1 Appendix

Definition (Closed Linear Operator) (1) The graph $G(T)$ of a linear operator T on the domain $\mathcal{D}(T) \subset X$ into Y is the set $(x, T x): x \in \mathcal{D}(T)\}$ in the product space $X \times Y$. Then T is closed if its graph $G(T)$ is a closed linear subspace of $X \times Y$, i.e., if $x_{n} \in \mathcal{D}(T)$ converges strongly to $x \in X$ and $T x_{n}$ converges strongly to $y \in Y$, then $x \in \mathcal{D}(T)$ and $y=T x$. Thus the notion of a closed linear operator is an extension of the notion of a bounded linear operator.
(2) A linear operator T is said be closable if $x_{n} \in \mathcal{D}(T)$ converges strongly to 0 and $T x_{n}$ converges strongly to $y \in Y$, then $y=0$.

For a closed linear operator T, the domain $\mathcal{D}(T)$ is a Banach space if it is equipped by the graph norm

$$
|x|_{\mathcal{D}(T)}=\left(|x|_{X}^{2}+|T x|_{Y}^{2}\right)^{\frac{1}{2}} .
$$

Example (Closed linear Operator) Let $T=\frac{d}{d t}$ with $X=Y=L^{2}(0,1)$ is closed and
$\operatorname{dom}(A)=H^{1}(0,1)=\left\{f \in L^{2}(0,1)\right.$: absolutely continuous functions on $[0,1]$ with square integrable derivative $\}$.

If $y_{n}=T x_{n}$, then

$$
x_{n}(t)=x_{n}(0)+\int_{0}^{t} y_{n}(s) d s
$$

If $x_{n} \in \operatorname{dom}(T) \rightarrow x$ and $y_{n} \rightarrow y$ in $L^{2}(0,1)$, then letting $n \rightarrow \infty$ we have

$$
x(t)=x(0)+\int_{0}^{t} y(s) d s
$$

i.e., $x \in \operatorname{dom}(T)$ and $T x=y$.

In general if for $\lambda I+T$ for some $\lambda \in R$ has a bounded inverse $(\lambda I+T)^{-1}$, then T : $\operatorname{dom}(A) \subset X \rightarrow X$ is closed. In fact, $T x_{n}=y_{n}$ is equivalent to

$$
x_{n}=(\lambda I+T)^{-1}\left(y_{n}+\lambda x_{n}\right.
$$

Suppose $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in X, letting $n \rightarrow \infty$ in this, we have $x \in \operatorname{dom}(T)$ and $T x=T(\lambda I+T)^{-1}(\lambda x+y)=y$.
Definition (Dual Operator) Let T be a linear operator X into Y with dense domain $\overline{\mathcal{D}(T)}$. The dual operator of T^{*} of T is a linear operator on Y^{*} into X^{*} defined by

$$
\left\langle y^{*}, T x\right\rangle_{Y^{*} \times Y}=\left\langle T^{*} y^{*}, x\right\rangle_{X^{*} \times X}
$$

for all $x \in \mathcal{D}(T)$ and $y^{*} \in \mathcal{D}\left(T^{*}\right)$.
In fact, for $y^{*} \in Y^{*} x^{*} \in X^{*}$ satisfying

$$
\left\langle y^{*}, T x\right\rangle=\left\langle x^{*}, x\right\rangle \text { for all } x \in \mathcal{D}(T)
$$

is uniquely defined if and only if $\mathcal{D}(T)$ is dense. The only if part follows since if $\overline{\mathcal{D}(T)} \neq X$ then the Hahn-Banach theory there exits a nonzero $x_{0}^{*} \in X^{*}$ such that $\left\langle x_{0}^{*}, x\right\rangle=0$ for all
$\mathcal{D}(T)$, which contradicts to the uniqueness assumption. If T is bounded with $\mathcal{D}(T)=X$ then T^{*} is bounded with $\|T\|=\left\|T^{*}\right\|$.
Examples Consider the gradient operator $T: L^{2}(\Omega) \rightarrow L^{2}(\Omega)^{n}$ as

$$
T u=\nabla u=\left(D_{x_{1}} u, \cdots D_{x_{n}} u\right)
$$

with $\mathcal{D}(T)=H^{1}(\Omega)$. The, we have for $v \in L^{2}(\Omega)^{n}$

$$
T^{*} v=-\operatorname{div} v=-\sum D_{x_{k}} v_{k}
$$

with domain $\mathcal{D}\left(T^{*}\right)=\left\{v \in L^{2}(\Omega)^{n}: \operatorname{div} v \in L^{2}(\Omega)\right.$ and $n \cdot v=0$ at the boundary $\left.\partial \Omega\right\}$. In fact by the divergence theorem

$$
(T u, v)=\int_{\Omega} \nabla u \cdot v \int_{\partial \Omega}(n \cdot v) u d s-\int_{\Omega} u(\operatorname{div} v) d x=\left(u, T^{*} v\right)
$$

for all $v \in C^{1}(\Omega)$. First, let $u \in H_{0}^{1}(\Omega)$ we have $T^{*} v=-\operatorname{div} v \in L^{2}(\Omega)$ since $H_{0}^{1}(\Omega)$ is dense in $L^{2}(\Omega)$. Thus, $\left.n \cdot v \in L^{(} \partial \Omega\right)$ and $n \cdot v=0$.
Definition (Hilbert space Adjoint operator) Let X, Y be Hilbert spaces and T be a linear operator X into Y with dense domain $\mathcal{D}(T)$. The Hilbert self adjoint operator of T^{*} of T is a linear operator on Y into X defined by

$$
(y, T x)_{Y}=\left(T^{*} y, x\right)_{X}
$$

for all $x \in \mathcal{D}(T)$ and $y \in \mathcal{D}\left(T^{*}\right)$. Note that if we let $T^{\prime}: Y^{*} \rightarrow X^{*}$ is the dual operator of T, then

$$
T^{*} R_{Y^{*} \rightarrow Y}=R_{X^{*} \rightarrow X} T^{\prime}
$$

where $R_{X^{*} \rightarrow X}$ and $R_{Y^{*} \rightarrow Y}$ are the Riesz maps.
$\underline{\text { Examples (self-adjoint operator) }}$ Let $X=L^{2}(\Omega)$ and T be the Laplace operator

$$
T u=\Delta u=\sum_{k=1}^{n} D_{x_{k} x_{k}} u
$$

with domain $\mathcal{D}(T)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Then T is sel-adjoint, i.e., $T^{*}=T$. In fact

$$
(T u, v)_{X}=\int_{\Omega} \Delta u v d x=\int_{\partial \Omega}((n \cdot \nabla u) v-(n \cdot \nabla v) u) d s+\int_{\Omega} \Delta v u d x=\left(x, T^{*} v\right)
$$

for all $v \in C^{1}(\Omega)$.
Let us denote by $F: X \rightarrow X^{*}$, the duality mapping of X, i.e.,

$$
F(x)=\left\{x^{*} \in X^{*}:\left\langle x, x^{*}\right\rangle=|x|^{2}=\left|x^{*}\right|^{2}\right\} .
$$

By Hahn-Banach theorem, $F(x)$ is non-empty. In general F is multi-valued. Therefore, when X is a Hilbert space, $\langle\cdot, \cdot\rangle$ coincides with its inner product if X^{*} is identified with X and $F(x)=x$.

