|\alpha x_1^* + (1-\alpha) x_2^*| = |x|$. Since X^* is strictly convex, this implies $x_1^* = x_2^*$. Let $\{x_n\}$ be a sequence such that $x_n \to x \in X$. From $|F(x_n)| = |x_n|$ and the fact that closed balls in X^* are weakly star compact we see that there exists a weakly star accumulation point x^* of $\{F(x_n)\}$. Since the closed ball in X^* is weakly star closed, thus

$$\langle x, x^* \rangle = |x|^2 \ge |x^*|^2.$$

Hence $\langle x, x^* \rangle = |x|^2 = |x^*|^2$ and thus $x^* = F(x)$. Since F(x) is single-valued, this implies $F(x_n)$ converges weakly to F(x).

(c) Since $\liminf |x_n| \leq |x|$, thus $\lim_{n\to\infty} |x_n| = |x|$. We set $y_n = x_n/|x_n|$ and y = x/|x|. Then y_n converges weakly to y in X. Suppose y_n does not converge strongly to y in X. Then there exists an $\epsilon > 0$ such that for a subsequence $y_{\tilde{n}} |y_{\tilde{n}} - y| > \epsilon$. Since X^* is uniformly convex there exists a $\delta > 0$ such that $|y_{\tilde{n}} + y| \leq 2(1 - \delta)$. Since the norm is weakly lower semicontinuos, letting $\tilde{n} \to \infty$ we obtain $|y| \leq 1 - \delta$, which is a contradiction. (d) Assume F is not uniformly continuous on bounded subsets of X. Then there exist constants M > 0, $\epsilon > 0$ and sequences $\{u_n\}, \{v_n\}$ in X satisfying

$$|u_n|, |v_n| \le M, |u_n - v_n| \to 0, \text{ and } |F(u_n) - F(v_n)| \ge \epsilon.$$

Without loss of the generality we can assume that, for a constant $\beta > 0$, we have in addition $|u_n| \ge \beta$, $|v_n| \ge \beta$. We set $x_n = u_n/|u_n|$ and $y_n = v_n/|v_n|$. Then we have

$$|x_n - y_n| = \frac{1}{|u_n| |v_n|} ||v_n|u_n - |u_n|v_n|$$

$$\leq \frac{1}{\beta^2} (|v_n||u_n - v_n| + ||v_n| - |u_n|| ||v_n|) \leq \frac{2M}{\beta^2} |u_n - v_n| \to 0 \quad \text{as } n \to \infty.$$

Obviously we have $2 \ge |F(x_n) + F(y_n)| \ge \langle x_n, F(x_n) + F(y_n) \rangle$ and this together with

$$\langle x_n, F(x_n) + F(y_n) \rangle = |x_n|^2 + |y_n|^2 + \langle x_n - y_n, F(y_n) \rangle$$
$$= 2 + \langle x_n - y_n, F(y_n) \rangle \ge 2 - |x_n - y_n|$$

implies

$$\lim_{n \to \infty} |F(x_n) + F(y_n)| = 2.$$

Suppose there exists an $\epsilon_0 > 0$ and a subsequence $\{n_k\}$ such that $|F(x_{n_k}) - F(y_{n_k})| \ge \epsilon_0$. Observing $|F(x_{n_k})| = |F(y_{n_k})| = 1$ and using uniform convexity of X^* we conclude that there exists a $\delta_0 > 0$ such that

$$|F(x_{n_k}) + F(y_{n_k})| \le 2(1 - \delta_0),$$

which is a contradiction to the above. Therefore we have $\lim_{n\to\infty} |F(x_n) - F(y_n)| = 0$. Thus

$$|F(u_n) - F(v_n)| \le |u_n| |F(x_n) - F(y_n)| + ||u_n| - |v_n|| |F(y_n)|$$

which implies $F(u_n)$ converges strongly to $F(v_n)$. This contradiction proves the result. \Box

<u>Problem</u> Let X = C[0, 1] be the space of continuous functions with sup norm. Then show that $X^* = BV(0, 1) =$ the space of (right continuous) bounded variation functions on [0, 1], i.e. for every $f \in X^*$ there exists $\nu \in BV(0, 1)$ such that $f(x) = \int_0^1 x(t) d\nu(t)$ (Riemann Stieltjes integral) for all $x \in X$. $\delta_{t_0} \in X^*$ (i.e. $\delta_{x_0}(\phi) = \phi(t_0)$ for $\phi \in X$). and $\delta_{t_0} \in F(x)$ for $t_0 \in [0, 1]$ satisfying $x(t_0) = \max_{t \in [0, 1]} |x(t)|$.

<u>Problem</u> Let A be a closed linear operator on a Banach space. D(A) = dom(A) is a Banach space with the graph norm

$$|x|_{D(A)} = |x|_X + |Ax|_X.$$

<u>Problem</u> Let $c \in L^{\infty}(0,1)$. Define the linear operators $A_1 u = -(c(x)u)_x$ in $X = L^1(0,1)$. and $A_2 u = c(x)u_x$ in $X = L^p(0,1)$.

(a) Find $dom(A_2)$ so that A_2 is ω -dissipative. — Hint: $c' \leq M$ (bounded above) if $p > \infty$. If $p = \infty$, then no condition is necessary. Inflow c(0) > 0 and Outflow $c(0) \leq 0$. Find $dom(A_1)$ so that A_1 is ω -dissipative. — Hint Assume c > 0. Since $cu \in C[0, 1]$ one can decompose [0, 1] the sub intervals (t_i, t_{i+1}) on which cu > 0 or cu < 0 and $cu(t_i) = 0$ and let $u^* = sign_0(cu) = sign_0(u)$. Thus, we have

$$(A_1u, u^*) = \int_0^1 (-(cu)_x u^*(x)) \, dx = c(0)|u(0)| - c(1)|u(1)|$$

(c) In general show that $dom(A_1)$ and $dom(A_2)$ are different (Hint: piecewise constant)

1.1 Dissipativity

In order to obtain the useful equivalent conditions for the dissipativity, we consider the derivatives of the norm $|\cdot|$ of X, which define pairs in some way analogous to the inner product on a Hilbert space.

Definition 1.2 We define the functions $\langle \cdot, \cdot \rangle_+$, $\langle \cdot, \cdot \rangle_- : X \times X \to R$ by

$$\langle y, x \rangle_{+} = \lim_{\alpha \to 0^{+}} \frac{|x + \alpha y| - |x|}{\alpha}$$

$$\langle y, x \rangle_{-} = \lim_{\alpha \to 0^{+}} \frac{|x| - |x - \alpha y|}{\alpha}$$

Also, we defines the functions $\langle \cdot, \cdot \rangle_s$, $\langle \cdot, \cdot \rangle_i : X \times X \to R$ by

$$\langle y, x \rangle_s = \lim_{\alpha \to 0^+} \frac{|x + \alpha y|^2 - |x|^2}{2\alpha}$$
$$\langle y, x \rangle_i = \lim_{\alpha \to 0^+} \frac{|x|^2 - |x - \alpha y|^2}{2\alpha}$$

Here, we note that $\alpha^{-1}(|x + \alpha y| - |x|)$ is an increasing function. In fact, if $0 < \alpha < \beta$ then

$$(\beta - \alpha) |x| = |(\beta x + \alpha \beta y) - (\alpha x + \alpha \beta y)| \ge \beta |x + \alpha y| - \alpha |x + \beta y|$$

and thus

$$\beta^{-1}(|x + \beta y| - |x|) \ge \alpha^{-1}(|x + \alpha y| - |x|).$$

Moreover, since $\alpha^{-1}(|x+\alpha y|-|x|) \ge -|y|$, this function is bounded below. Hence, $\lim_{\alpha\to 0^+} = \inf_{\alpha>0}$ exists for all $x, y \in X$. From the definition we have

(1.2)
$$\langle y, x \rangle_{-} = -\langle -y, x \rangle_{+}$$
 and $\langle y, x \rangle_{i} = -\langle -y, x \rangle_{s}$

Since the norm is continuous, it follows that

(1.3)
$$\langle y, x \rangle_s = |x| \langle y, x \rangle_+$$
 and $\langle y, x \rangle_i = |x| \langle y, x \rangle_-.$

Also, from $2|x| \le |x + \alpha y| + |x - \alpha y|$, we have

$$\alpha^{-1}(|x| - |x - \alpha y|) \le \alpha^{-1}(|x + \alpha y| - |x|).$$

Thus,

(1.4)
$$\langle y, x \rangle_{-} \leq \langle y, x \rangle_{+} \text{ and } \langle y, x \rangle_{i} \leq \langle y, x \rangle_{i}$$

Moreover, we have the following lemma.

