1 Appendix

Definition (Closed Linear Operator) (1) The graph G(7') of a linear operator 7" on the
domain D(T") C X into Y is the set (z,Tx) : x € D(T)} in the product space X xY. Then T’
is closed if its graph G(T') is a closed linear subspace of X x Y| i.e., if z,, € D(T) converges
strongly to z € X and Tz, converges strongly to y € Y, then x € D(T) and y = Tx.
Thus the notion of a closed linear operator is an extension of the notion of a bounded linear
operator.

(2) A linear operator T is said be closable if x,, € D(T) converges strongly to 0 and Tz,
converges strongly to y € Y, then y = 0.

For a closed linear operator T, the domain D(T') is a Banach space if it is equipped by
the graph norm 1
2|y = (Jefx + [ Tly)2.

Example (Closed linear Operator) Let T' = 4 with X =Y = L*(0,1) is closed and

dom (A) = H'(0,1) = {f € L*(0,1) : absolutely continuous functions on [0, 1]
with square integrable derivative}.

If y, = Tx,, then
t
2alt) = 2a(0) + / yu(s) ds.
0

If z,, € dom(T) — x and y,, — y in L*(0, 1), then letting n — oo we have

e, x € dom(T) and Tx = y.
In general if for AT + T for some A € R has a bounded inverse (A I + T)~!, then T :
dom (A) C X — X is closed. In fact, Tz, =y, is equivalent to
T, = AT +T) Yy, + Ay,
Suppose z,, — x and y, — y in X, letting n — oo in this, we have x € dom (T") and
Te=TMN+T)'Nz+y) =y.

Definition (Dual Operator) Let 7" be a linear operator X into Y with dense domain
D(T). The dual operator of T of T' is a linear operator on Y* into X* defined by

(W Tr)y -y = (T"Y", 2) xoxx
for all x € D(T) and y* € D(T™).
In fact, for y* € Y* x* € X* satisfying
(y*, Tx) = (z*, x) for all z € D(T)

is uniquely defined if and only if D(T') is dense. The only if part follows since if D(T') # X
then the Hahn-Banach theory there exits a nonzero z§ € X* such that (zj,z) = 0 for all
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D(T), which contradicts to the uniqueness assumption. If 7" is bounded with D(T) = X
then T* is bounded with ||T'|| = ||T™]|.

Examples Consider the gradient operator T': L*(Q) — L*(Q)" as
Tu=Vu=(Dyu,- - Dy u)
with D(T) = H(Q). The, we have for v € L*(Q)"
T"v = —divv = — Z D,, v

with domain D(T™*) = {v € L*(Q)" : divv € L*(Q) and n - v = 0 at the boundary 992}. In
fact by the divergence theorem

(Tu,v) = /Q Vu-v /8 (- v)uds - /Q w(divv) da = (u, T*)

for all v € C1(Q). First, let u € H}(Q) we have T*v = —divv € L*(Q) since H} (1) is dense
in L2(Q2). Thus, n-v € LOQ) and n - v = 0.

Definition (Hilbert space Adjoint operator) Let X, Y be Hilbert spaces and T" be a
linear operator X into Y with dense domain D(T"). The Hilbert self adjoint operator of 7™
of T is a linear operator on Y into X defined by

(4, Tx)y = (T"y, x)x

for all x € D(T') and y € D(T*). Note that if we let 77 : Y* — X* is the dual operator of T,
then
T*Ry+y = Rx-xT’

where Rx+«_,x and Ry-_,y are the Riesz maps.

Examples (self-adjoint operator) Let X = L?(2) and T be the Laplace operator

Tu=Au= i Dy, 2

k=1
with domain D(T) = H?*(Q2) N H(2). Then T is sel-adjoint, i.e., T* = T. In fact

(Tu,v)X:/QAuvdx:/aQ((n-Vu)v—(n-Vv)u)ds—i—/QAvudx: (2, T*)

for all v € C1(Q).
Let us denote by F': X — X*, the duality mapping of X, i.e.,

F(x) ={2" € X* : (z,2") = |z]* = |2*]*}.

By Hahn-Banach theorem, F(z) is non-empty. In general F' is multi-valued. Therefore,
when X is a Hilbert space, (-,-) coincides with its inner product if X* is identified with X
and F(z) = .



Let H be a Hilbert space with scalar product (¢,v) and X be a real, reflexive Banach
space and X C H with continuous dense injection. Let X* denote the strong dual space of
X. H is identified with its dual so that X € H = H* C X*. The dual product (¢, 1) on
X x X* is the continuous extension of the scalar product of H restricted to X x H.
Theorem (Alligned Element) Let X be a normed space. For each xy € X there exists
an f € X* such that

f(xo) = |f

Proof: Let S = {axy : @ € R} and define f(axy) = a|zg|x. By Hahn-Banach theorem
there exits an extension F' € X* of f such that F'(z) < |z| for all z € X. Since

X* (Eolx.

—F(z) = F(=z) <[ - 2| = |2,

we have |F(x)| < |z|, in particular |F
thus |F

x+ < 1. On the other hand, F(x¢) = f(xo) = |zo],
X+ = 1 and F(xg) = f(.l?o) = ’FH.T0| [

The following proposition contains some further important properties of the duality map-
ping F'.

Theorem (Duality Mapping) (a) F'(x) is a closed convex subset.

(b) If X* is strictly convex (i.e., balls in X* are strictly convex), then for any = € X, F(x)
is single-valued. Moreover, the mapping x — F(z) is demicontinuous, i.e., if z, — x in X,
then F(x,) converges weakly star to F'(z) in X*.

(c) Assume X be uniformly convex (i.e., for each 0 < € < 2 there exists § = d(¢) > 0 such
that if |z| = |y| = land |z — y| > ¢, then |z + y| < 2(1 —9)). If x,, converges weakly to =
and limsup,, .. |z,| < |z|, then z,, converges strongly to x in X.

(d) If X* is uniformly convex, then the mapping x — F'(x) is uniformly continuous on
bounded subsets of X.