Let H be a Hilbert space with scalar product (ϕ, ψ) and X be a real, reflexive Banach space and $X \subset H$ with continuous dense injection. Let X^{*} denote the strong dual space of $X . H$ is identified with its dual so that $X \subset H=H^{*} \subset X^{*}$. The dual product $\langle\phi, \psi\rangle$ on $X \times X^{*}$ is the continuous extension of the scalar product of H restricted to $X \times H$.
Theorem (Alligned Element) Let X be a normed space. For each $x_{0} \in X$ there exists an $f \in X^{*}$ such that

$$
f\left(x_{0}\right)=|f|_{X^{*}}\left|x_{0}\right|_{X}
$$

Proof: Let $S=\left\{\alpha x_{0}: \alpha \in R\right\}$ and define $f\left(\alpha x_{0}\right)=\alpha\left|x_{0}\right|_{X}$. By Hahn-Banach theorem there exits an extension $F \in X^{*}$ of f such that $F(x) \leq|x|$ for all $x \in X$. Since

$$
-F(x)=F(-x) \leq|-x|=|x|
$$

we have $|F(x)| \leq|x|$, in particular $|F|_{X^{*}} \leq 1$. On the other hand, $F\left(x_{0}\right)=f\left(x_{0}\right)=\left|x_{0}\right|$, thus $|F|_{X^{*}}=1$ and $F\left(x_{0}\right)=f\left(x_{0}\right)=|F|\left|x_{0}\right|$.

The following proposition contains some further important properties of the duality mapping F.
Theorem (Duality Mapping) (a) $F(x)$ is a closed convex subset.
(b) If X^{*} is strictly convex (i.e., balls in X^{*} are strictly convex), then for any $x \in X, F(x)$ is single-valued. Moreover, the mapping $x \rightarrow F(x)$ is demicontinuous, i.e., if $x_{n} \rightarrow x$ in X, then $F\left(x_{n}\right)$ converges weakly star to $F(x)$ in X^{*}.
(c) Assume X be uniformly convex (i.e., for each $0<\epsilon<2$ there exists $\delta=\delta(\epsilon)>0$ such that if $|x|=|y|=1$ and $|x-y|>\epsilon$, then $|x+y| \leq 2(1-\delta)$). If x_{n} converges weakly to x and $\lim \sup _{n \rightarrow \infty}\left|x_{n}\right| \leq|x|$, then x_{n} converges strongly to x in X.
(d) If X^{*} is uniformly convex, then the mapping $x \rightarrow F(x)$ is uniformly continuous on bounded subsets of X.

Proof: (a) Closeness of $F(x)$ is an easy consequence of the follows from the continuity of the duality product. Choose $x_{1}^{*}, x_{2}^{*} \in F(x)$ and $\alpha \in(0,1)$. For arbitrary $z \in X$ we have (using $\left.\left|x_{1}^{*}\right|=\left|x_{2}^{*}\right|=|x|\right)\left\langle z, \alpha x_{1}^{*}+(1-\alpha) x_{2}^{*}\right\rangle \leq \alpha|z|\left|x_{1}^{*}\right|+(1-\alpha)|z|\left|x_{2}^{*}\right|=|z||x|$, which shows $\left|\alpha x_{1}^{*}+(1-\alpha) x_{2}^{*}\right| \leq|x|$. Using $\left\langle x, x^{*}\right\rangle=\left\langle x, x_{1}^{*}\right\rangle=|x|^{2}$ we get $\left\langle x, \alpha x_{1}^{*}+(1-\alpha) x_{2}^{*}\right\rangle=\alpha\left\langle x, x_{1}^{*}\right\rangle+$ $(1-\alpha)\left\langle x, x_{2}^{*}\right\rangle=|x|^{2}$, so that $\left|\alpha x_{1}^{*}+(1-\alpha) x_{2}^{*}\right|=|x|$. This proves $\alpha x_{1}^{*}+(1-\alpha) x_{2}^{*} \in F(x)$.
(b) Choose $x_{1}^{*}, x_{2}^{*} \in F(x), \alpha \in(0,1)$ and assume that $\left|\alpha x_{1}^{*}+(1-\alpha) x_{2}^{*}\right|=|x|$. Since X^{*} is strictly convex, this implies $x_{1}^{*}=x_{2}^{*}$. Let $\left\{x_{n}\right\}$ be a sequence such that $x_{n} \rightarrow x \in X$. From $\left|F\left(x_{n}\right)\right|=\left|x_{n}\right|$ and the fact that closed balls in X^{*} are weakly star compact we see that there exists a weakly star accumulation point x^{*} of $\left\{F\left(x_{n}\right)\right\}$. Since the closed ball in X^{*} is weakly star closed, thus

$$
\left\langle x, x^{*}\right\rangle=|x|^{2} \geq\left|x^{*}\right|^{2}
$$

Hence $\left\langle x, x^{*}\right\rangle=|x|^{2}=\left|x^{*}\right|^{2}$ and thus $x^{*}=F(x)$. Since $F(x)$ is single-valued, this implies $F\left(x_{n}\right)$ converges weakly to $F(x)$.
(c) Since $\liminf \left|x_{n}\right| \leq|x|$, thus $\lim _{n \rightarrow \infty}\left|x_{n}\right|=|x|$. We set $y_{n}=x_{n} /\left|x_{n}\right|$ and $y=x /|x|$. Then y_{n} converges weakly to y in X. Suppose y_{n} does not converge strongly to y in X. Then there exists an $\epsilon>0$ such that for a subsequence $y_{\tilde{n}}\left|y_{\tilde{n}}-y\right|>\epsilon$. Since X^{*} is uniformly convex there exists a $\delta>0$ such that $\left|y_{\tilde{n}}+y\right| \leq 2(1-\delta)$. Since the norm is weakly lower semicontinuos, letting $\tilde{n} \rightarrow \infty$ we obtain $|y| \leq 1-\delta$, which is a contradiction.
(d) Assume F is not uniformly continuous on bounded subsets of X. Then there exist constants $M>0, \epsilon>0$ and sequences $\left\{u_{n}\right\},\left\{v_{n}\right\}$ in X satisfying

$$
\left|u_{n}\right|,\left|v_{n}\right| \leq M, \quad\left|u_{n}-v_{n}\right| \rightarrow 0, \text { and }\left|F\left(u_{n}\right)-F\left(v_{n}\right)\right| \geq \epsilon .
$$

Without loss of the generality we can assume that, for a constant $\beta>0$, we have in addition $\left|u_{n}\right| \geq \beta,\left|v_{n}\right| \geq \beta$. We set $x_{n}=u_{n} /\left|u_{n}\right|$ and $y_{n}=v_{n} /\left|v_{n}\right|$. Then we have

$$
\begin{aligned}
& \left|x_{n}-y_{n}\right|=\frac{1}{\left|u_{n}\right|\left|v_{n}\right|}| | v_{n}\left|u_{n}-\left|u_{n}\right| v_{n}\right| \\
& \quad \leq \frac{1}{\beta^{2}}\left(\left|v_{n}\right|\left|u_{n}-v_{n}\right|+\| v_{n}\left|-\left|u_{n}\right|\right|\left|v_{n}\right|\right) \leq \frac{2 M}{\beta^{2}}\left|u_{n}-v_{n}\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Obviously we have $2 \geq\left|F\left(x_{n}\right)+F\left(y_{n}\right)\right| \geq\left\langle x_{n}, F\left(x_{n}\right)+F\left(y_{n}\right)\right\rangle$ and this together with

$$
\begin{gathered}
\left\langle x_{n}, F\left(x_{n}\right)+F\left(y_{n}\right)\right\rangle=\left|x_{n}\right|^{2}+\left|y_{n}\right|^{2}+\left\langle x_{n}-y_{n}, F\left(y_{n}\right)\right\rangle \\
=2+\left\langle x_{n}-y_{n}, F\left(y_{n}\right)\right\rangle \geq 2-\left|x_{n}-y_{n}\right|
\end{gathered}
$$

implies

$$
\lim _{n \rightarrow \infty}\left|F\left(x_{n}\right)+F\left(y_{n}\right)\right|=2
$$