Lemma 1.1 Let $x, y \in X$.

(1) There exists an element f^+ such that

$$\langle y, x \rangle_s = \sup \{ Re \langle y, f \rangle : f \in F(x) \} = Re \langle y, f^+ \rangle$$

(2) There exists an element f^- such that

$$\langle y, x \rangle_i = \inf \{ Re \langle y, f \rangle : f \in F(x) \} = Re \langle y, f^- \rangle$$

(3) $\langle \alpha x + y, x \rangle_q = \alpha |x| + \langle y, x \rangle_q$ for $\alpha \in R$ where q is either + or -. (4) For $z \in X$

$$\langle y+z,x\rangle_{-} \geq \langle y,x\rangle_{-} + \langle z,x\rangle_{-} \quad \text{and} \quad \langle y+z,x\rangle_{+} \leq \langle y,x\rangle_{+} + \langle z,x\rangle_{+}$$

and thus

$$\langle y, x \rangle_{-} - \langle z, x \rangle_{+} \leq \langle y - z, x \rangle_{-} \leq \langle y, x \rangle_{+} - \langle z, x \rangle_{-}$$

(5) $\langle \cdot, \cdot \rangle_{-} : X \times X \to R$ is lower semicontinuous and $\langle \cdot, \cdot \rangle_{+} : X \times X \to R$ is upper semicontinuous.

Proof: (3) and (4) are obvious from the definition. For (5) since for each $\alpha > 0$

$$\alpha^{-1}(|x + \alpha y| - |x|)$$

is a continuous function of $X \times X \to R$, the upper continuity of $\langle \cdot, \cdot \rangle_+$ follows from its definition. Since $\langle y, x \rangle_- = -\langle -y, x \rangle_+$, $\langle \cdot, \cdot \rangle_- : X \times X \to R$ is lower semicontinuous. \Box

Now, the following theorem gives the equivalent conditions for the dissipativeness of A.

Theorem 1.2 Let $x, y \in X$. The following statements are equivalent.

- (i) $Re \langle y, x^* \rangle \leq 0$. for some $x^* \in F(x)$. (ii) $|x - \lambda y| \geq |x|$ for all $\lambda > 0$. (iii) $\langle y, x \rangle_{-} \leq 0$
- $(iv) \langle y, x \rangle_i \leq 0.$

Proof: $(i) \rightarrow (ii)$. By the definition of F, we have

$$|x|^{2} = \langle x, x^{*} \rangle \leq \operatorname{Re} \langle x - \lambda \, y, x^{*} \rangle \leq |x - \lambda \, y| \, |x^{*}|$$

for all $\lambda > 0$. Thus, (*ii*) holds.

 $(ii) \to (i)$. For each $\lambda > 0$ let $f_{\lambda} \in F(x - \lambda y)$. Then $|f_{\lambda}| \neq 0$ and we set $g_{\lambda} = |f_{\lambda}|^{-1} f_{\lambda}$. Since the unit sphere of the dual space X^* is compact in the weak-star topology of X^* , we may assume that

$$\lim_{\lambda \to 0} \langle u, g_{\lambda} \rangle = \langle u, g \rangle \quad \text{for all } u \in X$$

where g is some element in X^* . Next, since

(1.7)
$$|x| \le |x - \lambda y| = \operatorname{Re} \langle x - \lambda y, g_{\lambda} \rangle \le |x| - \lambda \operatorname{Re} \langle y, g_{\lambda} \rangle$$

for all $\lambda > 0$, it follows that $Re \langle y, g_{\lambda} \rangle \leq 0$ for all $\lambda > 0$, and letting $\lambda \to 0^+$, $Re \langle y, g \rangle \leq 0$. Note that (1.7) also implies $|x| \leq Re \langle x, g \rangle$ and thus $\langle x, g \rangle = |x|$. This implies that $|x| g \in F(x)$ and hence (i) holds.

Since $\alpha \to \alpha^{-1}(|x - \alpha y| - |x|)$ is an decreasing function (2) and (3) are equivalent by the definition of $\langle \cdot, \cdot \rangle_{-}$. \Box

1.2 Lax-Milgram Theory and Applications

Let H be a Hilbert space with scalar product (ϕ, ψ) and X be a Hilbert space and $X \subset H$ with continuous dense injection. Let X^* denote the strong dual space of X. H is identified with its dual so that $X \subset H = H^* \subset X^*$ (i.e., H is the pivoting space). The dual product $\langle \phi, \psi \rangle$ on $X^* \times X$ is the continuous extension of the scalar product of H restricted to $H \times X$. This framework is called the Gelfand triple.

Let σ is a bounded coercive bilinear form on $X \times X$. Note that given $x \in X$, $F(y) = \sigma(x, y)$ defines a bounded linear functional on X. Since given $x \in X$, $y \to \sigma(x, y)$ is a bounded linear functional on X, say $x^* \in X^*$. We define a linear operator A from X into X^* by $x^* = Ax$. Equation $\sigma(x, y) = F(y)$ for all $y \in X$ is equivalently written as an equation

$$Ax = F \in X^*.$$

Here,

$$\langle Ax, y \rangle_{X^* \times X} = \sigma(x, y), \quad x, \ y \in X,$$

and thus A is a bounded linear operator. In fact,

$$|Ax|_{X^*} \le \sup_{|y|\le 1} |\sigma(x,y)| \le M |x|.$$

Let R be the Riesz operator $X^* \to X$, i.e.,

$$|Rx^*|_X = |x^*|$$
 and $(Rx^*, x)_X = \langle x^*, x \rangle$ for all $x \in X$,

then $\hat{A} = RA$ represents the linear operator $\hat{A} \in \mathcal{L}(X, X)$. Moreover, we define a linear operator \tilde{A} on H by

$$\tilde{A}x = Ax \in H$$

with

$$dom\left(\tilde{A}\right) = \{x \in X : |\sigma(x, y)| \le c_x |y|_H \text{ for all } y \in X\}.$$

That is, \tilde{A} is a restriction of A on $dom(\tilde{A})$. We will use the symbol A for all three linear operators as above in the lecture note and its use should be understood by the underlining context.

Lax-Milgram Theorem Let X be a Hilbert space. Let σ be a (complex-valued) sesquilinear form on $X \times X$ satisfying

$$\sigma(\alpha x_1 + \beta x_2, y) = \alpha \sigma(x_1, y) + \beta \sigma(x_2, y)$$

$$\sigma(x, \alpha y_1 + \beta y_2) = \bar{\alpha} \sigma(x, y_1) + \bar{\beta} \sigma(x, y_2),$$

$$|\sigma(x, y)| \le M |x||y| \quad \text{for all } x, y \in X \quad (\text{Bounded})$$

and

$$\operatorname{Re} \sigma(x, x) \ge \delta |x|^2$$
 for all $x \in X$ and $\delta > 0$ (Coercive).

Then for each $f \in X^*$ there exist a unique solution $x \in X$ to

$$\sigma(x,y) = \langle f, y \rangle_{X^* \times X} \quad \text{for all } y \in X$$

and

$$|x|_X \le \delta^{-1} |f|_{X^*}$$

Proof: Let us define the linear operator S from X^* into X by

$$Sf = x, \quad f \in X^*$$

where $x \in X$ satisfies

$$\sigma(x,y) = \langle f, y \rangle$$
 for all $y \in X$.

The operator S is well defined since if $x_1, x_2 \in X$ satisfy the above, then $\sigma(x_1 - x_2, y) = 0$ for all $y \in X$ and thus $\delta |x_1 - x_2|_X^2 \leq \operatorname{Re} \sigma(x_1 - x_2, x_1 - x_2) = 0$.