Proof: (a) Closeness of F'(z) is an easy consequence of the follows from the continuity of
the duality product. Choose x},z3 € F(x) and o € (0,1). For arbitrary z € X we have
(using |z} = |25] = |z|) (2, axi+ (1 —a)x}) < alz] |23+ (1 —a)|z||z5| = |z||z|, which shows
laxt + (1 —a)zs| < |z|. Using (z,2*) = (z,27) = |z|* we get (z, azi+(1—a)x}) = oz, }) +
(1 — a){x,x3) = |z|?, so that |azt + (1 — a)xs| = |x|. This proves ax} + (1 — o)z} € F(x).
(b) Choose z7, x5 € F(z), a € (0,1) and assume that |z} + (1 — a)zi| = |z|. Since X* is
strictly convex, this implies 27 = z3. Let {x,} be a sequence such that z,, - z € X. From
|F(z,)| = |z,| and the fact that closed balls in X* are weakly star compact we see that there
exists a weakly star accumulation point x* of {F(z,)}. Since the closed ball in X* is weakly
star closed, thus
(w,2") = |af” > [

Hence (z,z*) = |z|*> = |2*|* and thus z* = F(z). Since F(z) is single-valued, this implies
F(z,) converges weakly to F'(x).

(c) Since liminf |x,| < |z|, thus lim, e |z, = |2]. We set y, = x,/|z,| and y = x/|z|.
Then y,, converges weakly to y in X. Suppose y,, does not converge strongly to y in X. Then
there exists an € > 0 such that for a subsequence y; |ys — y| > €. Since X* is uniformly
convex there exists a 0 > 0 such that |y + y| < 2(1 — J). Since the norm is weakly lower
semicontinuos, letting 7 — oo we obtain |y| < 1 — §, which is a contradiction.



(d) Assume F' is not uniformly continuous on bounded subsets of X. Then there exist
constants M > 0, ¢ > 0 and sequences {u,}, {v,} in X satisfying

[wnl, [vn] < M, |up, —v,] — 0, and |F(u,) — F(v,)| > €.

Without loss of the generality we can assume that, for a constant 5 > 0, we have in addition
lun| > B, |vn| > B. We set z,, = u,/|uy,| and y,, = v, /|v,|. Then we have

|Tr, — yn| = [V |tn — [tn|vn]

[tn ] [on]

1 2M
< @ (|vnlwn — vn| + [|on| = |un|| |vn]) < ﬁ]un —v,| >0 asn — 0.

Obviously we have 2 > |F(z,,) + F(yn)| > (zn, F(x,) + F(y,)) and this together with

=24 (@n = Yn, F(yn)) = 2 — |20 — ¥a]

implies
li_>m |F () + F(yn)| = 2.

Suppose there exists an ¢y > 0 and a subsequence {ny} such that |F(x,,) — F(yn,)| > €o.
Observing |F(x,, )| = |F(yn,)| = 1 and using uniform convexity of X* we conclude that
there exists a o9 > 0 such that

|E' () + F(yn, )] < 2(1 = do),
which is a contradiction to the above. Therefore we have lim,,_, |F(x,) — F'(y,)| = 0. Thus
[F(un) = F(on)| < fun| [F(2n) = F(yn)| + [[un] = onl] [F(yn)]

which implies F'(u,,) converges strongly to F'(v,). This contradiction proves the result. [J

Problem Let X = (0, 1] be the space of continuous functions with sup norm. Then show
that X* = BV(0, 1) = the space of (right continuous) bounded variation functions on [0, 1],
i.e. for every f € X* there exists v € BV(0,1) such that f(x) = fol z(t) dv(t) (Riemann
Stieltjes integral) for all z € X. &, € X* (i.e. 04 (0) = @(to) for ¢ € X). and §,, € F(x) for
to € [0, 1] satisfying x(to) = maxyepoq |2 (t)]-
Problem Let A be a closed linear operator on a Banach space. D(A) = dom (A) is a Banach
space with the graph norm

2|y = lelx + [Az]x.
Problem Let ¢ € L>(0,1). Define the linear operators Aju = —(c(x)u), in X = L'(0,1).
and Asu = ¢(z)u, in X = LP(0,1).
(a) Find dom(Az) so that A, is w-dissipative. — Hint: ¢ < M (bounded above) if p > oo.
If p = oo, then no condition is necessary. Inflow ¢(0) > 0 and Outflow ¢(0) < 0.



Find dom(A;) so that A; is w-dissipative. — Hint Assume ¢ > 0. Since cu € C[0, 1] one can
decompose [0, 1] the sub intervals (¢;,¢;11) on which cu > 0 or cu < 0 and cu(t;) = 0 and let
u* = signg(cu) = signg(u). Thus, we have

(Ayu, ') = / (—(eu)gus*(z)) di = e(0)[u(0)] — e(1)]u(D)

(c) In general show that dom(A;) and dom(Asy) are different (Hint: piecewise constant)

1.1 Dissipativity

In order to obtain the useful equivalent conditions for the dissipativity, we consider the
derivatives of the norm | - | of X, which define pairs in some way analogous to the inner
product on a Hilbert space.

Definition 1.2 We define the functions (-,-);, (-,-)— : X x X — R by

|z + ay| — |z
:1
L
2| — |z — ay|
=1
o) = Jim ==

s — 1
(v, 2)s = lim, %
P =z —ayl
i=1
= i g

Here, we note that o' (|z + ay| — |z|) is an increasing function. In fact, if 0 < o < 3 then

(6 = a)|z| = [(Bz + apy) — (ax + afy)| = Bz + ay| —alz + Syl

and thus
Bz + Byl — |z]) > o™ (|z + ay| — |x]).

Moreover, since o~ (|z+ay|—|z|) > —|y|, this function is bounded below. Hence, lim,_,o+ =
inf,~o exists for all z, y € X. From the definition we have

(1.2) (y,2)- = =(=y,2)4 and (y,x)i = —(=y,2)s
Since the norm is continuous, it follows that

(1.3) (y,2)s = |z (y,z)+ and (y,z); = =] (y, ).
Also, from 2 |z| < |z + ay| + |r — ay|, we have

o |z = o —ayl) < a Nz +ay| - |z]).
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Thus,

(14) <y,$>7 < <y,$>+ and <y7x>l < (y,:c>5

Moreover, we have the following lemma.