Suppose there exists an $\epsilon_{0}>0$ and a subsequence $\left\{n_{k}\right\}$ such that $\left|F\left(x_{n_{k}}\right)-F\left(y_{n_{k}}\right)\right| \geq \epsilon_{0}$. Observing $\left|F\left(x_{n_{k}}\right)\right|=\left|F\left(y_{n_{k}}\right)\right|=1$ and using uniform convexity of X^{*} we conclude that there exists a $\delta_{0}>0$ such that

$$
\left|F\left(x_{n_{k}}\right)+F\left(y_{n_{k}}\right)\right| \leq 2\left(1-\delta_{0}\right),
$$

which is a contradiction to the above. Therefore we have $\lim _{n \rightarrow \infty}\left|F\left(x_{n}\right)-F\left(y_{n}\right)\right|=0$. Thus

$$
\left|F\left(u_{n}\right)-F\left(v_{n}\right)\right| \leq\left|u_{n}\right|\left|F\left(x_{n}\right)-F\left(y_{n}\right)\right|+\left|\left|u_{n}\right|-\left|v_{n}\right|\right|\left|F\left(y_{n}\right)\right|
$$

which implies $F\left(u_{n}\right)$ converges strongly to $F\left(v_{n}\right)$. This contradiction proves the result.
Problem Let $X=C[0,1]$ be the space of continuous functions with sup norm. Then show that $X^{*}=B V(0,1)=$ the space of (right continuous) bounded variation functions on $[0,1]$, i.e. for every $f \in X^{*}$ there exists $\nu \in B V(0,1)$ such that $f(x)=\int_{0}^{1} x(t) d \nu(t)$ (Riemann Stieltjes integral) for all $x \in X$. $\delta_{t_{0}} \in X^{*}$ (i.e. $\delta_{x_{0}}(\phi)=\phi\left(t_{0}\right)$ for $\phi \in X$). and $\delta_{t_{0}} \in F(x)$ for $t_{0} \in[0,1]$ satisfying $x\left(t_{0}\right)=\max _{t \in[0,1]}|x(t)|$.
Problem Let A be a closed linear operator on a Banach space. $D(A)=\operatorname{dom}(A)$ is a Banach space with the graph norm

$$
|x|_{D(A)}=|x|_{X}+|A x|_{X}
$$

Problem Let $c \in L^{\infty}(0,1)$. Define the linear operators $A_{1} u=-(c(x) u)_{x}$ in $X=L^{1}(0,1)$. and $A_{2} u=c(x) u_{x}$ in $X=L^{p}(0,1)$.
(a) Find $\operatorname{dom}\left(A_{2}\right)$ so that A_{2} is ω-dissipative. - Hint: $c^{\prime} \leq M$ (bounded above) if $p>\infty$. If $p=\infty$, then no condition is necessary. Inflow $c(0)>0$ and Outflow $c(0) \leq 0$.

Find $\operatorname{dom}\left(A_{1}\right)$ so that A_{1} is ω-dissipative. - Hint Assume $c>0$. Since $c u \in C[0,1]$ one can decompose $[0,1]$ the sub intervals $\left(t_{i}, t_{i+1}\right)$ on which $c u>0$ or $c u<0$ and $c u\left(t_{i}\right)=0$ and let $u^{*}=\operatorname{sign}_{0}(c u)=\operatorname{sign}_{0}(u)$. Thus, we have

$$
\left(A_{1} u, u^{*}\right)=\int_{0}^{1}\left(-(c u)_{x} u^{*}(x)\right) d x=c(0)|u(0)|-c(1)|u(1)|
$$

(c) In general show that $\operatorname{dom}\left(A_{1}\right)$ and $\operatorname{dom}\left(A_{2}\right)$ are different (Hint: piecewise constant)

1.1 Dissipativity

In order to obtain the useful equivalent conditions for the dissipativity, we consider the derivatives of the norm $|\cdot|$ of X, which define pairs in some way analogous to the inner product on a Hilbert space.

Definition 1.2 We define the functions $\langle\cdot, \cdot\rangle_{+},\langle\cdot, \cdot\rangle_{-}: X \times X \rightarrow R$ by

$$
\begin{aligned}
\langle y, x\rangle_{+} & =\lim _{\alpha \rightarrow 0^{+}} \frac{|x+\alpha y|-|x|}{\alpha} \\
\langle y, x\rangle_{-} & =\lim _{\alpha \rightarrow 0^{+}} \frac{|x|-|x-\alpha y|}{\alpha}
\end{aligned}
$$

Also, we defines the functions $\langle\cdot, \cdot\rangle_{s},\langle\cdot, \cdot\rangle_{i}: X \times X \rightarrow R$ by

$$
\begin{aligned}
& \langle y, x\rangle_{s}=\lim _{\alpha \rightarrow 0^{+}} \frac{|x+\alpha y|^{2}-|x|^{2}}{2 \alpha} \\
& \langle y, x\rangle_{i}=\lim _{\alpha \rightarrow 0^{+}} \frac{|x|^{2}-|x-\alpha y|^{2}}{2 \alpha}
\end{aligned}
$$

Here, we note that $\alpha^{-1}(|x+\alpha y|-|x|)$ is an increasing function. In fact, if $0<\alpha<\beta$ then

$$
(\beta-\alpha)|x|=|(\beta x+\alpha \beta y)-(\alpha x+\alpha \beta y)| \geq \beta|x+\alpha y|-\alpha|x+\beta y|
$$

and thus

$$
\beta^{-1}(|x+\beta y|-|x|) \geq \alpha^{-1}(|x+\alpha y|-|x|) .
$$

Moreover, since $\alpha^{-1}(|x+\alpha y|-|x|) \geq-|y|$, this function is bounded below. Hence, $\lim _{\alpha \rightarrow 0^{+}}=$ $\inf _{\alpha>0}$ exists for all $x, y \in X$. From the definition we have

$$
\begin{equation*}
\langle y, x\rangle_{-}=-\langle-y, x\rangle_{+} \quad \text { and } \quad\langle y, x\rangle_{i}=-\langle-y, x\rangle_{s} \tag{1.2}
\end{equation*}
$$

Since the norm is continuous, it follows that

$$
\begin{equation*}
\langle y, x\rangle_{s}=|x|\langle y, x\rangle_{+} \quad \text { and } \quad\langle y, x\rangle_{i}=|x|\langle y, x\rangle_{-} . \tag{1.3}
\end{equation*}
$$

Also, from $2|x| \leq|x+\alpha y|+|x-\alpha y|$, we have

$$
\alpha^{-1}(|x|-|x-\alpha y|) \leq \alpha^{-1}(|x+\alpha y|-|x|)
$$

Thus,

$$
\begin{equation*}
\langle y, x\rangle_{-} \leq\langle y, x\rangle_{+} \quad \text { and } \quad\langle y, x\rangle_{i} \leq\langle y, x\rangle_{s} \tag{1.4}
\end{equation*}
$$

Moreover, we have the following lemma.
Lemma 1.1 Let $x, y \in X$.
(1) There exists an element f^{+}such that

$$
\langle y, x\rangle_{s}=\sup \{\operatorname{Re}\langle y, f\rangle: f \in F(x)\}=\operatorname{Re}\left\langle y, f^{+}\right\rangle
$$