Next we show that dom(S) is closed in X^{*}. Suppose $f_n \in dom(S)$, i.e., there exists $x_n \in X$ satisfying $\sigma(x_n, y) = \langle f_n, y \rangle$ for all $y \in X$ and $f_n \to f$ in X^{*} as $n \to \infty$. Then

$$\sigma(x_n - x_m, y) = \langle f_n - f_m, y \rangle \quad \text{for all } y \in X$$

Setting $y = x_n - x_m$ in this we obtain

$$\delta |x_n - x_m|_X^2 \le Re \, \sigma(x_n - x_m, x_n - x_m) \le |f_n - f_m|_{X^*} |x_n - x_m|_X.$$

Thus $\{x_n\}$ is a Cauchy sequence in X and so $x_n \to x$ for some $x \in X$ as $n \to \infty$. Since σ and the dual product are continuous, thus x = Sf.

Now we prove that dom $(S) = X^*$. Suppose dom $(S) \neq X^*$. Since dom(S) is closed there exists a nontrivial $x_0 \in X$ such that $\langle f, x_0 \rangle = 0$ for all $f \in \text{dom}(S)$. Consider the linear functional $F(y) = \sigma(x_0, y), y \in X$. Then since σ is bounded $F \in X^*$ and $x_0 = SF$. Thus $F(x_0) = 0$. But since $\sigma(x_0, x_0) = \langle F, x_0 \rangle = 0$, by the coercivity of $\sigma x_0 = 0$, which is a contradiction. Hence dom $(S) = X^*$. \Box

Assume that σ is coercive. By the Lax-Milgram theorem A has a bounded inverse $S = A^{-1}$. Thus,

$$dom\left(\tilde{A}\right) = A^{-1}H.$$

Moreover A is closed. In fact, if

$$x_n \in dom(A) \to x \text{ and } f_n = Ax_n \to f \text{ in } H,$$

then since $x_n = Sf_n$ and S is bounded, x = Sf and thus $x \in dom(\tilde{A})$ and $\tilde{A}x = f$.

If σ is symmetric, $\sigma(x, y) = (x, y)_X$ defines an inner product on X. and SF coincides with the Riesz representation of $F \in X^*$. Moreover,

$$\langle Ax, y \rangle = \langle Ay, x \rangle$$
 for all $x, y \in X$.

and thus \tilde{A} is a self-adjoint operator in H.

Example (Laplace operator) Consider $X = H_0^1(\Omega), H = L^2(\Omega)$ and

$$\sigma(u,\phi) = (u,\phi)_X = \int_{\Omega} \nabla u \cdot \nabla \phi \, dx$$

Then,

$$Au = -\Delta u = -\left(\frac{\partial^2}{\partial x_1^2}u + \frac{\partial^2}{\partial x_2^2}u\right)$$

and

$$dom\left(\tilde{A}\right) = H^2(\Omega) \cap H^1_0(\Omega).$$

for Ω with C^1 boundary or convex domain Ω .

For $\Omega = (0, 1)$ and $f \in L^2(0, 1)$

$$\int_0^1 \frac{d}{dx} y \frac{d}{dx} u \, dt = \int_0^1 f(x) y(x) \, dx$$

is equivalent to

$$\int_0^1 \frac{d}{dx} y \left(\frac{d}{dx}u + \int_x^1 f(s) \, ds\right) dx = 0$$

for all $y \in H_0^1(0, 1)$. Thus,

$$\frac{d}{dx}u + \int_{x}^{1} f(s) \, ds = c \text{ (a constant)}$$

and therefore $\frac{d}{dx} u \in H^1(0,1)$ and

$$Au = -\frac{d^2}{dx^2}u = f \text{ in } L^2(0,1)$$

Example (Elliptic operator) Consider a second order elliptic equation

$$\mathcal{A}u = -\nabla \cdot (a(x)\nabla u) + b(x) \cdot \nabla u + c(x)u(x) = f(x), \quad \frac{\partial u}{\partial \nu} = g \text{ at } \Gamma_1 \quad u = 0 \text{ at } \Gamma_0$$

where Γ_0 and Γ_1 are disjoint and $\Gamma_0 \cup \Gamma_1 = \Gamma$. Integrating this against a test function ϕ , we have

$$\int_{\Omega} \mathcal{A}u\phi \, dx = \int_{\Omega} (a(x)\nabla u \cdot \nabla \phi + b(x) \cdot \nabla u\phi + c(x)u\phi) \, dx - \int_{\Gamma_1} g\phi \, ds_x = \int_{\Omega} f(x)\phi(x) \, dx,$$

for all $\phi \in C^1(\Omega)$ vanishing at Γ_0 . Let $X = H^1_{\Gamma_0}(\Omega)$ is the completion of $C^1(\Omega)$ vanishing at Γ_0 with inner product

$$(u,\phi) = \int_{\Omega} \nabla u \cdot \nabla \phi \, dx$$

i.e.,

$$H^{1}_{\Gamma_{0}}(\Omega) = \{ u \in H^{1}(\Omega) : u |_{\Gamma_{0}} = 0 \}$$

Define the bilinear form σ on $X \times X$ by

$$\sigma(u,\phi) = \int_{\Omega} (a(x)\nabla u \cdot \nabla \phi + b(x) \cdot \nabla u\phi + c(x)u\phi)$$

Then, by the Green's formula

$$\sigma(u,u) = \int_{\Omega} (a(x)|\nabla u|^2 + b(x) \cdot \nabla(\frac{1}{2}|u|^2) + c(x)|u|^2) dx$$
$$= \int_{\Omega} (a(x)|\nabla u|^2 + (c(x) - \frac{1}{2}\nabla \cdot b)|u|^2) dx + \int_{\Gamma_1} \frac{1}{2}n \cdot b|u|^2 ds_x.$$

If we assume

$$0 < \underline{a} \le a(x) \le \overline{a}, \quad c(x) - \frac{1}{2} \nabla \cdot b \ge 0, \quad n \cdot b \ge 0 \text{ at } \Gamma_1,$$

then σ is bounded and coercive with $\delta = \underline{a}$.

The Banach space version of Lax-Milgram theorem is as follows.

Banach-Necas-Babuska Theorem Let V and W be Banach spaces. Consider the linear equation for $u \in W$

$$a(u,v) = f(v) \quad \text{for all } v \in V$$

$$(1.1)$$

for given $f \in V^*$, where a is a bounded bilinear form on $W \times V$. The problem is well-posed in if and only if the following conditions hold:

$$\inf_{u \in W} \sup_{v \in V} \frac{a(u, v)}{|u|_W |v|_V} \ge \delta > 0 \tag{1.2}$$

a(u, v) = 0 for all $u \in W$ implies v = 0

Under conditions we have the unique solution $u \in W$ to (1.1) satisfies

$$|u|_W \le \frac{1}{\delta} \, |f|_{V^*}$$

Proof: Let A be a bounded linear operator from W to V^* defined by

$$\langle Au, v \rangle = a(u, v)$$
 for all $u \in W, v \in V$.

The inf-sup condition is equivalent to for any w?W

$$|Aw|_{V*} \ge \delta |u|_W,$$

and thus the range of A, R(A), is closed in V^* and N(A) = 0. But since V is reflexive and

$$\langle Au, v \rangle_{V^* \times V} = \langle u, A^*v \rangle_{W \times W^*}$$

from the second condition $N(A^*) = \{0\}$. It thus follows from the closed range and open mapping theorems that A^{-1} is bounded. \Box

Next, we consider the generalized Stokes system. Let V and Q be Hilbert spaces. We consider the mixed variational problem for $(u, p) \in V \times Q$ of the form

$$a(u, v) + b(p, v) = f(v), \quad b(u, q) = g(q)$$
 (1.3)

for all $v \in V$ and $q \in Q$, where a and b is bounded bilinear form on $V \times V$ and $V \times Q$. If we define the linear operators $A \in \mathcal{L}(V, V^*)$ and $B \in \mathcal{L}(V, Q^*)$ by

$$\langle Au, v \rangle = a(u, v)$$
 and $\langle Bu, q \rangle = b(u, q)$

then it is equivalent to the operator form:

$$\left(\begin{array}{cc}A & B^*\\ & \\ B & 0\end{array}\right)\left(\begin{array}{c}u\\ & \\p\end{array}\right) = \left(\begin{array}{c}f\\ & \\g\end{array}\right)$$

Assume the coercivity on a

$$a(u,u) \ge \delta |u|_V^2 \tag{1.4}$$

and the inf-sup condition on b

$$\inf_{q \in P} \sup_{u \in V} \frac{b(u, q)}{|u|_V |q|_Q} \ge \beta > 0 \tag{1.5}$$

Note that inf-sup condition that for all q there exists $u \in V$ such that Bu = q and $|u|_V \leq \frac{1}{\beta}|q|_Q$. Also, it is equivalent to $|B^*p|_{V^*} \geq \beta |p|_Q$ for all $p \in Q$.