Lemma 1.1 Let z, y € X.
(1) There exists an element f* such that

(y,x)s =sup{Re(y, f): f € F(x)} = Re(y, f7)

(2) There exists an element f~ such that

(y,z); =inf{Re(y, [): f € F(z)} = Re(y, [)

(3) (ax +y, ), = alz|+ (y,z), for @ € R where ¢ is either + or —.
(4) For z € X

<y + Z?‘T>— Z <y,l‘>_ + <27I>— and <y + Z,ZE>+ S <y7$>+ + <va>+

and thus
(y,x>_ - <Zal'>+ < <y - Z7l'>_ < <y,ZE>+ - <Z,l’>_
(5) (-,)— : X x X — R is lower semicontinuous and (-,-), : X x X — R is upper

semicontinuous.

Proof: (3) and (4) are obvious from the definition. For (5) since for each oo > 0
a !z + ayl - [xl)

is a continuous function of X x X — R, the upper continuity of (-,-), follows from its
definition. Since (y,x)_ = —(—y, )4, (-,-)— : X x X — R is lower semicontinuous. [J

Now, the following theorem gives the equivalent conditions for the dissipativeness of A.

Theorem 1.2 Let z, y € X. The following statements are equivalent.
(1) Re(y,z*) < 0. for some z* € F(z).
(17) |x — Ay| > |z| for all A > 0.
(iid) (y,x)- <0
() (y,x); <O0.

Proof: (i) — (ii). By the definition of F', we have
2" = (z,27) < Re (z — Ay,2") < |z — Ayl]a”|

for all A > 0. Thus, (éi) holds.

(i) — (i). For each A > 0 let fy € F(z — Ay). Then |f\] # 0 and we set gy = | fa| ™ fa.
Since the unit sphere of the dual space X* is compact in the weak-star topology of X*, we
may assume that

}\iir(l) (u,gr) = (u,g) forallue X



where g is some element in X*. Next, since
(1.7) 2] < |z — Ayl = Re (z — Ay, gz) < [z] = ARe (y, gx)

for all A > 0, it follows that Re (y,gx) < 0 for all A > 0, and letting A — 07, Re (y,g) < 0.
Note that (1.7) also implies |z| < Re (x,g) and thus (z,¢) = |z|. This implies that |z|g €
F(z) and hence (7) holds.

Since @ — a~(Jz — ay| —|z|) is an decreasing function (2) and (3) are equivalent by the
definition of (-,-)_. O

1.2 Lax-Milgram Theory and Applications

Let H be a Hilbert space with scalar product (¢,) and X be a Hilbert space and X C H
with continuous dense injection. Let X* denote the strong dual space of X. H is identified
with its dual so that X € H = H* C X* (i.e., H is the pivoting space). The dual product
(¢, 1) on X*x X is the continuous extension of the scalar product of H restricted to H x X.
This framework is called the Gelfand triple.

Let o is a bounded coercive bilinear form on X x X. Note that given x € X, F(y) =
o(z,y) defines a bounded linear functional on X. Since given z € X, y — o(z,y) is a
bounded linear functional on X, say x* € X*. We define a linear operator A from X into X*
by x* = Ax. Equation o(z,y) = F(y) for all y € X is equivalently written as an equation

Arx=F ¢ X*.

Here,
<A(L’7y>X*><X:0'(ZE,y>, z, ?JEX,

and thus A is a bounded linear operator. In fact,

| Az

x+ < sup |o(z,y)] < M |z].
ly|<1

Let R be the Riesz operator X* — X i.e.,
|Rz*|x = |z*| and (Rx*,x)x = (z*,z) for all x € X,

then A = RA represents the linear operator Ae L(X,X). Moreover, we define a linear
operator A on H by )

Ar=Axr € H
with

dom (A) ={z € X : |o(z,y)| < ¢ |y|g for all y € X}.

That is, A is a restriction of A on dom (A). We will use the symbol A for all three linear
operators as above in the lecture note and its use should be understood by the underlining
context.



Lax-Milgram Theorem Let X be a Hilbert space. Let o be a (complex-valued) sesquilin-
ear form on X x X satisfying

olaxy + Bry,y) = ao(r,y) + Bo(r,y)

o(z, oy + By2) = aolz,y) + Bo(x, ),
lo(z,y)| < M |z||ly| forall z,y € X (Bounded)

and
Reo(x,2) > d|z)* forallz € X and § >0 (Coercive).

Then for each f € X* there exist a unique solution x € X to
o(z,y) = (f,y)xxx forall ye X

and

lz|x <07 | flx-

Proof: Let us define the linear operator S from X* into X by

Sf=ux, feXx*

where x € X satisfies
o(x,y) = (f,y) forall ye X.

The operator S is well defined since if z1, x5 € X satisfy the above, then o(x; — x9,y) =0
for all y € X and thus § |z; — x3|% < Reo(x1 — w9, 21 — x5) = 0.

Next we show that dom(S) is closed in X*. Suppose f, € dom(S5), i.e., there exists
x, € X satistying o(z,,y) = (fn,y) for ally € X and f, — f in X* as n — co. Then

o(xp — Tim,y) = (fn — fm,y) forall ye X
Setting y = x,, — x,,, in this we obtain
Jd|xy, — xm@( < Reo(Tp — Ty Ty — Tn) < | fro — frnlxe|Tn — Tl x-

Thus {z,} is a Cauchy sequence in X and so x, — x for some x € X as n — oco. Since o
and the dual product are continuous, thus = = Sf.

Now we prove that dom(S) = X*. Suppose dom(S) # X*. Since dom(S) is closed there
exists a nontrivial o € X such that (f, zo) = 0 for all f €dom(S). Consider the linear
functional F(y) = o(zo,y), y € X. Then since o is bounded F' € X* and 2o = SF. Thus
F(xy) = 0. But since o(xg,z0) = (F,x9) = 0, by the coercivity of o xy = 0, which is a
contradiction. Hence dom(S) = X*. O

Assume that o is coercive. By the Lax-Milgram theorem A has a bounded inverse S =
A~ Thus, )
dom (A) = A™'H.