(2) There exists an element f^{-}such that

$$
\langle y, x\rangle_{i}=\inf \{\operatorname{Re}\langle y, f\rangle: f \in F(x)\}=\operatorname{Re}\left\langle y, f^{-}\right\rangle
$$

(3) $\langle\alpha x+y, x\rangle_{q}=\alpha|x|+\langle y, x\rangle_{q}$ for $\alpha \in R$ where q is either + or - .
(4) For $z \in X$

$$
\langle y+z, x\rangle_{-} \geq\langle y, x\rangle_{-}+\langle z, x\rangle_{-} \quad \text { and } \quad\langle y+z, x\rangle_{+} \leq\langle y, x\rangle_{+}+\langle z, x\rangle_{+}
$$

and thus

$$
\langle y, x\rangle_{-}-\langle z, x\rangle_{+} \leq\langle y-z, x\rangle_{-} \leq\langle y, x\rangle_{+}-\langle z, x\rangle_{-}
$$

(5) $\langle\cdot, \cdot\rangle_{-}: X \times X \rightarrow R$ is lower semicontinuous and $\langle\cdot, \cdot\rangle_{+}: X \times X \rightarrow R$ is upper semicontinuous.

Proof: (3) and (4) are obvious from the definition. For (5) since for each $\alpha>0$

$$
\alpha^{-1}(|x+\alpha y|-|x|)
$$

is a continuous function of $X \times X \rightarrow R$, the upper continuity of $\langle\cdot, \cdot\rangle_{+}$follows from its definition. Since $\langle y, x\rangle_{-}=-\langle-y, x\rangle_{+},\langle\cdot, \cdot\rangle_{-}: X \times X \rightarrow R$ is lower semicontinuous.

Now, the following theorem gives the equivalent conditions for the dissipativeness of A.
Theorem 1.2 Let $x, y \in X$. The following statements are equivalent.
(i) $R e\left\langle y, x^{*}\right\rangle \leq 0$. for some $x^{*} \in F(x)$.
(ii) $|x-\lambda y| \geq|x|$ for all $\lambda>0$.
(iii) $\langle y, x\rangle_{-} \leq 0$
(iv) $\langle y, x\rangle_{i} \leq 0$.

Proof: $(i) \rightarrow(i i)$. By the definition of F, we have

$$
|x|^{2}=\left\langle x, x^{*}\right\rangle \leq \operatorname{Re}\left\langle x-\lambda y, x^{*}\right\rangle \leq|x-\lambda y|\left|x^{*}\right|
$$

for all $\lambda>0$. Thus, (ii) holds.
(ii) $\rightarrow(i)$. For each $\lambda>0$ let $f_{\lambda} \in F(x-\lambda y)$. Then $\left|f_{\lambda}\right| \neq 0$ and we set $g_{\lambda}=\left|f_{\lambda}\right|^{-1} f_{\lambda}$. Since the unit sphere of the dual space X^{*} is compact in the weak-star topology of X^{*}, we may assume that

$$
\lim _{\lambda \rightarrow 0}\left\langle u, g_{\lambda}\right\rangle=\langle u, g\rangle \quad \text { for all } u \in X
$$

where g is some element in X^{*}. Next, since

$$
\begin{equation*}
|x| \leq|x-\lambda y|=\operatorname{Re}\left\langle x-\lambda y, g_{\lambda}\right\rangle \leq|x|-\lambda \operatorname{Re}\left\langle y, g_{\lambda}\right\rangle \tag{1.7}
\end{equation*}
$$

for all $\lambda>0$, it follows that $\operatorname{Re}\left\langle y, g_{\lambda}\right\rangle \leq 0$ for all $\lambda>0$, and letting $\lambda \rightarrow 0^{+}, \operatorname{Re}\langle y, g\rangle \leq 0$. Note that (1.7) also implies $|x| \leq R e\langle x, g\rangle$ and thus $\langle x, g\rangle=|x|$. This implies that $|x| g \in$ $F(x)$ and hence (i) holds.

Since $\alpha \rightarrow \alpha^{-1}(|x-\alpha y|-|x|)$ is an decreasing function (2) and (3) are equivalent by the definition of $\langle\cdot, \cdot\rangle_{-}$.

1.2 Lax-Milgram Theory and Applications

Let H be a Hilbert space with scalar product (ϕ, ψ) and X be a Hilbert space and $X \subset H$ with continuous dense injection. Let X^{*} denote the strong dual space of $X . H$ is identified with its dual so that $X \subset H=H^{*} \subset X^{*}$ (i.e., H is the pivoting space). The dual product $\langle\phi, \psi\rangle$ on $X^{*} \times X$ is the continuous extension of the scalar product of H restricted to $H \times X$. This framework is called the Gelfand triple.

Let σ is a bounded coercive bilinear form on $X \times X$. Note that given $x \in X, F(y)=$ $\sigma(x, y)$ defines a bounded linear functional on X. Since given $x \in X, y \rightarrow \sigma(x, y)$ is a bounded linear functional on X, say $x^{*} \in X^{*}$. We define a linear operator A from X into X^{*} by $x^{*}=A x$. Equation $\sigma(x, y)=F(y)$ for all $y \in X$ is equivalently written as an equation

$$
A x=F \in X^{*} .
$$

Here,

$$
\langle A x, y\rangle_{X^{*} \times X}=\sigma(x, y), \quad x, y \in X
$$

and thus A is a bounded linear operator. In fact,

$$
|A x|_{X^{*}} \leq \sup _{|y| \leq 1}|\sigma(x, y)| \leq M|x|
$$

Let R be the Riesz operator $X^{*} \rightarrow X$, i.e.,

$$
\left|R x^{*}\right|_{X}=\left|x^{*}\right| \text { and }\left(R x^{*}, x\right)_{X}=\left\langle x^{*}, x\right\rangle \text { for all } x \in X,
$$

then $\hat{A}=R A$ represents the linear operator $\hat{A} \in \mathcal{L}(X, X)$. Moreover, we define a linear operator \tilde{A} on H by

$$
\tilde{A} x=A x \in H
$$

with

$$
\operatorname{dom}(\tilde{A})=\left\{x \in X:|\sigma(x, y)| \leq c_{x}|y|_{H} \text { for all } y \in X\right\}
$$

That is, \tilde{A} is a restriction of A on $\operatorname{dom}(\tilde{A})$. We will use the symbol A for all three linear operators as above in the lecture note and its use should be understood by the underlining context.

Lax-Milgram Theorem Let X be a Hilbert space. Let σ be a (complex-valued) sesquilinear form on $X \times X$ satisfying

$$
\begin{gathered}
\sigma\left(\alpha x_{1}+\beta x_{2}, y\right)=\alpha \sigma\left(x_{1}, y\right)+\beta \sigma\left(x_{2}, y\right) \\
\sigma\left(x, \alpha y_{1}+\beta y_{2}\right)=\bar{\alpha} \sigma\left(x, y_{1}\right)+\bar{\beta} \sigma\left(x, y_{2}\right), \\
|\sigma(x, y)| \leq M|x||y| \quad \text { for all } x, y \in X \quad \text { (Bounded) }
\end{gathered}
$$

and

$$
\operatorname{Re} \sigma(x, x) \geq \delta|x|^{2} \text { for all } x \in X \text { and } \delta>0 \quad \text { (Coercive). }
$$

Then for each $f \in X^{*}$ there exist a unique solution $x \in X$ to

$$
\sigma(x, y)=\langle f, y\rangle_{X^{*} \times X} \quad \text { for all } y \in X
$$

and

$$
|x|_{X} \leq \delta^{-1}|f|_{X^{*}} .
$$

Proof: Let us define the linear operator S from X^{*} into X by

$$
S f=x, \quad f \in X^{*}
$$

where $x \in X$ satisfies

$$
\sigma(x, y)=\langle f, y\rangle \quad \text { for all } y \in X
$$

The operator S is well defined since if $x_{1}, x_{2} \in X$ satisfy the above, then $\sigma\left(x_{1}-x_{2}, y\right)=0$ for all $y \in X$ and thus $\delta\left|x_{1}-x_{2}\right|_{X}^{2} \leq \operatorname{Re} \sigma\left(x_{1}-x_{2}, x_{1}-x_{2}\right)=0$.