Theorem (Mixed problem) Under conditions (1.4)-(1.5) there exits a unique solution $(u, p) \in \overline{V \times Q}$ to (1.3) and

 $|u|_V + |p|_Q \le c \left(|f|_{V^*} + |g|_{Q^*} \right)$

Proof: For $\epsilon > 0$ consider the penalized problem

$$a(u_{\epsilon}, v) + b(v, P_{\epsilon}) = f(v), \quad \text{for all } v \in V$$

$$-b(u_{\epsilon}, q) + \epsilon(p_{\epsilon}, q)_Q = -g(q) \quad \text{for all } q \in Q.$$

(1.6)

By the Lax-Milgram theorem for every $\epsilon > 0$ there exists a unique solution. From the first equation

$$\beta |p_{\epsilon}|_{Q} \leq |f - Au_{\epsilon}|_{V^{*}} \leq |f|_{V^{*}} + M |u_{\epsilon}|_{Q}$$

Letting $v = u_{\epsilon}$ and $q = p_{\epsilon}$ in the first and second equation, we have

$$\delta |u_{\epsilon}|_{V}^{2} + \epsilon |p_{\epsilon}|_{Q}^{2} \leq |f|_{V^{*}} ||u_{\epsilon}|_{V} + |p_{\epsilon}|_{Q} |g|_{Q^{*}} \leq C \left(|f|_{V^{*}} + |g|_{Q^{*}} \right) |u_{\epsilon}|_{V} \right),$$

and thus $|u_{\epsilon}|_{V}$ and $|p_{\epsilon}|_{Q}$ as well, are bounded uniformly in $\epsilon > 0$. Thus, $(u_{\epsilon}, p_{\epsilon})$ has a weakly convergent subspace to (u, p) in $V \times Q$ and (u, p) satisfies (1.3). \Box

1.3 Distribution and Generalized Derivatives

In this section we introduce the distribution (generalized function). The concept of distribution is very essential for defining a generalized solution to PDEs and provides the foundation of PDE theory. Let $\mathcal{D}(\Omega)$ be a vector space of all infinitely many continuously differentiable functions $C_0^{\infty}(\Omega)$ with compact support in Ω . For any compact set K of Ω , let $\mathcal{D}_K(\Omega)$ be the set of all functions $f \in C_0^{\infty}(\Omega)$ whose support are in K. Define a family of seminorms on $\mathcal{D}(\Omega)$ by

$$p_{K,m}(f) = \sup_{x \in K} \sup_{|s| \le m} |D^s f(x)|$$

where

$$D^s = \left(\frac{\partial}{\partial x_1}\right)^{s_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{s_n}$$

where $s = (s_1, \dots, s_n)$ is nonnegative integer valued vector and $|s| = \sum s_k \leq m$. Then, $\mathcal{D}_K(\Omega)$ is a locally convex topological space.

Definition (Distribution) A linear functional T defined on $C_0^{\infty}(\Omega)$ is a distribution if for every compact subset K of Ω , there exists a positive constant C and a positive integer k such that

$$|T(\phi)| \leq C \sup_{|s| \leq k, x \in K} |D^s \phi(x)|$$
 for all $\phi \in \mathcal{D}_K(\Omega)$.

Definition (Generalized Derivative) A distribution S defined by

$$S(\phi) = -T(D_{x_k}\phi)$$
 for all $\phi \in C_0^{\infty}(\Omega)$

is called the distributional derivative of T with respect to x_k and we denote $S = D_{x_k}T$. In general we have

$$S(\phi) = D^s T(\phi) = (-1)^{|s|} T(D^s \phi) \text{ for all } \phi \in C_0^{\infty}(\Omega).$$

This definition is naturally followed from that for f is continuously differentiable

$$\int_{\Omega} D_{x_k} f \phi \, dx = -\int_{\Omega} f \frac{\partial}{\partial x_k} \phi \, dx$$

and thus $D_{x_k}f = D_{x_k}T_f = T_{\frac{\partial}{\partial x_k}}f$. Thus, we let $D^s f$ denote the distributional derivative of T_f .

Example (Distribution) (1) For f is a locally integrable function on Ω , one defines the corresponding distribution by

$$T_f(\phi) = \int_{\Omega} f\phi \, dx$$
 for all $\phi \in C_0^{\infty}(\Omega)$.

since

$$|T_f(\phi)| \le \int_K |f| \, dx \sup_{x \in K} |\phi(x)|.$$

(2) $T(\phi) = \phi(0)$ defines the Dirac delta δ_0 at x = 0, i.e.,

$$|\delta_0(\phi)| \le \sup_{x \in K} |\phi(x)|$$

(3) Let H be the Heaviside function defined by

$$H(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$$

Then,

$$D_{T_H}(\phi) = -\int_{-\infty}^{\infty} H(x)\phi'(x)\,dx = \phi(0)$$

and thus $DT_H = \delta_0$ is the Dirac delta function at x = 0. (4) The distributional solution for $-D^2u = \delta_{x_0}$ satisfies

$$-\int_{-\infty}^{\infty} u\phi'' \, dx = \phi(x_0)$$

for all $\phi \in C_0^{\infty}(R)$. That is, $u = \frac{1}{2}|x - x_0|$ is the fundamental solution, i.e.,

$$-\int_{-\infty}^{\infty} |x - x_0| \phi'' \, dx = \int_{\infty}^{x_0} \phi'(x) \, dx - \int_{x_0}^{\infty} \phi'(x) \, dx = 2\phi(x_0).$$

In general for $d \ge 2$ let

$$G(x, x_0) = \begin{cases} \frac{1}{4\pi} \log|x - x_0| & d = 2\\ \\ c_d |x - x_0|^{2-d} & d \ge 3. \end{cases}$$

Then

$$\Delta G(x, x_0) = 0, \quad x \neq x_0.$$

and $u = G(x, x_0)$ is the fundamental solution to to $-\Delta$ in \mathbb{R}^d ,

$$-\Delta u = \delta_{x_0}$$

In fact, let $B_{\epsilon} = \{|x - x_0| \le \epsilon\}$ and $\Gamma = \{|x - x_0| = \epsilon\}$ be the surface. By the divergence theorem

$$\int_{R^d \setminus B_{\epsilon}(x_0)} G(x, x_0) \Delta \phi(x) \, dx = \int_{\Gamma} \frac{\partial}{\partial \nu} \phi(G(x, x_0) - \frac{\partial}{\partial \nu} G(x, x_0) \phi(s)) \, ds$$
$$= \int_{\Gamma} (\epsilon^{2-d} \frac{\partial \phi}{\partial \nu} - (2-d) \epsilon^{1-d} \phi(s)) \, ds \to \frac{1}{c_d} \phi(x_0)$$

That is, $G(x, x_0)$ satisfies

$$-\int_{R^d} G(x, x_0) \Delta \phi \, dx = \phi(x_0).$$

In general let \mathcal{L} be a linear differential operator and \mathcal{L}^* denote the formal adjoint operator of \mathcal{L} An locally integrable function u is said to be a distributional solution to $\mathcal{L}u = T$ where \mathcal{L} with a distribution T if

$$\int_{\Omega} u(\mathcal{L}^*\phi) \, dx = T(\phi)$$

for all $\phi \in C_0^{\infty}(\Omega)$.