Moreover A is closed. In fact, if

x, € dom (A) = x and f, = Az, — f in H,
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then since x,, = Sf, and S is bounded, x = Sf and thus x € dom (A) and Az = f.
If o is symmetric, o(z,y) = (x,y)x defines an inner product on X. and SF coincides
with the Riesz representation of F' € X*. Moreover,

(Az,y) = (Ay,x) for all z,y € X.

and thus A is a self-adjoint operator in H.

Example (Laplace operator) Consider X = H{(Q), H = L*(Q2) and

o(u,¢) = (u,¢)x = /QVU -Vodx.

Then,
2 32
SU+

Au=—Au=—(Zu+ L
" " <8:c1 x3

and
dom (A) = H*(Q) N HL(Q).

for Q with C'*' boundary or convex domain €.

For Q2= (0,1) and f € L*(0,1)

1
Lyl ud
i y ut /f
L g d 1
/O%y(%uﬁL/ f(s)ds)dz =0

—u+/ f(s (a constant)

is equivalent to

for all y € H(0,1). Thus,

and therefore Lu € H'(0,1) and
d2
Au = Al fin L*(0,1).

Example (Elliptic operator) Consider a second order elliptic equation

ou

Au = -V - (a(z)Vu) + b(x) - Vu + c(z)u(z) = f(z), By

=gatly u=0atly

where I'g and I'y are disjoint and ' U’y = I'. Integrating this against a test function ¢, we
have

/Q Auc d — /Q (a(2)Vu- Vo + b(x) - Vo + c(z)us) dr — /F gods. = /Q F(@)o(z) da,



for all ¢ € C'(€2) vanishing at I'g. Let X = H[ (Q2) is the completion of C"(£2) vanishing at
I'y with inner product

(u, @) = /QVU-V¢dx

ie.,

Hp, () ={ue H(Q) : ulr, = 0}
Define the bilinear form o on X x X by

o(u, §) = / (a(2) V- Vo + b(z) - Vo + c(x)ué.
Q
Then, by the Green’s formula

1) = [ @@)|Vu +a) - VG hl) + ) fuf) do

= /Q(OL(95)|VU|2 + (c(z) — %V -b) |ul?) dv + —I—/ %n - bu|? ds,.

Iy
If we assume 1
0<a<a(r) <a, c(x)—§V-b20, n-b>0at I,
then o is bounded and coercive with § = a.
The Banach space version of Lax-Milgram theorem is as follows.

Banach-Necas-Babuska Theorem Let V' and W be Banach spaces. Consider the linear
equation for u € W

a(u,v) = f(v) forallveV (1.1)

for given f € V*, where a is a bounded bilinear form on W x V. The problem is well-posed
in if and only if the following conditions hold:

inf supM >6>0

a(u,v) =0 for all w € W implies v =0

Under conditions we have the unique solution u € W to (1.1) satisfies

1
< = *.
lulw < 5 | flv
Proof: Let A be a bounded linear operator from W to V* defined by
(Au,v) = a(u,v) forallu e W, v € V.

The inf-sup condition is equivalent to for any w?W

|AU)|V* 2 (5|U|W,
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and thus the range of A, R(A), is closed in V* and N(A) = 0. But since V is reflexive and
(Au, v)vexy = (u, A"0)wxw-

from the second condition N(A*) = {0}. It thus follows from the closed range and open
mapping theorems that A~! is bounded. [

Next, we consider the generalized Stokes system. Let V' and ) be Hilbert spaces. We
consider the mixed variational problem for (u,p) € V x @ of the form

a(u,v) +b(p,v) = f(v), blu,q) = g(q) (1.3)

for all v € V and ¢ € @), where a and b is bounded bilinear form on V' x V and V x Q. If
we define the linear operators A € L(V,V*) and B € L(V,Q*) by

(Au,v) = a(u,v) and (Bu,q) = b(u,q)

then it is equivalent to the operator form:

A B* u f
B 0 P g
Assume the coercivity on a
a(u,u) > 0 |ul; (1.4)
and the inf-sup condition on b
b
inf sup blu.a) >5>0 (1.5)

a€P yev |ulv]qlo

Note that inf-sup condition that for all ¢ there exists u € V' such that Bu = ¢ and |u|y <
%‘Q|Q. Also, it is equivalent to |B*p|y+ > 3 |p|g for all p € Q.

Theorem (Mixed problem) Under conditions (1.4)-(1.5) there exits a unique solution (u,p) €
V x @ to (1.3) and

ulv + Iple < ¢ ([flv+ +lgle-)
Proof: For € > 0 consider the penalized problem
a(te,v) +b(v, P.) = f(v), forallveV
(1.6)
—b(ue, q) + €(pe, 1) = —g(q) forall ¢ € Q.

By the Lax-Milgram theorem for every e > 0 there exists a unique solution. From the first
equation
p |p6|Q < |f — Auely < |f|V* + M |u€|Q'

Letting v = u. and ¢ = p. in the first and second equation, we have

o <C(f

and thus |u|y and |p|g as well, are bounded uniformly in € > 0. Thus, (u., p.) has a weakly
convergent subspace to (u,p) in V' x @ and (u, p) satisfies (1.3). O

0 fucliy + e lpelg < If

vel|telv + el gly v + |9l ) [uelv),
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1.3 Distribution and Generalized Derivatives

In this section we introduce the distribution (generalized function). The concept of distribu-
tion is very essential for defining a generalized solution to PDEs and provides the foundation
of PDE theory. Let D(2) be a vector space of all infinitely many continuously differentiable
functions C§°(€2) with compact support in Q. For any compact set K of €, let Dk (Q2) be
the set of all functions f € C§°(Q2) whose support are in K. Define a family of seminorms
on D(Q2) by

prm(f) =sup sup |D°f(z)]

€K |s|<m
where . .
p=(2) (2
8x1 8a:n
where s = (s1,--+,$,) is nonnegative integer valued vector and |s| = > s < m. Then,

Dk (Q) is a locally convex topological space.