Next we show that $\operatorname{dom}(S)$ is closed in X^{*}. Suppose $f_{n} \in \operatorname{dom}(S)$, i.e., there exists $x_{n} \in X$ satisfying $\sigma\left(x_{n}, y\right)=\left\langle f_{n}, y\right\rangle$ for all $y \in X$ and $f_{n} \rightarrow f$ in X^{*} as $n \rightarrow \infty$. Then

$$
\sigma\left(x_{n}-x_{m}, y\right)=\left\langle f_{n}-f_{m}, y\right\rangle \quad \text { for all } y \in X
$$

Setting $y=x_{n}-x_{m}$ in this we obtain

$$
\delta\left|x_{n}-x_{m}\right|_{X}^{2} \leq \operatorname{Re} \sigma\left(x_{n}-x_{m}, x_{n}-x_{m}\right) \leq\left|f_{n}-f_{m}\right|_{X^{*}}\left|x_{n}-x_{m}\right|_{X} .
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in X and so $x_{n} \rightarrow x$ for some $x \in X$ as $n \rightarrow \infty$. Since σ and the dual product are continuous, thus $x=S f$.

Now we prove that $\operatorname{dom}(S)=X^{*}$. Suppose $\operatorname{dom}(S) \neq X^{*}$. Since $\operatorname{dom}(S)$ is closed there exists a nontrivial $x_{0} \in X$ such that $\left\langle f, x_{0}\right\rangle=0$ for all $f \in \operatorname{dom}(S)$. Consider the linear functional $F(y)=\sigma\left(x_{0}, y\right), y \in X$. Then since σ is bounded $F \in X^{*}$ and $x_{0}=S F$. Thus $F\left(x_{0}\right)=0$. But since $\sigma\left(x_{0}, x_{0}\right)=\left\langle F, x_{0}\right\rangle=0$, by the coercivity of $\sigma x_{0}=0$, which is a contradiction. Hence $\operatorname{dom}(S)=X^{*}$.

Assume that σ is coercive. By the Lax-Milgram theorem A has a bounded inverse $S=$ A^{-1}. Thus,

$$
\operatorname{dom}(\tilde{A})=A^{-1} H
$$

Moreover \tilde{A} is closed. In fact, if

$$
x_{n} \in \operatorname{dom}(\tilde{A}) \rightarrow x \text { and } f_{n}=A x_{n} \rightarrow f \text { in } H,
$$

then since $x_{n}=S f_{n}$ and S is bounded, $x=S f$ and thus $x \in \operatorname{dom}(\tilde{A})$ and $\tilde{A} x=f$.
If σ is symmetric, $\sigma(x, y)=(x, y)_{X}$ defines an inner product on X. and $S F$ coincides with the Riesz representation of $F \in X^{*}$. Moreover,

$$
\langle A x, y\rangle=\langle A y, x\rangle \text { for all } x, y \in X
$$

and thus \tilde{A} is a self-adjoint operator in H.
$\underline{\text { Example (Laplace operator) }}$ Consider $X=H_{0}^{1}(\Omega), H=L^{2}(\Omega)$ and

$$
\sigma(u, \phi)=(u, \phi)_{X}=\int_{\Omega} \nabla u \cdot \nabla \phi d x
$$

Then,

$$
A u=-\Delta u=-\left(\frac{\partial^{2}}{\partial x_{1}^{2}} u+\frac{\partial^{2}}{\partial x_{2}^{2}} u\right)
$$

and

$$
\operatorname{dom}(\tilde{A})=H^{2}(\Omega) \cap H_{0}^{1}(\Omega) .
$$

for Ω with C^{1} boundary or convex domain Ω.
For $\Omega=(0,1)$ and $f \in L^{2}(0,1)$

$$
\int_{0}^{1} \frac{d}{d x} y \frac{d}{d x} u d t=\int_{0}^{1} f(x) y(x) d x
$$

is equivalent to

$$
\int_{0}^{1} \frac{d}{d x} y\left(\frac{d}{d x} u+\int_{x}^{1} f(s) d s\right) d x=0
$$

for all $y \in H_{0}^{1}(0,1)$. Thus,

$$
\frac{d}{d x} u+\int_{x}^{1} f(s) d s=c(\text { a constant })
$$

and therefore $\frac{d}{d x} u \in H^{1}(0,1)$ and

$$
A u=-\frac{d^{2}}{d x^{2}} u=f \text { in } L^{2}(0,1)
$$

Example (Elliptic operator) Consider a second order elliptic equation

$$
\mathcal{A} u=-\nabla \cdot(a(x) \nabla u)+b(x) \cdot \nabla u+c(x) u(x)=f(x), \quad \frac{\partial u}{\partial \nu}=g \text { at } \Gamma_{1} \quad u=0 \text { at } \Gamma_{0}
$$

where Γ_{0} and Γ_{1} are disjoint and $\Gamma_{0} \cup \Gamma_{1}=\Gamma$. Integrating this against a test function ϕ, we have

$$
\int_{\Omega} \mathcal{A} u \phi d x=\int_{\Omega}(a(x) \nabla u \cdot \nabla \phi+b(x) \cdot \nabla u \phi+c(x) u \phi) d x-\int_{\Gamma_{1}} g \phi d s_{x}=\int_{\Omega} f(x) \phi(x) d x,
$$

for all $\phi \in C^{1}(\Omega)$ vanishing at Γ_{0}. Let $X=H_{\Gamma_{0}}^{1}(\Omega)$ is the completion of $C^{1}(\Omega)$ vanishing at Γ_{0} with inner product

$$
(u, \phi)=\int_{\Omega} \nabla u \cdot \nabla \phi d x
$$

i.e.,

$$
H_{\Gamma_{0}}^{1}(\Omega)=\left\{u \in H^{1}(\Omega):\left.u\right|_{\Gamma_{0}}=0\right\}
$$

Define the bilinear form σ on $X \times X$ by

$$
\sigma(u, \phi)=\int_{\Omega}(a(x) \nabla u \cdot \nabla \phi+b(x) \cdot \nabla u \phi+c(x) u \phi
$$

Then, by the Green's formula

$$
\begin{aligned}
& \sigma(u, u)=\int_{\Omega}\left(a(x)|\nabla u|^{2}+b(x) \cdot \nabla\left(\frac{1}{2}|u|^{2}\right)+c(x)|u|^{2}\right) d x \\
& \quad=\int_{\Omega}\left(a(x)|\nabla u|^{2}+\left(c(x)-\frac{1}{2} \nabla \cdot b\right)|u|^{2}\right) d x++\int_{\Gamma_{1}} \frac{1}{2} n \cdot b|u|^{2} d s_{x} .
\end{aligned}
$$