Definition (Sovolev space) For $1 \le p < \infty$ and $m \ge 0$ the Sobolev space is

$$W^{m,p}(\Omega) = \{ f \in L^p(\Omega) : D^s f \in L^p(\Omega), \ |s| \le m \}$$

with norm

$$|f|_{W^{m,p}(\Omega)} = \left(\int_{\Omega} \sum_{|s| \le m} |D^s f|^p \, dx\right)^{\frac{1}{p}}.$$

That is,

$$|D^s f(\phi)| \le c |\phi|_{L^q}$$
 with $\frac{1}{p} + \frac{1}{q} = 1.$

<u>**Remark**</u> (1) $X = W^{m,p}(\Omega)$ is complete. In fact If $\{f_n\}$ is Cauchy in X, then $\{D^s f_n\}$ is Cauchy in $L^p(\Omega)$ for all $|s| \leq m$. Since $L^p(\Omega)$ is complete, $D^s f_n \to g^s$ in $L^p(\Omega)$. But since

$$\lim_{n \to \infty} \int_{\Omega} f_n D^s \phi \, dx = \int_{\Omega} f D^s \phi \, dx = \int g^s \phi \, dx,$$

we have $D^s f = g^s$ for all $|s| \le m$ and $|f_n - f|_X \to 0$ as $n \to \infty$.

(2) $H^{m,p} \subset W^{1,p}(\Omega)$. Let $H^{m,p}(\Omega)$ be the completion of $C^m(\Omega)$ with respect to $W^{I,p}(\Omega)$ norm. That is, $f \in H^{m,p}(\Omega)$ there exists a sequence $f_n \in C^m(\Omega)$ such that $f_n \to f$ and $D^s f_n \to g^s$ strongly in $L^p(\Omega)$ and thus

$$D^{s} f_{n}(\phi) = (-1)^{|s|} \int_{\Omega} D_{s} f_{n} \phi \, dx \to (-1)^{|s|} \int_{\Omega} g^{s} \phi \, dx$$

which implies $g^s = D^s f$ and $f \in W^{1,p}(\Omega)$.

(3) If Ω has a Lipschitz continuous boundary, then

$$W^{m,p}(\Omega) = H^{m,p}(\Omega).$$

2 Minty–Browder Theorem

Definition (Monotone Mapping)

(a) A mapping $A \subset X \times X^*$ be given. is called *monotone* if

$$\langle x_1 - x_2, y_1 - y_2 \rangle \ge 0$$
 for all $[x_1, y_1], [x_2, y_2] \in A$.

(b) A monotone mapping A is called *maximal monotone* if any monotone extension of A coincides with A, i.e., if for $[x, y] \in X \times X^*$, $\langle x - u, y - v \rangle \ge 0$ for all $[u, v] \in A$ then $[x, y] \in A$.

(c) The operator A is called *coercive* if for all sequences $[x_n, y_n] \in A$ with $\lim_{n\to\infty} |x_n| = \infty$ we have

$$\lim_{n \to \infty} \frac{\langle x_n, y_n \rangle}{|x_n|} = \infty.$$

(d) Assume that A is single-valued with dom(A) = X. The operator A is called hemicontinuous on X if for all $x_1, x_2, x \in X$, the function defined by

$$t \in R \to \langle x, A(x_1 + tx_2) \rangle$$

is continuous on R.

For example, let F be the duality mapping of X. Then F is monotone, coercive and hemicontinuous. Indeed, for $[x_1, y_1], [x_2, y_2] \in F$ we have

$$\langle x_1 - x_2, y_1 - y_2 \rangle = |x_1|^2 - \langle x_1, y_2 \rangle - \langle x_2, y_1 \rangle + |x_2|^2 \ge (|x_1| - |x_2|)^2 \ge 0,$$
 (2.1)

which shows monotonicity of F. Coercivity is obvious and hemicontinuity follows from the continuity of the duality product.

Lemma 1 Let X be a finite dimensional Banach space and A be a hemicontinuous monotone operator from X to X^* . Then A is continuous.

Proof: We first show that A is bounded on bounded subsets. In fact, otherwise there exists a sequence $\{x_n\}$ in X such that $|Ax_n| \to \infty$ and $x_n \to x_0$ as $n \to \infty$. By monotonicity we have

$$\langle x_n - x, \frac{Ax_n}{|Ax_n|} - \frac{Ax}{|Ax_n|} \rangle \ge 0$$
 for all $x \in X$.

Without loss of generality we can assume that $\frac{Ax_n}{|Ax_n|} \to y_0$ in X^* as $n \to \infty$. Thus

 $\langle x_0 - x, y_0 \rangle \ge 0$ for all $x \in X$

and therefore $y_0 = 0$. This is a contradiction and thus A is bounded. Now, assume $\{x_n\}$ converges to x_0 and let y_0 be a cluster point of $\{Ax_n\}$. Again by monotonicity of A

$$\langle x_0 - x, y_0 - Ax \rangle \ge 0$$
 for all $x \in X$.

Setting $x = x_0 + t (u - x_0), t > 0$ for arbitrary $u \in X$, we have

$$\langle x_0 - u, y_0 - A(x_0 + t(u - x_0)) \ge 0 \rangle$$
 for all $u \in X$.

Then, letting limit $t \to 0^+$, by hemicontinuity of A we have

$$\langle x_0 - u, y_0 - Ax_0 \rangle \ge 0$$
 for all $u \in X$,

which implies $y_0 = Ax_0$. \Box

Lemma 2 Let X be a reflexive Banach space and $A : X \to X^*$ be a hemicontinuous monotone operator. Then A is maximumal monotone.

Proof: For $[x_0, y_0] \in X \times X^*$

$$\langle x_0 - u, y_0 - Au \rangle \ge 0 \quad \text{for all } u \in X.$$

Setting $u = x_0 + t (x - x_0)$, t > 0 and letting $t \to 0^+$, by hemicontinuity of A we have

$$\langle x_0 - x, y_0 - Ax_0 \rangle \ge 0$$
 for all $x \in X$.

Hence $y_0 = Ax_0$ and thus A is maximum monotone. \Box

The next theorem characterizes maximal monotone operators by a range condition.

<u>Minty-Browder Theorem</u> Assume that X, X^* are reflexive and strictly convex. Let F denote the duality mapping of X and assume that $A \subset X \times X^*$ is monotone. Then A is maximal monotone if and only if

$$Range\left(\lambda F + A\right) = X^*$$

for all $\lambda > 0$ or, equivalently, for some $\lambda > 0$.

Proof: Assume that the range condition is satisfied for some $\lambda > 0$ and let $[x_0, y_0] \in X \times X^*$ be such that

 $\langle x_0 - u, y_0 - v \rangle \ge 0$ for all $[u, v] \in A$.

Then there exists an element $[x_1, y_1] \in A$ with

$$\lambda F x_1 + y_1 = \lambda F x_0 + y_0. \tag{2.2}$$

From these we obtain, setting $[u, v] = [x_1, y_1]$,

$$\langle x_1 - x_0, Fx_1 - Fx_0 \rangle \le 0.$$

By monotonicity of F we also have the converse inequality, so that

$$\langle x_1 - x_0, Fx_1 - Fx_0 \rangle = 0.$$

From (2.1) this implies that $|x_1| = |x_0|$ and $\langle x_1, Fx_0 \rangle = |x_1|^2$, $\langle x_0, Fx_1 \rangle = |x_0|^2$. Hence $Fx_0 = Fx_1$ and

$$\langle x_1, Fx_0 \rangle = \langle x_0, Fx_0 \rangle = |x_0|^2 = |Fx_0|^2.$$

If we denote by F^* the duality mapping of X^* (which is also single-valued), then the last equation implies $x_1 = x_0 = F^*(Fx_0)$. This and (2.2) imply that $[x_0, y_0] = [x_1, y_1] \in A$, which proves that A is maximal monotone. \Box

In stead of the detailed proof of "only if' part of Theorem, we state the following results. \Box

Corollary Let X be reflexive and A be a monotone, everywhere defined, hemicontinous operator. If A is coercive, then $R(A) = X^*$.