Definition (Distribution) A linear functional 7" defined on C§°(£2) is a distribution if for
every compact subset K of €2, there exists a positive constant C' and a positive integer k
such that

T(9)| < C supps<i, zex |[D*¢(x)| for all ¢ € D (Q).
Definition (Generalized Derivative) A distribution S defined by

S(8) = —T(D,,9) for all ¢ € C3°(Q)
is called the distributional derivative of 1" with respect to z; and we denote S = D, T
In general we have
S(¢) = D*T(¢) = (=1 T(D*¢) for all ¢ € C5°(9).

This definition is naturally followed from that for f is continuously differentiable

[ Dasodo = [ jods

and thus D,, f = D, Ty =T i f. Thus, we let D®f denote the distributional derivative of
Ty. '

Example (Distribution) (1) For f is a locally integrable function on €2, one defines the cor-
responding distribution by

Te(9) = /qubdx for all ¢ € C5°(Q).

since
Tr(9)] < [ |fldzsup |¢(z)].
K rzeK
(2) T'(¢) = ¢(0) defines the Dirac delta dy at = =0, i.e.,
|00(¢)| < sup [p(x)].

zeK
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(3) Let H be the Heaviside function defined by

0 for x <0
H(a:)_{l for z >0

Then, ,
Dry(9) = — / H(2)§'(x) dz = 6(0)

and thus DTy = ¢y is the Dirac delta function at = = 0.
(4) The distributional solution for —D?u = 4,, satisfies

— [ et do = o)

—00

for all ¢ € C5°(R). That is, u = 3|z — x| is the fundamental solution, i.e.,

[l wlrdn= [ ¢'<x)dw—/:¢’<x>dx=2¢<xo>-

In general for d > 2 let

=logle — x|  d=2
G(x,z0) =
calr — x> d> 3.

Then
AG(x,x0) =0, x # x.

and u = G(z, 1) is the fundamental solution to to —A in RY,

— AU = g,

In fact, let B, = {|z — 2| < €} and I' = {|x — x¢| = €} be the surface. By the divergence
theorem

0 0
G(z,20)Ad(z) dv = | ——d(G(z,10) — 5-G(x,20)P(8)) ds
/Rd\Be(mo) ( ) ¢( ) /F(?ng( ( ) ay ( )¢( ))

0 1
_ /F (@22 — (2= ) o(5)) ds — —o(an)
That is, G(z, x¢) satisfies

— /Rd G(z,10)Ad dr = P(x).

In general let £ be a linear diffrenrtial operator and £* denote the formal adjoint operator
of £ An locally integrable function u is said to be a distributional solution to Lu = T where
L with a distribution 7' if

/Q u(L* ) dx = T(¢)
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for all ¢ € C§°(Q).

Definition (Sovolev space) For 1 < p < oo and m > 0 the Sobolev space is

Wme(Q) = {f € LP(Q) : D°f € LP(Q), |s| < m}

with norm
[ flwmr@) = / > D fIPda
Q
|s|<m
That is,
o1 1
|D*f($)] < c|¢[ra with St 1.

Remark (1) X = W™?(Q) is complete. In fact If {f,} is Cauchy in X, then {D*®f,} is
Cauchy in LP(Q) for all |s| < m. Since LP(Q2) is complete, D*f,, — ¢° in LP(2). But since

li Do dx = Dé¢pdx = s ,
im Qf ¢dx /Qf ¢ dw /9¢d9‘3

n—oo

we have D*f = ¢® for all |s| <m and |f, — f|x — 0 as n — oo.

(2) H™? C WP(Q). Let H™P(Q) be the completion of C™ () with respect to WP ()
norm. That is, f € H™P(Q) there exists a sequence f, € C™(2) such that f, — f and
D7 f,, — ¢° strongly in LP(€)) and thus

D*fu(6) = (—1)¥ / Dfubdz — (1) / F'bd

which implies ¢° = D*f and f € WhP(Q).
(3) If Q has a Lipschitz continuous boundary, then

Wme(Q) = H™P(Q).

2 Minty—Browder Theorem

Definition (Monotone Mapping)
(a) A mapping A C X x X* be given. is called monotone if

(x1 — x2,y1 — yo2) > 0 for all [z1,y1], [xe, y2] € A.

(b) A monotone mapping A is called mazimal monotone if any monotone extension of A
coincides with A, i.e., if for [z,y] € X x X*, (x — u,y —v) > 0 for all [u,v] € A then
[z, y] € A.
(c) The operator A is called coercive if for all sequences [x,,y,] € A with lim,,_, |z,| = c©
we have

i (T Yn)

n—oo ||
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(d) Assume that A is single-valued with dom(A) = X. The operator A is called hemicontin-
uous on X if for all zq, z9, x € X, the function defined by

te€R— (x,A(zy + tzs))

is continuous on R.
For example, let F' be the duality mapping of X. Then F' is monotone, coercive and

hemicontinuous. Indeed, for [x1,y1], [ra, y2] € F we have

(w1 — 22,51 = yo) = |1 [* — (w1, 90) — (22,90) + |22 = (1] = |22])* 20, (2.1)

which shows monotonicity of F. Coercivity is obvious and hemicontinuity follows from the
continuity of the duality product.

Lemma 1 Let X be a finite dimensional Banach space and A be a hemicontinuous monotone
operator from X to X*. Then A is continuous.

Proof: We first show that A is bounded on bounded subsets. In fact, otherwise there exists
a sequence {z,} in X such that |Az,| — oo and z,, — x¢ as n — oo. By monotonicity we
have

Ax Ax
Ty — T, L. >0 forall z € X.
< |Az,,| ]Axn\> -
Without loss of generality we can assume that ﬁi:' — Yo in X* as n — oco. Thus

(xg —x,y0) >0 forall z€X

and therefore yo = 0. This is a contradiction and thus A is bounded. Now, assume {z,}
converges to xo and let yo be a cluster point of { Az, }. Again by monotonicity of A

(xog — z,y9 — Az) >0 for all z € X.
Setting © = xg + t (u — xg), t > 0 for arbitrary u € X, we have
(o —u,yo — A(zo +t (u—x0)) > 0) forall ue X.
Then, letting limit ¢ — 0%, by hemicontinuity of A we have
(o — u,yo — Axg) >0 forall ue X,

which implies yo = Azq. [

Lemma 2 Let X be a reflexive Banach space and A : X — X* be a hemicontinuous
monotone operator. Then A is maximumal monotone.