If we assume

$$
0<\underline{a} \leq a(x) \leq \bar{a}, \quad c(x)-\frac{1}{2} \nabla \cdot b \geq 0, \quad n \cdot b \geq 0 \text { at } \Gamma_{1},
$$

then σ is bounded and coercive with $\delta=\underline{a}$.
The Banach space version of Lax-Milgram theorem is as follows.
Banach-Necas-Babuska Theorem Let V and W be Banach spaces. Consider the linear equation for $u \in W$

$$
\begin{equation*}
a(u, v)=f(v) \quad \text { for all } v \in V \tag{1.1}
\end{equation*}
$$

for given $f \in V^{*}$, where a is a bounded bilinear form on $W \times V$. The problem is well-posed in if and only if the following conditions hold:

$$
\begin{align*}
& \inf _{u \in W} \sup _{v \in V} \frac{a(u, v)}{|u|_{W}|v|_{V}} \geq \delta>0 \tag{1.2}\\
& a(u, v)=0 \text { for all } u \in W \text { implies } v=0
\end{align*}
$$

Under conditions we have the unique solution $u \in W$ to (1.1) satisfies

$$
|u|_{W} \leq \frac{1}{\delta}|f|_{V^{*}}
$$

Proof: Let A be a bounded linear operator from W to V^{*} defined by

$$
\langle A u, v\rangle=a(u, v) \text { for all } u \in W, v \in V
$$

The inf-sup condition is equivalent to for any w?W

$$
|A w|_{V *} \geq \delta|u|_{W}
$$

and thus the range of $\mathrm{A}, R(A)$, is closed in V^{*} and $N(A)=0$. But since V is reflexive and

$$
\langle A u, v\rangle_{V^{*} \times V}=\left\langle u, A^{*} v\right\rangle_{W \times W^{*}}
$$

from the second condition $N\left(A^{*}\right)=\{0\}$. It thus follows from the closed range and open mapping theorems that A^{-1} is bounded.

Next, we consider the generalized Stokes system. Let V and Q be Hilbert spaces. We consider the mixed variational problem for $(u, p) \in V \times Q$ of the form

$$
\begin{equation*}
a(u, v)+b(p, v)=f(v), \quad b(u, q)=g(q) \tag{1.3}
\end{equation*}
$$

for all $v \in V$ and $q \in Q$, where a and b is bounded bilinear form on $V \times V$ and $V \times Q$. If we define the linear operators $A \in \mathcal{L}\left(V, V^{*}\right)$ and $B \in \mathcal{L}\left(V, Q^{*}\right)$ by

$$
\langle A u, v\rangle=a(u, v) \quad \text { and } \quad\langle B u, q\rangle=b(u, q)
$$

then it is equivalent to the operator form:

$$
\left(\begin{array}{cc}
A & B^{*} \\
B & 0
\end{array}\right)\binom{u}{p}=\binom{f}{g} .
$$

Assume the coercivity on a

$$
\begin{equation*}
a(u, u) \geq \delta|u|_{V}^{2} \tag{1.4}
\end{equation*}
$$

and the inf-sup condition on b

$$
\begin{equation*}
\inf _{q \in P} \sup _{u \in V} \frac{b(u, q)}{|u|_{V}|q|_{Q}} \geq \beta>0 \tag{1.5}
\end{equation*}
$$

Note that inf-sup condition that for all q there exists $u \in V$ such that $B u=q$ and $|u|_{V} \leq$ $\frac{1}{\beta}|q|_{Q}$. Also, it is equivalent to $\left|B^{*} p\right|_{V^{*}} \geq \beta|p|_{Q}$ for all $p \in Q$.
Theorem (Mixed problem) Under conditions (1.4)-(1.5) there exits a unique solution $(u, p) \in$ $\overline{V \times Q}$ to (1.3) and

$$
|u|_{V}+|p|_{Q} \leq c\left(|f|_{V^{*}}+|g|_{Q^{*}}\right)
$$

Proof: For $\epsilon>0$ consider the penalized problem

$$
\begin{align*}
& a\left(u_{\epsilon}, v\right)+b\left(v, P_{\epsilon}\right)=f(v), \quad \text { for all } v \in V \tag{1.6}\\
& -b\left(u_{\epsilon}, q\right)+\epsilon\left(p_{\epsilon}, q\right)_{Q}=-g(q) \quad \text { for all } q \in Q .
\end{align*}
$$

By the Lax-Milgram theorem for every $\epsilon>0$ there exists a unique solution. From the first equation

$$
\beta\left|p_{\epsilon}\right|_{Q} \leq\left|f-A u_{\epsilon}\right|_{V^{*}} \leq|f|_{V^{*}}+M\left|u_{\epsilon}\right|_{Q}
$$

Letting $v=u_{\epsilon}$ and $q=p_{\epsilon}$ in the first and second equation, we have

$$
\left.\delta\left|u_{\epsilon}\right|_{V}^{2}+\epsilon\left|p_{\epsilon}\right|_{Q}^{2} \leq\left.|f|_{V^{*}}| | u_{\epsilon}\right|_{V}+\left|p_{\epsilon}\right|_{Q}|g|_{Q^{*}} \leq C\left(|f|_{V^{*}}+|g|_{Q^{*}}\right)\left|u_{\epsilon}\right|_{V}\right)
$$

and thus $\left|u_{\epsilon}\right|_{V}$ and $\left|p_{\epsilon}\right|_{Q}$ as well, are bounded uniformly in $\epsilon>0$. Thus, $\left(u_{\epsilon}, p_{\epsilon}\right)$ has a weakly convergent subspace to (u, p) in $V \times Q$ and ($u, p)$ satisfies (1.3).

1.3 Distribution and Generalized Derivatives

In this section we introduce the distribution (generalized function). The concept of distribution is very essential for defining a generalized solution to PDEs and provides the foundation of PDE theory. Let $\mathcal{D}(\Omega)$ be a vector space of all infinitely many continuously differentiable functions $C_{0}^{\infty}(\Omega)$ with compact support in Ω. For any compact set K of Ω, let $\mathcal{D}_{K}(\Omega)$ be the set of all functions $f \in C_{0}^{\infty}(\Omega)$ whose support are in K. Define a family of seminorms on $\mathcal{D}(\Omega)$ by

$$
p_{K, m}(f)=\sup _{x \in K} \sup _{|s| \leq m}\left|D^{s} f(x)\right|
$$

where

$$
D^{s}=\left(\frac{\partial}{\partial x_{1}}\right)^{s_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{s_{n}}
$$

where $s=\left(s_{1}, \cdots, s_{n}\right)$ is nonnegative integer valued vector and $|s|=\sum s_{k} \leq m$. Then, $\mathcal{D}_{K}(\Omega)$ is a locally convex topological space.
Definition (Distribution) A linear functional T defined on $C_{0}^{\infty}(\Omega)$ is a distribution if for every compact subset K of Ω, there exists a positive constant C and a positive integer k such that

$$
|T(\phi)| \leq C \sup _{|s| \leq k, x \in K}\left|D^{s} \phi(x)\right| \text { for all } \phi \in \mathcal{D}_{K}(\Omega)
$$

Definition (Generalized Derivative) A distribution S defined by

$$
S(\phi)=-T\left(D_{x_{k}} \phi\right) \text { for all } \phi \in C_{0}^{\infty}(\Omega)
$$

is called the distributional derivative of T with respect to x_{k} and we denote $S=D_{x_{k}} T$.
In general we have

$$
S(\phi)=D^{s} T(\phi)=(-1)^{|s|} T\left(D^{s} \phi\right) \text { for all } \phi \in C_{0}^{\infty}(\Omega)
$$

This definition is naturally followed from that for f is continuously differentiable

$$
\int_{\Omega} D_{x_{k}} f \phi d x=-\int_{\Omega} f \frac{\partial}{\partial x_{k}} \phi d x
$$

and thus $D_{x_{k}} f=D_{x_{k}} T_{f}=T_{\frac{\partial}{\partial x_{k}}} f$. Thus, we let $D^{s} f$ denote the distributional derivative of T_{f}.