Proof: Suppose A is coercive. Let $y_0 \in X^*$ be arbitrary. By the Appland's renorming theorem, we may assume that X and X^* are strictly convex Banach spaces. It then follows from Theorem that every $\lambda > 0$, equation

$$\lambda F x_{\lambda} + A x_{\lambda} = y_0$$

has a solution $x_{\lambda} \in X$. Multiplying this by x_{λ} ,

$$\lambda |x_{\lambda}|^{2} + \langle x_{\lambda}, Ax_{\lambda} \rangle = \langle y_{0}, x_{\lambda} \rangle.$$

and thus

$$\frac{\langle x_{\lambda}, Ax_{\lambda} \rangle}{|x_{\lambda}|_{X}} \le |y_{0}|_{X^{*}}$$

Since A is coercive, this implies that $\{x_{\lambda}\}$ is bounded in X as $\lambda \to 0^+$. Thus, we may assume that x_{λ} converges weakly to x_0 in X and Ax_{λ} converges strongly to y_0 in X^* as $\lambda \to 0^+$. Since A is monotone

$$\langle x_{\lambda} - x, y_0 - \lambda F x_{\lambda} - A x \rangle \ge 0$$

and letting $\lambda \to 0^+$, we have

$$\langle x_0 - x, y_0 - Ax \rangle \ge 0,$$

for all $x \in X$. Since A is maximal monotone, this implies $y_0 = Ax_0$. Hence, we conclude $R(A) = X^*$. \Box

Theorem (Galerkin Approximation) Assume X is a reflexive, separable Banach space and A is a bounded, hemicontinuous, coercive monotone operator from X into X^{*}. Let $X_n = span\{\phi\}_{i=1}^n$ satisfies the density condition: for each $\psi \in X$ and any $\epsilon > 0$ there exists a sequence $\psi_n \in X_n$ such that $|\psi - \psi_n| \to 0$ as $n \to \infty$. The x_n be the solution to

$$\langle \psi, Ax_n \rangle = \langle \psi, f \rangle$$
 for all $\psi \in X_n$, (2.3)

then there exists a subsequence of $\{x_n\}$ that converges weakly to a solution to Ax = f.

Proof: Since $\langle x, Ax \rangle / |x|_X \to \infty$ as $|x|_X \to \infty$ there exists a solution x_n to (2.3) and $|x_n|_X$ is bounded. Since A is bounded, thus Ax_n bounded. Thus there exists a subsequence of $\{n\}$ (denoted by the same) such that x_n converges weakly to x in X and Ax_n converges weakly in X^* . Since

$$\lim_{n \to \infty} \langle \psi, Ax_n \rangle = \lim_{n \to \infty} \left(\langle \psi_n, f \rangle + \langle \psi - \psi_n, Ax_n \rangle \right) = \langle \psi, f \rangle$$

 Ax_n converges weakly to f. Since A is monotone

$$\langle x_n - u, Ax_n - Au \rangle \ge 0 \quad \text{for all } u \in X$$

Note that

$$\lim_{n \to \infty} \langle x_n, Ax_n \rangle = \lim_{n \to \infty} \langle x_n, f \rangle = \langle x, f \rangle$$

Thus taking limit $n \to \infty$, we obtain

$$\langle x - u, f - Au \rangle \ge 0$$
 for all $u \in X$.

Since A is maximum monotone this implies Ax = f. \Box

The main theorem for monotone operators applies directly to the model problem involving the p-Laplace operator

$$-div(|\nabla u|^{p-2}\nabla u) = f \text{ on } \Omega$$

(with appropriate boundary conditions) and

$$-\Delta u + c u = f, \quad -\frac{\partial}{\partial n} u \in \beta(u).$$
 at $\partial \Omega$

with β maximal monotone on R. Also, nonlinear problems of non-variational form are applicable, e.g.,

$$Lu + F(u) = f$$
 on Ω

where

$$L(u) = -div(\sigma(\nabla u) - \vec{b}\,u)$$

and we are looking for a solution $u \in W_0^{1,p}(\Omega)$, 1 . We assume the following conditions:

(i) Monotonicity for the principle part L(u):

$$(\sigma(\xi) - \sigma(\eta), \xi - \eta)_{R^n} \ge 0$$
 for all $\xi, \eta \in R^n$.

(ii) Monotonicity for F = F(u):

$$(F(u) - F(v), u - v) \ge 0$$
 for all $u, v \in R$.

(iii) Coerciveness and Growth condition: for some c, d > 0

$$(\sigma(\xi), \sigma) \ge c \, |\xi|^p, \quad |\sigma(\xi)| \le d \left(1 + |\xi|^{p-1}\right)$$

hold for all $\xi \in \mathbb{R}^n$.

3 Convex Functional and Subdifferential

Definition (Convex Functional) (1) A proper convex functional on a Banach space X is a function φ from X to $(-\infty, \infty]$, not identically $+\infty$ such that

$$\varphi((1-\lambda)x_1 + \lambda x_2) \le (1-\lambda)\varphi(x_1) + \lambda\varphi(x_2)$$

for all $x_1, x_2 \in X$ and $0 \leq \lambda \leq 1$.

(2) A functional $\varphi: X \to R$ is said to be lower-semicontinuous if

$$\varphi(x) \le \liminf_{y \to x} \varphi(y) \text{ for all } x \in X.$$

(3) A functional $\varphi: X \to R$ is said to be weakly lower-semicontinuous if

$$\varphi(x) \le \liminf_{n \to \infty} \varphi(x_n)$$

for all weakly convergent sequence $\{x_n\}$ to x.

(4) The subset $D(\varphi) = \{x \in X; \varphi(x) < \infty\}$ of X is called the domain of φ .

(5) The epigraph of φ is defined by $epi(\varphi) = \{(x, c) \in X \times R : \varphi(x) \le c\}.$

Lemma 3 A convex functional φ is lower-semicontinuous if and only if it is weakly lower-semicontinuous on X.

Proof: Since the level set $\{x \in X : \varphi(x) \leq c\}$ is a closed convex subset if φ is lowersemicontinuous. Thus, the claim follows the fact that a convex subset of X is closed if and only if it is weakly closed. **Lemma 4** If φ be a proper lower-semicontinuous, convex functional on X, then φ is bounded below by an affine functional, i.e., there exist $x^* \in X^*$ and $c \in R$ such that

$$\varphi(x) \ge \langle x^*, x \rangle + \beta, \quad x \in X.$$

Proof: Let $x_0 \in X$ and $\beta \in R$ be such that $\varphi(x_0) > c$. Since φ is lower-semicontinuous on X, there exists an open neighborhood $V(x_0)$ of X_0 such that $\varphi(x) > c$ for all $x \in V(x_0)$. Since the ephigraph $epi(\varphi)$ is a closed convex subset of the product space $X \times R$. It follows from the separation theorem for convex sets that there exists a closed hyperplane $H \subset X \times R$;

$$H = \{(x,r) \in X \times R : \langle x_0^*, x \rangle + r = \alpha\} \quad \text{with} \ x_0^* \in X^*, \ \alpha \in R,$$

that separates $epi(\varphi)$ and $V(x_0) \times (-\infty, c)$. Since $\{x_0\} \times (-\infty, c) \subset \{(x, r) \in X \times R : \langle x_0^*, x \rangle + r < \alpha\}$ it follows that

$$\langle x_0^*, x \rangle + r > \alpha \quad \text{for all } (x, c) \in epi(\varphi)$$

which yields the desired estimate.

Theorem C.6 If $F: X \to (-\infty, \infty]$ is convex and bounded on an open set U, then F is continuous on U.