Proof: For [z, yo] € X x X*
(g —u,yo — Au) >0 for all ue X.
Setting u = xg + t (x — ), t > 0 and letting ¢ — 0%, by hemicontinuity of A we have

(xo — x,y9 — Axg) >0 forall z € X.
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Hence yo = Az and thus A is maximum monotone. [J
The next theorem characterizes maximal monotone operators by a range condition.

Minty—Browder Theorem Assume that X, X* are reflexive and strictly convex. Let F
denote the duality mapping of X and assume that A C X x X* is monotone. Then A is
maximal monotone if and only if

Range (A\F + A) = X~

for all A > 0 or, equivalently, for some A > 0.

Proof: Assume that the range condition is satisfied for some A > 0 and let [zq, yo] € X x X*
be such that
(g —u,yo —v) >0 for all [u,v] € A.

Then there exists an element [zq,y;] € A with

AFzy 4+ y1 = AFzo + yo. (2.2)
From these we obtain, setting [u, v] = [x1,y1],

(1 — xg, Fxqy — Fag) < 0.
By monotonicity of F' we also have the converse inequality, so that

(1 — 29, Fxy — Fxp) = 0.

From (2.1) this implies that |z,| = |zo| and (z1, Fxo) = |21]?, (xo, Fr1) = |20|>. Hence
Fxy = Fx, and
<x1,F.I'0> = <IEO,FI’0> = ’[Eo‘Z = ‘F[BOP.

If we denote by F* the duality mapping of X* (which is also single-valued), then the last
equation implies x; = xg = F*(Fx). This and (2.2) imply that [z, yo] = [x1,y1] € A, which
proves that A is maximal monotone. [J

In stead of the detailed proof of ”only if” part of Theorem, we state the following results.
O

Corollary Let X be reflexive and A be a monotone, everywhere defined, hemicontinous
operator. If A is coercive, then R(A) = X*.

Proof: Suppose A is coercive. Let y, € X* be arbitrary. By the Appland’s renorming
theorem, we may assume that X and X* are strictly convex Banach spaces. It then follows
from Theorem that every A > 0, equation

AFzy 4+ Axy = yo
has a solution z, € X. Multiplying this by x},

AMaal? + (wx, Azy) = (yo, 7).
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and thus
<$)\, A{L‘)\>

|$/\|X

< [yo|x+
Since A is coercive, this implies that {x,} is bounded in X as A\ — 0". Thus, we may assume
that x, converges weakly to xy in X and Az, converges strongly to yo in X* as A — 0F.

Since A is monotone
(xx —x,yp — A Fay — Ax) >0,

and letting A — 0T, we have
<.§U0 —T,Y — A(E> > 07

for all x € X. Since A is maximal monotone, this implies yy = Azy. Hence, we conclude
R(A)=X*.0O

Theorem (Galerkin Approximation) Assume X is a reflexive, separable Banach space
and A is a bounded, hemicontinuous, coercive monotone operator from X into X*. Let
X, = span{¢}?_, satisfies the density condition: for each ¢y € X and any e > 0 there exists
a sequence ¢, € X, such that ¢ — 1, | — 0 as n — oo. The x,, be the solution to

(Y, Ax,) = (¢, f) forall ¢ € X,,, (2.3)

then there exists a subsequence of {z,} that converges weakly to a solution to Az = f.

Proof: Since (z, Az)/|z|x — oo as |z|x — oo there exists a solution z,, to (2.3) and |z, |y is
bounded. Since A is bounded, thus Az, bounded. Thus there exists a subsequence of {n}
(denoted by the same) such that x,, converges weakly to z in X and Az, converges weakly
in X*. Since

lim (0, Av,) = lim (W, ) + (0 = U, Azi) = (0.1)

Ax, converges weakly to f. Since A is monotone
(xp —u, Az, — Au) >0 forall ue X

Note that
lim (x,, Az,) = lim (z,, f) = (z, f).

n—oo n—0o0

Thus taking limit n — oo, we obtain
(x —u, f— Au) > 0 for all ue X.

Since A is maximum monotone this implies Ax = f. [J

The main theorem for monotone operators applies directly to the model problem involving
the p-Laplace operator
—div(|VulP™*Vu) = f on Q

(with appropriate boundary conditions) and

—Au+cu=f, _%u € B(u). at 09
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with [/ maximal monotone on R. Also, nonlinear problems of non-variational form are
applicable, e.g.,
Lu+ F(u) = f on

where

L(u) = —div(o(Vu) — bu)

and we are looking for a solution u € VVO1 P(Q), 1 < p < co. We assume the following
conditions:
(i) Monotonicity for the principle part L(u):

(0(&) —a(n),§ —nrn >0 forall , n € R".
(ii) Monotonicity for F' = F(u):
(F(u) — F(v),u —v) >0 for all u, v € R.
(iii) Coerciveness and Growth condition: for some ¢, d > 0
(0(€),0) Z clels o <d(1+[¢F)
hold for all £ € R™.

3 Convex Functional and Subdifferential

Definition (Convex Functional) (1) A proper convex functional on a Banach space X is
a function ¢ from X to (—oo, 0o], not identically +o00 such that

P((L=A) 1+ Axz) < (1= A)p(z1) + Ap(a2)

for all z1, o € X and 0 < \ < 1.
(2) A functional ¢ : X — R is said to be lower-semicontinuous if

o(x) < liminf p(y) for all z € X.

Yy—x

(3) A functional ¢ : X — R is said to be weakly lower-semicontinuous if

o(x) < liminf p(z,)

n—oo

for all weakly convergent sequence {z,} to .
(4) The subset D(¢) = {x € X;p(z) < oo} of X is called the domain of .
(5) The epigraph of ¢ is defined by epi(p) = {(z,c) € X x R: ¢(x) < c}.