Example (Distribution) (1) For f is a locally integrable function on Ω, one defines the corresponding distribution by

$$
T_{f}(\phi)=\int_{\Omega} f \phi d x \text { for all } \phi \in C_{0}^{\infty}(\Omega)
$$

since

$$
\left|T_{f}(\phi)\right| \leq \int_{K}|f| d x \sup _{x \in K}|\phi(x)|
$$

(2) $T(\phi)=\phi(0)$ defines the Dirac delta δ_{0} at $x=0$, i.e.,

$$
\left|\delta_{0}(\phi)\right| \leq \sup _{x \in K}|\phi(x)| .
$$

(3) Let H be the Heaviside function defined by

$$
H(x)= \begin{cases}0 & \text { for } x<0 \\ 1 & \text { for } x \geq 0\end{cases}
$$

Then,

$$
D_{T_{H}}(\phi)=-\int_{-\infty}^{\infty} H(x) \phi^{\prime}(x) d x=\phi(0)
$$

and thus $D T_{H}=\delta_{0}$ is the Dirac delta function at $x=0$.
(4) The distributional solution for $-D^{2} u=\delta_{x_{0}}$ satisfies

$$
-\int_{-\infty}^{\infty} u \phi^{\prime \prime} d x=\phi\left(x_{0}\right)
$$

for all $\phi \in C_{0}^{\infty}(R)$. That is, $u=\frac{1}{2}\left|x-x_{0}\right|$ is the fundamental solution, i.e.,

$$
-\int_{-\infty}^{\infty}\left|x-x_{0}\right| \phi^{\prime \prime} d x=\int_{\infty}^{x_{0}} \phi^{\prime}(x) d x-\int_{x_{0}}^{\infty} \phi^{\prime}(x) d x=2 \phi\left(x_{0}\right)
$$

In general for $d \geq 2$ let

$$
G\left(x, x_{0}\right)= \begin{cases}\frac{1}{4 \pi} \log \left|x-x_{0}\right| & d=2 \\ c_{d}\left|x-x_{0}\right|^{2-d} & d \geq 3\end{cases}
$$

Then

$$
\Delta G\left(x, x_{0}\right)=0, \quad x \neq x_{0} .
$$

and $u=G\left(x, x_{0}\right)$ is the fundamental solution to to $-\Delta$ in R^{d},

$$
-\Delta u=\delta_{x_{0}}
$$

In fact, let $B_{\epsilon}=\left\{\left|x-x_{0}\right| \leq \epsilon\right\}$ and $\Gamma=\left\{\left|x-x_{0}\right|=\epsilon\right\}$ be the surface. By the divergence theorem

$$
\begin{aligned}
& \int_{R^{d} \backslash B_{\epsilon}\left(x_{0}\right)} G\left(x, x_{0}\right) \Delta \phi(x) d x=\int_{\Gamma} \frac{\partial}{\partial \nu} \phi\left(G\left(x, x_{0}\right)-\frac{\partial}{\partial \nu} G\left(x, x_{0}\right) \phi(s)\right) d s \\
& \quad=\int_{\Gamma}\left(\epsilon^{2-d} \frac{\partial \phi}{\partial \nu}-(2-d) \epsilon^{1-d} \phi(s)\right) d s \rightarrow \frac{1}{c_{d}} \phi\left(x_{0}\right)
\end{aligned}
$$

That is, $G\left(x, x_{0}\right)$ satisfies

$$
-\int_{R^{d}} G\left(x, x_{0}\right) \Delta \phi d x=\phi\left(x_{0}\right)
$$

In general let \mathcal{L} be a linear diffrenrtial operator and \mathcal{L}^{*} denote the formal adjoint operator of \mathcal{L} An locally integrable function u is said to be a distributional solution to $\mathcal{L} u=T$ where \mathcal{L} with a distribution T if

$$
\int_{\Omega} u\left(\mathcal{L}^{*} \phi\right) d x=T(\phi)
$$

for all $\phi \in C_{0}^{\infty}(\Omega)$.

$$
W^{m, p}(\Omega)=\left\{f \in L^{p}(\Omega): D^{s} f \in L^{p}(\Omega),|s| \leq m\right\}
$$

with norm

$$
|f|_{W^{m, p}(\Omega)}=\left(\int_{\Omega} \sum_{|s| \leq m}\left|D^{s} f\right|^{p} d x\right)^{\frac{1}{p}}
$$

That is,

$$
\left|D^{s} f(\phi)\right| \leq c|\phi|_{L^{q}} \text { with } \frac{1}{p}+\frac{1}{q}=1
$$

Remark (1) $X=W^{m, p}(\Omega)$ is complete. In fact If $\left\{f_{n}\right\}$ is Cauchy in X, then $\left\{D^{s} f_{n}\right\}$ is Cauchy in $L^{p}(\Omega)$ for all $|s| \leq m$. Since $L^{p}(\Omega)$ is complete, $D^{s} f_{n} \rightarrow g^{s}$ in $L^{p}(\Omega)$. But since

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} D^{s} \phi d x=\int_{\Omega} f D^{s} \phi d x=\int g^{s} \phi d x
$$

we have $D^{s} f=g^{s}$ for all $|s| \leq m$ and $\left|f_{n}-f\right|_{X} \rightarrow 0$ as $n \rightarrow \infty$.
(2) $H^{m, p} \subset W^{1, p}(\Omega)$. Let $H^{m, p}(\Omega)$ be the completion of $C^{m}(\Omega)$ with respect to $W^{I, p}(\Omega)$ norm. That is, $f \in H^{m, p}(\Omega)$ there exists a sequence $f_{n} \in C^{m}(\Omega)$ such that $f_{n} \rightarrow f$ and $D^{s} f_{n} \rightarrow g^{s}$ strongly in $L^{p}(\Omega)$ and thus

$$
D^{s} f_{n}(\phi)=(-1)^{|s|} \int_{\Omega} D_{s} f_{n} \phi d x \rightarrow(-1)^{|s|} \int_{\Omega} g^{s} \phi d x
$$

which implies $g^{s}=D^{s} f$ and $f \in W^{1, p}(\Omega)$.
(3) If Ω has a Lipschitz continuous boundary, then

$$
W^{m, p}(\Omega)=H^{m, p}(\Omega)
$$

2 Minty-Browder Theorem

Definition (Monotone Mapping)

(a) A mapping $A \subset X \times X^{*}$ be given. is called monotone if

$$
\left\langle x_{1}-x_{2}, y_{1}-y_{2}\right\rangle \geq 0 \quad \text { for all }\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right] \in A
$$

(b) A monotone mapping A is called maximal monotone if any monotone extension of A coincides with A, i.e., if for $[x, y] \in X \times X^{*},\langle x-u, y-v\rangle \geq 0$ for all $[u, v] \in A$ then $[x, y] \in A$.
(c) The operator A is called coercive if for all sequences $\left[x_{n}, y_{n}\right] \in A$ with $\lim _{n \rightarrow \infty}\left|x_{n}\right|=\infty$ we have

$$
\lim _{n \rightarrow \infty} \frac{\left\langle x_{n}, y_{n}\right\rangle}{\left|x_{n}\right|}=\infty
$$