Proof: We choose $M \in R$ such that $F(x) \leq M - 1$ for all $x \in U$. Let \hat{x} be any element in U. Since U is open there exists a $\delta > 0$ such that the open ball $\{x \in X : |x - \hat{x}| < \delta$ is contained in U. For any *epsilon* $\in (0, 1)$, let $\theta = \frac{\epsilon}{M - F(\hat{x})}$. Then for $x \in X$ satisfying $|x - \hat{x}| < \theta \delta$

$$|\frac{x-\hat{x}}{\theta} + \hat{x} - \hat{x}| = \frac{|x-\hat{x}|}{\theta} < \delta$$

Hence $\frac{x - \hat{x}}{\theta} + \hat{x} \in U$. By the convexity of F

$$F(x) \le (1-\theta)F(\hat{x}) + \theta F(\frac{x-\hat{x}}{\theta} + \hat{x}) \le (1-\theta)F(\hat{x}) + \theta M$$

and thus

$$F(x) - F(\hat{x}) < \theta(M - F(\hat{x})) = \epsilon$$

Similarly, $\frac{\hat{x} - x}{\theta} + \hat{x} \in U$ and

$$F(\hat{x}) \le \frac{\theta}{1+\theta} F(\frac{\hat{x}-x}{\theta} + \hat{x}) + \frac{1}{1+\theta} F(x) < \frac{\theta M}{1+\theta} + \frac{1}{1+\theta} F(x)$$

which implies

$$F(x) - F(\hat{x}) > -\theta(M - F(\hat{x})) = -\epsilon$$

Therefore $|F(x) - F(\bar{x})| < \epsilon$ if $|x - \hat{x}| < \theta \delta$ and F is continuous in U. \Box

Definition (Subdifferential) Given a proper convex functional φ on a Banach space X the subdifferential of $\partial \varphi(x)$ is a subset in X^{*}, defined by

$$\partial \varphi(x) = \{ x^* \in X^* : \varphi(y) - \varphi(x) \ge \langle x^*, y - x \rangle \text{ for all } y \in X \}.$$

Since for $x_1^* \in \partial \varphi(x_1)$ and $x_2^* \in \partial \varphi(x_2)$,

$$\varphi(x_1) - \varphi(x_2) \le \langle x_2^*, x_1 - x_2 \rangle$$
$$\varphi(x_2) - \varphi(x_1) \le \langle x_1^*, x_2 - x_1 \rangle$$

it follows that $\langle x_1^* - x_2^*, x_1 - x_2 \rangle \ge 0$. Hence $\partial \varphi$ is a monotone operator from X into X^{*}. **Example 1** Let φ be Gateaux differentiable at x. i.e., there exists $w^* \in X^*$ such that

$$\lim_{t \to 0^+} \frac{\varphi(x+t\,v) - \varphi(x)}{t} = \langle w^*, h \rangle \quad \text{for all } h \in X$$

and w^* is the Gateaux differential of φ at x and is denoted by $\varphi'(x)$. If φ is convex, then φ is subdifferentiable at x and $\partial \varphi(x) = \{\varphi'(x)\}$. Indeed, for v = y - x

$$\frac{\varphi(x + t(y - x)) - \varphi(x)}{t} \le \varphi(y) - \varphi(x), \quad 0 < t < 1$$

Letting $t \to 0^+$ we have

$$\varphi(y) - \varphi(x) \ge \langle \varphi'(x), y - x \rangle$$
 for all $y \in X$,

and thus $\varphi'(x) \in \partial \varphi(x)$. On the other hand if $w^* \in \partial \varphi(x)$ we have for $y \in X$ and t > 0

$$\frac{\varphi(x+t\,y)-\varphi(x)}{t} \ge \langle w^*, y \rangle.$$

Taking limit $t \to 0^+$, we obtain

$$\langle \varphi'(x) - w^*, y \rangle \ge 0 \quad \text{for all } y \in X.$$

This implies $w^* = \varphi'(x)$.

Example 2 If $\varphi(x) = \frac{1}{2} |x|^2$ then we will show that $\partial \varphi(x) = F(x)$, the duality mapping. In fact, if $x^* \in F(x)$, then

$$\langle x^*, x - y, \rangle = |x|^2 - \langle y, x^* \rangle \ge \frac{1}{2} (|x|^2 - |y|^2) \text{ for all } y \in X.$$

Thus $x^* \in \partial \varphi(x)$. Conversely, if $x^* \in \partial \varphi(x)$, then

$$\frac{1}{2}\left(|y|^2 - |x|^2\right) \ge \langle x^*, y - x \rangle \quad \text{for all } y \in X \tag{3.1}$$

We let y = t x, 0 < t < 1 and obtain

$$\frac{1+t}{2} |x|^2 \le \langle x, x^* \rangle$$

and thus $|x|^2 \leq \langle x, x^* \rangle$. Similarly, if t > 1, then we conclude $|x|^2 \geq \langle x, x^* \rangle$ and therefore $|x|^2 = \langle x, x^* \rangle$ and $|x^*| \geq |x|$. On the other hand, letting $y = x + \lambda u$, $\lambda > 0$ in (3.1), we have

$$\lambda \langle x^*, u \rangle \leq \frac{1}{2} \left(|x + \lambda u|^2 - |x|^2 \right) \leq \lambda |u| |x| + \lambda |u|^2,$$

which implies $\langle x^*, u \rangle \leq |u| |x|$. Hence $|x^*| \leq |x|$ and we obtain $|x|^2 = |x^*|^2 = \langle x^*, x \rangle$.

Example 3 Let K be a closed convex subset of X and I_K be the indicator function of K, i.e.,

$$I_K(x) = \begin{cases} 0 & \text{if } x \in K \\ \infty & \text{otherwise} \end{cases}$$

Obviously, I_K is convex and lower-semicontinuous on X. By definition we have for $x \in K$

$$\partial I_K(x) = \{x^* \in X^* : \langle x^*, x - y \rangle \ge 0 \text{ for all } y \in K\}$$

Thus $D(I_K) = D(\partial I_K) = K$ and $\partial_K(x) = \{0\}$ for each interior point of K. Moreover, if x lies on the boundary of K, then $\partial I_K(x)$ coincides with the cone of normals to K at x.

Note that $\partial F(x)$ is closed and convex and may be empty.

Theorem C.10 If a convex function F is continuous at \bar{x} then $\partial F(\bar{x})$ is non empty.

Proof: Since F is continuous at x for any $\epsilon > 0$ there exists a neighborhood U_{ϵ} of \bar{x} such that

$$F(x) \le F(\bar{x}) + \epsilon, \quad x \in U_{\epsilon}.$$

Then $U_{\epsilon} \times (F(\bar{x}) + \epsilon, \infty)$ is an open set in $X \times R$ and is contained in epi F. Hence (epi F)^o is non empty. Since F is convex epi F is convex and (epi F)^o is convex. For any neighborhood of O of $(\bar{x}, F(\bar{x}))$ there exists a t < 1 such that $(\bar{x}, tF(\bar{x})) \in O$. But, $tF(\bar{x}) < F(\bar{x})$ and so $(\bar{x}, tF(\bar{x})) \notin$ epi F. Thus $(\bar{x}, F(\bar{x})) \notin$ (epi F)^o. By the Hahn Banach separation theorem, there exists a closed hyperplane $S = \{(x, a) \in X \times R : \langle x^*, x \rangle + \alpha a = \beta\}$ for nontrivial $(x^*, \alpha) \in X^* \times R$ and $\beta \in R$ such that

$$\langle x^*, x \rangle + \alpha \, a > \beta \quad \text{for all} \ (x, a) \in (\text{epi } F)^o$$

$$\langle x^*, \bar{x} \rangle + \alpha \, F(\bar{x}) = \beta.$$

$$(3.2)$$

Since $\overline{(\text{epi } F)^o} = \overline{\text{epi } F}$ every neighborhood of $(x, a) \in \text{epi } F$ contains an element of $(\text{epi } \varphi)^o$. Suppose $\langle x^*, x \rangle + \alpha \, a < \beta$. Then

$$\{(x',a') \in X \times R : \langle x^*, x' \rangle + \alpha \, a' < \beta\}$$

is an neighborhood of (x, a) and contains an element of (epi F)^o, which contradicts to (3.2). Hence

$$\langle x^*, x \rangle + \alpha \, a \ge \beta \quad \text{for all } (x, a) \in \text{epi } F.$$
 (3.3)

Suppose $\alpha = 0$. For any $u \in U_{\epsilon}$ there is an $a \in R$ such that $F(u) \leq a$. Then from (3.3)

$$\langle x^*, u \rangle = \langle x^*, u \rangle + \alpha \, a \ge \beta$$

and thus

$$\langle x^*, u - \bar{x} \rangle \ge 0$$
 for all $u \in U_{\epsilon}$

Choose a δ such that $|u - \bar{x}| \leq \delta$ implies $u \in U$. For any nonzero element $x \in X$ let $t = \frac{\delta}{|x|}$. Then $|(tx + \bar{x}) - \bar{x}| = |tx| = \delta$ so that $tx + \bar{x} \in U_{\epsilon}$. Hence

$$\langle x^*, x \rangle = \langle x^*, (tx + \bar{x}) - \bar{x} \rangle / t \ge 0.$$

Similarly, $-t x + \bar{x} \in U_{\epsilon}$ and

$$\langle x^*, x \rangle = \langle x^*, (-tx + \bar{x}) - \bar{x} \rangle / (-t) \le 0.$$

Thus, $\langle x^*, x \rangle$ and $x^* = 0$, which is a contradiction. Therefore α is nonzero. It now follows from (3.2)–(3.3) that

$$\langle -\frac{x^*}{\alpha}, x - \bar{x} \rangle + F(\bar{x}) \le F(x)$$

for all $x \in X$ and thus $-\frac{x^*}{\alpha} \in \partial F(\bar{x})$. \Box **Definition (Lower semi-continuous)** (1) A functional F is lower-semi continuous if

$$\liminf_{n \to \infty} F(x_n) \ge F(\lim_{n \to \infty} x_n)$$

(2) A functional F is weakly lower-semi continuous if

$$\liminf_{n \to \infty} F(x_n) \ge F(w - \lim_{n \to \infty} x_n)$$

Theorem (Lower-semicontinuous) (1) Norm is weakly lower-semi continuous. (2) A convex lower-semicontinuous functional is weakly lower-semi continuous.