Lemma 3 A convex functional ¢ is lower-semicontinuous if and only if it is weakly lower-
semicontinuous on X.

Proof: Since the level set {z € X : p(z) < ¢} is a closed convex subset if ¢ is lower-
semicontinuous. Thus, the claim follows the fact that a convex subset of X is closed if and
only if it is weakly closed.
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Lemma 4 If ¢ be a proper lower-semicontinuous, convex functional on X, then ¢ is bounded
below by an affine functional, i.e., there exist z* € X* and ¢ € R such that

p(x) = (2%, 2) + B, ze€X

Proof: Let 2y € X and 8 € R be such that ¢(zg) > ¢. Since ¢ is lower-semicontinuous on X,
there exists an open neighborhood V' (zq) of X, such that ¢(z) > ¢ for all x € V (z;). Since
the ephigraph epi(y) is a closed convex subset of the product space X x R. It follows from
the separation theorem for convex sets that there exists a closed hyperplane H C X x R;

H={(z,r) e X x R: (z},z) +r=a} with zj € X", a € R,
that separates epi(¢) and V(zg) x (—o00,c¢). Since {zo} x (—o0,¢) C {(x,7) € X X R :
(x§,x) + 1 < a} it follows that
(x5, x) + 1 >a forall (z,c) € epi(p)

which yields the desired estimate.

Theorem C.6 If F': X — (—o00,00] is convex and bounded on an open set U, then F' is
continuous on U.

Proof: We choose M € R such that F(z) < M — 1 for all x € U. Let & be any element
in U. Since U is open there exists a § > 0 such that the open ball {xr € X : |[x — 2| < §

is contained in U. For any epsilon € (0,1), let § = m Then for x € X satisfying
v — 2] <60
‘x—£+A_A|_|a:—i|<5
o TN g
rT—a .
Hence 7 + 2 € U. By the convexity of F’
F(a:)g(1—9)F(£)+0F(x;x+§:)§(1—9)F(§:)+9M
and thus
F(z)— F(#) <M — F(z)=¢
Similarly, %—i—f € U and
0 T—x 1 oM 1
F(z) < F h — F — 4+ —F
@< g Mg T g F @ < gt g F'@

which implies
F(z)— F(z) > —0(M — F(z) = —¢

Therefore |F(x) — F(z)| < € if |[x — | < 6 and F is continuous in U. O

Definition (Subdifferential) Given a proper convex functional ¢ on a Banach space X
the subdifferential of dp(x) is a subset in X*, defined by

Op(x) ={z" € X" : p(y) — p(z) > (z*,y —x) forall y e X}.
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Since for 2} € dp(z1) and x5 € Jp(xq),
p(r1) = p(r2) < (25,21 — 2)
p(r2) = p(x1) < (27, 22 — 1)

it follows that (z} — %, xy — x5) > 0. Hence Jyp is a monotone operator from X into X*.

Example 1 Let ¢ be Gateaux differentiable at x. i.e., there exists w* € X* such that

i 2@t te) = g(a)

t—0t+ t

= (w*,h) forall he X

and w* is the Gateaux differential of ¢ at x and is denoted by ¢'(z). If ¢ is convex, then ¢
is subdifferentiable at = and dp(x) = {¢'(z)}. Indeed, for v =y — =z

px+t(y—1x)) — o)
t

<oly)—plz), 0<t<l
Letting ¢ — 07 we have

p(y) —plx) > (¢(2),y — ) forall yeX,
and thus ¢'(z) € dp(x). On the other hand if w* € dp(x) we have for y € X and t > 0

o +ty) — ()

> * .
; > (W, y)

Taking limit ¢ — 0%, we obtain
(¢'(z) —w*,y) >0 forall ye X.

This implies w* = ¢'(x).

Example 2 If () = 1 |z|? then we will show that dp(z) = F(z), the duality mapping. In

fact, if 2* € F(z), then

(Jz|* — |y[*) forall y € X.

N | —

("2 —y,) = |$|2 —(y,2") >
Thus z* € dp(x). Conversely, if z* € dp(x), then
1
P~ 1o > @y —a) forall ye X (31)

We let y =tx, 0 <t <1 and obtain

1+1¢
2

j2|* < (z,27)

and thus |z|* < (z,z*). Similarly, if ¢ > 1, then we conclude |z|?* > (z,z*) and therefore
|z|> = (z,2*) and |z*| > |z|. On the other hand, letting y = z+ Au, A > 0 in (3.1), we have

1
Matyu) < 5 (Jo+ Auf* = [2) < Mullz] + Aful?,
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which implies (z*, u) < |u||z|. Hence |z*| < |z| and we obtain |z|? = |z*|* = (z*, x).

Example 3 Let K be a closed convex subset of X and Ix be the indicator function of K,
ie.,

0 ifrxekK

oo otherwise.

Ix(z) = {

Obviously, I is convex and lower-semicontinuous on X. By definition we have for x € K
Olg(z) ={a" € X" : (a*,x —y) >0 forall y e K}

Thus D(Ix) = D(0Ik) = K and Ok(z) = {0} for each interior point of K. Moreover, if
lies on the boundary of K, then 0l (z) coincides with the cone of normals to K at x.

Note that OF (x) is closed and convex and may be empty.
Theorem C.10 If a convex function F'is continuous at z then 0F(Z) is non empty.

Proof: Since F' is continuous at x for any € > 0 there exists a neighborhood U, of Z such
that
F(x) < F(z)+e, zel.

Then U, X (F(Z)+¢€,00) is an open set in X x R and is contained in epi F'. Hence (epi F')° is
non empty. Since F' is convex epi F' is convex and (epi F)° is convex. For any neighborhood
of O of (z, F(Z)) there exists a t < 1 such that (zZ,tF(z)) € O. But, tF(z) < F(z) and so
(z,tF(z)) ¢ epi F. Thus (z,F(z)) ¢ (epi F)°. By the Hahn Banach separation theorem,
there exists a closed hyperplane S = {(z,a) € X x R : (z*,z) + aa = [} for nontrivial
(z*,a) € X* x R and § € R such that

(z*,2) +aa>p forall (z,a) € (epi F)°
(3.2)
(x*,z) + a F(Z) = .