Proof: Assume $x_n \to x$ weakly in X. Let $x^* \in F(x)$, i.e., $\langle x^*, x \rangle = |x^*| |x|$. Then, we have

$$|x|^2 = \lim_{n \to \infty} \langle x^*, x_n \rangle$$

and

$$|\langle x^*, x_n \rangle| \le |x_n| |x^*|.$$

Thus,

$$\liminf_{n \to \infty} |x_n| \ge |x|.$$

(2) Since F is convex,

$$F(\sum_{k} t_k x_k) \le \sum_{k} t_k F(x_k)$$

for all convex combination of x_k , i.e., $\sum \sum_k t_k = 1$, $t_k \ge 0$. By the Mazur lemma there exists a sequence of convex combination of weak convergent sequence $(\{x_k\}, \{F(x_k)\})$ to (x, F(x))in $X \times R$ that converges strongly to (x, F(x)) and thus

$$F(x) \leq \liminf n \to \infty F(x_n).\square$$

Theorem (Weierstrass) If $\varphi(x)$ is a lower-semicontinuous proper convex functional on a reflexible Banach X satisfying the coercivity $\lim_{|x|\to\infty} \varphi(x) = \infty$. Then there exists a minimizer $x^* \in X$ of φ . A minimizer x^* satisfies the (necessary) condition

$$0 \in \partial \varphi(x^*)$$

Proof: Since $\varphi(x_0)$ is coercive there exist a bounden minimizing sequence $\{x_n\}$ such that $\lim_{n\to\infty}\varphi(x_n) = \eta = \inf_{x\in X}\varphi(x) = 0$. Since X is reflexible, there exists a weakly convergent

subsequence x_{n_k} to $x^* \in X$. Since if the convex functional is lower-semicontinuous, then is weakly lower-semicontinuous. Thus, $\eta = \varphi(x^*)$. Since $\varphi(x) - \varphi(x^*) \ge 0$ for all $x \in X$, $0 \in \partial \varphi(x^*)$. \Box

Theorem(Rockafellar) Let X be real Banach space. If φ is lower-semicontinuous proper convex functional on X, then $\partial \varphi$ is a maximal monotone operator from X into X^* .

Proof: We prove the theorem when X is reflexive. By Apuland theorem we can assume that X and X^{*} are strictly convex. By Minty-Browder theorem $\partial \varphi$ it suffices to prove that $R(F + \partial \varphi) = X^*$. For $x_0^* \in X^*$ we must show that equation $x_0^* \in Fx + \partial \varphi(x)$ has at least a solution x_0 Define the proper convex functional on X by

$$f(x) = \frac{1}{2} |x|_X^2 + \varphi(x) - \langle x_0^*, x \rangle.$$

Since f is lower-semicontinuous and $f(x) \to \infty$ as $|x| \to \infty$ there exists $x_0 \in D(f)$ such that $f(x_0) \leq f(x)$ for all $x \in X$. Since F is monotone

$$\varphi(x) - \varphi(x_0) \ge \langle x_0^*, x - x_0, \rangle - \langle x - x_0, F(x) \rangle.$$

Setting $x_t = x_0 + t (u - x_0)$ and since φ is convex, we have

$$\varphi(u) - \varphi(x_0) \ge \frac{1}{t} (\varphi(x_t) - \varphi(x_0)) \ge \langle x_0^*, u - x_0, \rangle - \langle F(x_t), u - x_0 \rangle.$$

Taking limit $t \to 0^+$, we obtain

$$\varphi(u) - \varphi(x_0) \ge \langle x_0^*, u - x_0 \rangle - \langle F(x_0), u - x_0 \rangle,$$

which implies $x_0^* - F(x_0) \in \partial \varphi(x_0)$. \Box

We have the perturbation result.

Theorem Assume that X is a real Hilbert space and that A is a maximal monotone operator on X. Let φ be a proper, convex and lower semi-continuous functional on X satisfying $dom(A) \cap dom(\partial \varphi)$ is not empty and

$$\varphi((I + \lambda A)^{-1}x) \le \varphi(x) + \lambda M$$
, for all $\lambda > 0, x \in D(\varphi)$,

where M is some non-negative constant. Then the operator $A + \partial \varphi$ is maximal monotone.

We use the following lemma.

Lemma Let A and B be m-dissipative operators on X. Then for every $y \in X$ the equation

$$y \in -Ax - B_{\lambda}x \tag{3.4}$$

has a unique solution $x \in dom(A)$.

Proof: Equation (3.4) is equivalent to $y = x_{\lambda} - w_{\lambda} - B_{\lambda}x_{\lambda}$ for some $w_{\lambda} \in A(x_{\lambda})$. Thus,

$$x_{\lambda} - \frac{\lambda}{\lambda+1}w_{\lambda} = \frac{\lambda}{\lambda+1}y + \frac{1}{\lambda+1}(x_{\lambda} + \lambda B_{\lambda}x_{\lambda})$$
$$= \frac{\lambda}{\lambda+1}y + \frac{1}{\lambda+1}(I - \lambda B)^{-1}.$$

Since A is *m*-dissipative, we conclude that (3.4) is equivalent to that x_{λ} is the fixed point of the operator

$$\mathcal{F}_{\lambda}x = (I - \frac{\lambda}{\lambda+1}A)^{-1}(\frac{\lambda}{\lambda+1}y + \frac{1}{\lambda+1}(I - \lambda B)^{-1}x).$$

By m-dissipativity of the operators A and B their resolvents are contractions on X and thus

$$|\mathcal{F}_{\lambda}x_1 - \mathcal{F}_{\lambda}x_2| \le \frac{\lambda}{\lambda+1} |x_1 - x_2|$$
 for all $\lambda > 0, x_1, x_2 \in X.$

Hence, \mathcal{F}_{λ} has the unique fixed point x_{λ} and $x_{\lambda} \in dom(A)$ solves (3.4). \Box Proof of Theorem: From Lemma there exists x_{λ} for $y \in X$ such that

$$y \in x_{\lambda} - (-A)_{\lambda} x_{\lambda} + \partial \varphi(x_{\lambda})$$

Moreover, one can show that $|x_{\lambda}|$ is bounded uniformly. Since

$$y - x_{\lambda} + (-A)_{\lambda} x_{\lambda} \in \partial \varphi(x_{\lambda})$$

for $z \in X$

$$\varphi(z) - \varphi(x_{\lambda}) \ge (z - x_{\lambda}, y - x_{\lambda} + (-A)_{\lambda}x_{\lambda})$$

Letting $\lambda(I + \lambda A)^{-1}x$, so that $z - x_{\lambda} = \lambda(-A)_{\lambda}x_{\lambda}$ and we obtain

$$(\lambda(-A)_{\lambda}x_{\lambda}, y - x_{\lambda} + (-A)_{\lambda}x_{\lambda}) \le \varphi((I + \lambda A)^{-1}) - \varphi(x_{\lambda}) \le \lambda M,$$

and thus

$$|(-A)_{\lambda}x_{\lambda}|^{2} \leq |(-A)_{\lambda}x_{\lambda}||y - x_{\lambda}| + M.$$

Since $x_{\lambda}|$ is bounded and so that $|(-A)_{\lambda}x_{\lambda}|$. \Box