Since (epi F')° = epi F every neighborhood of (z,a) € epi F' contains an element of (epi ¢)°.
Suppose (z*,z) + aa < . Then

{(#';d) e X x R: (z",2') + ad < B}

is an neighborhood of (z,a) and contains an element of (epi F')°, which contradicts to (3.2).
Hence
(") +aa > forall (z,a) € epi F. (3.3)

Suppose o = 0. For any u € U, there is an a € R such that F'(u) < a. Then from (3.3)
(", u) = (", u) +aa > f

and thus
(",u—x) >0 for all u € U..

Choose a § such that |u — Z| < § implies « € U. For any nonzero element z € X let t = .

|z
Then |(tx + z) — Z| = |tz| = § so that tx + = € U.. Hence

(x*,z) = (", (tr + &) — )/t > 0.
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Similarly, —tx + z € U, and

(x*,x) = (2", (—tx +7) — x)/(—t) <O.

Thus, (z*,x) and z* = 0, which is a contradiction. Therefore « is nonzero. It now follows
from (3.2)—(3.3) that

*

(—%,x _ )+ F(z) < F(z)

for all z € X and thus —Z € 9F(z). O

Definition (Lower semi-continuous) (1) A functional F' is lower-semi continuous if

liminf F(z,) > F(lim z,)

n—oo n—oo

(2) A functional F' is weakly lower-semi continuous if

liminf F(z,) > F(w — lim, o ©,)
n—oo

Theorem (Lower-semicontinuous) (1) Norm is weakly lower-semi continuous.
(2) A convex lower-semicontinuous functional is weakly lower-semi continuous.

Proof: Assume z,, — = weakly in X. Let 2* € F(z), i.e., (z*,x) = |2*||x|. Then, we have

2 = lim (o, )

and

Thus,

liminf |z, | > |z|.
n—o0

(2) Since F' is convex,

for all convex combination of xy, i.e., Y~ >, tx =1, t;, > 0. By the Mazur lemma there exists
a sequence of convex combination of weak convergent sequence ({zy}, {F(zx)}) to (z, F(x))
in X x R that converges strongly to (x, F'(z)) and thus

F(z) <liminfn — oo F(z,).0

Theorem (Weierstrass) If ¢(xz) is a lower-semicontinuous proper convex functional on a re-
flexible Banach X satisfying the coercivity lim;|, ¢(2) = oo. Then there exists a minimizer
xz* € X of ¢. A minimizer z* satisfies the (necessary) condition

0 € dp(z™).

Proof: Since y(xg) is coercive there exist a bounden minimizing sequence {z,} such that
lim,, 00 0(2,,) = n = infex @(x) = 0. Since X is reflexible, there exits a weakly convergent
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subsequence z,, to z* € X. Since if the convex functional is lower-semicontinuous, then
is weakly lower-semicontinuous. Thus, n = ¢(x*). Since p(z) — p(z*) > 0 for all z € X,
0 € dp(z*). O

Theorem(Rockafellar) Let X be real Banach space. If ¢ is lower-semicontinuous proper
convex functional on X, then dp is a maximal monotone operator from X into X*.

Proof: We prove the theorem when X is reflexive. By Apuland theorem we can assume
that X and X* are strictly convex. By Minty-Browder theorem 0y it suffices to prove that
R(F + 0¢) = X*. For xf € X* we must show that equation zj; € Fx + 0p(z) has at least a
solution xg Define the proper convex functional on X by

F(a) = 3 lali + ) = (o3 2.

Since f is lower-semicontinuous and f(z) — oo as |z| — oo there exists g € D(f) such that
f(xo) < f(z) for all z € X. Since F' is monotone

o) — @(wo) > (x5, — x0,) — (T — 20, F(2)).
Setting x; = o + t (u — 7o) and since ¢ is convex, we have

p(u) — p(xo) 2 %(w(ﬂft) = ¢(w0)) = (w5, u — o, ) — (F (1), u — o).

Taking limit ¢ — 0T, we obtain

p(u) — ¢(wo) > (5, u — x0) — (F(20), u — T0),
which implies x§ — F(zg) € J¢(xp). O
We have the perturbation result.

Theorem Assume that X is a real Hilbert space and that A is a maximal monotone operator
on X. Let ¢ be a proper, convex and lower semi-continuous functional on X satisfying
dom(A) N dom(dyp) is not empty and

(I +XA) o) <p(x) +AM, forall A >0, x € D(p),
where M is some non-negative constant. Then the operator A + dy is maximal monotone.
We use the following lemma.
Lemma Let A and B be m-dissipative operators on X. Then for every y € X the equation
y € —Ax — Byx (3.4)
has a unique solution x € dom (A).

Proof: Equation (3.4) is equivalent to y = x) — wy — Byx) for some wy € A(z,). Thus,

A A 1
_ — B
T\ )\+1IU)\ )\+1y+>\+1($)\+>\ )\1")\)
A 1
= I—-\B)™L.
/gl )
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Since A is m-dissipative, we conclude that (3.4) is equivalent to that x, is the fixed point of
the operator

A A |
ﬂx_(l—)\HA) (A+1y+A+1

By m-dissipativity of the operators A and B their resolvents are contractions on X and thus

(I —AB)'2).

| Fary — Faxa| < |z1 — o] for all X > 0, z1, 25 € X.

A
A+1
Hence, F) has the unique fixed point x) and x, € dom (A) solves (3.4). O

Proof of Theorem: From Lemma there exists ) for y € X such that
y € xy— (—A)zy+ dp(xy)

Moreover, one can show that |z,| is bounded uniformly. Since
y—x\+ (—A)z\ € 0p(x))

for z € X
e(2) — (@) = (2 — 2,y — 2r + (—A)rz))
Letting A\(I + AA) "'z, so that z — xy = A(—A)\z) and we obtain
M=A)za,y — ox + (=A)a) S e((T+AA)7TH) = p(n) < AM,

and thus
[(—A)aza]? < |[(—A)za|ly — za| + M.

Since x| is bounded and so that |(—A) z,|. O
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