(d) Assume that A is single-valued with $\operatorname{dom}(A)=X$. The operator A is called hemicontinuous on X if for all $x_{1}, x_{2}, x \in X$, the function defined by

$$
t \in R \rightarrow\left\langle x, A\left(x_{1}+t x_{2}\right)\right\rangle
$$

is continuous on R.
For example, let F be the duality mapping of X. Then F is monotone, coercive and hemicontinuous. Indeed, for $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right] \in F$ we have

$$
\begin{equation*}
\left\langle x_{1}-x_{2}, y_{1}-y_{2}\right\rangle=\left|x_{1}\right|^{2}-\left\langle x_{1}, y_{2}\right\rangle-\left\langle x_{2}, y_{1}\right\rangle+\left|x_{2}\right|^{2} \geq\left(\left|x_{1}\right|-\left|x_{2}\right|\right)^{2} \geq 0 \tag{2.1}
\end{equation*}
$$

which shows monotonicity of F. Coercivity is obvious and hemicontinuity follows from the continuity of the duality product.
Lemma 1 Let X be a finite dimensional Banach space and A be a hemicontinuous monotone operator from X to X^{*}. Then A is continuous.

Proof: We first show that A is bounded on bounded subsets. In fact, otherwise there exists a sequence $\left\{x_{n}\right\}$ in X such that $\left|A x_{n}\right| \rightarrow \infty$ and $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. By monotonicity we have

$$
\left\langle x_{n}-x, \frac{A x_{n}}{\left|A x_{n}\right|}-\frac{A x}{\left|A x_{n}\right|}\right\rangle \geq 0 \quad \text { for all } x \in X .
$$

Without loss of generality we can assume that $\frac{A x_{n}}{\left|A x_{n}\right|} \rightarrow y_{0}$ in X^{*} as $n \rightarrow \infty$. Thus

$$
\left\langle x_{0}-x, y_{0}\right\rangle \geq 0 \quad \text { for all } x \in X
$$

and therefore $y_{0}=0$. This is a contradiction and thus A is bounded. Now, assume $\left\{x_{n}\right\}$ converges to x_{0} and let y_{0} be a cluster point of $\left\{A x_{n}\right\}$. Again by monotonicity of A

$$
\left\langle x_{0}-x, y_{0}-A x\right\rangle \geq 0 \quad \text { for all } x \in X
$$

Setting $x=x_{0}+t\left(u-x_{0}\right), t>0$ for arbitrary $u \in X$, we have

$$
\left\langle x_{0}-u, y_{0}-A\left(x_{0}+t\left(u-x_{0}\right)\right) \geq 0\right\rangle \text { for all } u \in X .
$$

Then, letting limit $t \rightarrow 0^{+}$, by hemicontinuity of A we have

$$
\left\langle x_{0}-u, y_{0}-A x_{0}\right\rangle \geq 0 \quad \text { for all } u \in X,
$$

which implies $y_{0}=A x_{0}$.
Lemma 2 Let X be a reflexive Banach space and $A: X \rightarrow X^{*}$ be a hemicontinuous monotone operator. Then A is maximumal monotone.

Proof: For $\left[x_{0}, y_{0}\right] \in X \times X^{*}$

$$
\left\langle x_{0}-u, y_{0}-A u\right\rangle \geq 0 \quad \text { for all } u \in X
$$

Setting $u=x_{0}+t\left(x-x_{0}\right), t>0$ and letting $t \rightarrow 0^{+}$, by hemicontinuity of A we have

$$
\left\langle x_{0}-x, y_{0}-A x_{0}\right\rangle \geq 0 \quad \text { for all } x \in X
$$

Hence $y_{0}=A x_{0}$ and thus A is maximum monotone.
The next theorem characterizes maximal monotone operators by a range condition.
Minty-Browder Theorem Assume that X, X^{*} are reflexive and strictly convex. Let F denote the duality mapping of X and assume that $A \subset X \times X^{*}$ is monotone. Then A is maximal monotone if and only if

$$
\operatorname{Range}(\lambda F+A)=X^{*}
$$

for all $\lambda>0$ or, equivalently, for some $\lambda>0$.
Proof: Assume that the range condition is satisfied for some $\lambda>0$ and let $\left[x_{0}, y_{0}\right] \in X \times X^{*}$ be such that

$$
\left\langle x_{0}-u, y_{0}-v\right\rangle \geq 0 \quad \text { for all }[u, v] \in A
$$

Then there exists an element $\left[x_{1}, y_{1}\right] \in A$ with

$$
\begin{equation*}
\lambda F x_{1}+y_{1}=\lambda F x_{0}+y_{0} \tag{2.2}
\end{equation*}
$$

From these we obtain, setting $[u, v]=\left[x_{1}, y_{1}\right]$,

$$
\left\langle x_{1}-x_{0}, F x_{1}-F x_{0}\right\rangle \leq 0 .
$$

By monotonicity of F we also have the converse inequality, so that

$$
\left\langle x_{1}-x_{0}, F x_{1}-F x_{0}\right\rangle=0
$$

From (2.1) this implies that $\left|x_{1}\right|=\left|x_{0}\right|$ and $\left\langle x_{1}, F x_{0}\right\rangle=\left|x_{1}\right|^{2},\left\langle x_{0}, F x_{1}\right\rangle=\left|x_{0}\right|^{2}$. Hence $F x_{0}=F x_{1}$ and

$$
\left\langle x_{1}, F x_{0}\right\rangle=\left\langle x_{0}, F x_{0}\right\rangle=\left|x_{0}\right|^{2}=\left|F x_{0}\right|^{2} .
$$

If we denote by F^{*} the duality mapping of X^{*} (which is also single-valued), then the last equation implies $x_{1}=x_{0}=F^{*}\left(F x_{0}\right)$. This and (2.2) imply that $\left[x_{0}, y_{0}\right]=\left[x_{1}, y_{1}\right] \in A$, which proves that A is maximal monotone.

In stead of the detailed proof of "only if' part of Theorem, we state the following results.

Corollary Let X be reflexive and A be a monotone, everywhere defined, hemicontinous operator. If A is coercive, then $R(A)=X^{*}$.
Proof: Suppose A is coercive. Let $y_{0} \in X^{*}$ be arbitrary. By the Appland's renorming theorem, we may assume that X and X^{*} are strictly convex Banach spaces. It then follows from Theorem that every $\lambda>0$, equation

$$
\lambda F x_{\lambda}+A x_{\lambda}=y_{0}
$$

has a solution $x_{\lambda} \in X$. Multiplying this by x_{λ},

$$
\lambda\left|x_{\lambda}\right|^{2}+\left\langle x_{\lambda}, A x_{\lambda}\right\rangle=\left\langle y_{0}, x_{\lambda}\right\rangle .
$$

and thus

$$
\frac{\left\langle x_{\lambda}, A x_{\lambda}\right\rangle}{\left|x_{\lambda}\right|_{X}} \leq\left|y_{0}\right|_{X^{*}}
$$

Since A is coercive, this implies that $\left\{x_{\lambda}\right\}$ is bounded in X as $\lambda \rightarrow 0^{+}$. Thus, we may assume that x_{λ} converges weakly to x_{0} in X and $A x_{\lambda}$ converges strongly to y_{0} in X^{*} as $\lambda \rightarrow 0^{+}$. Since A is monotone

$$
\left\langle x_{\lambda}-x, y_{0}-\lambda F x_{\lambda}-A x\right\rangle \geq 0
$$

and letting $\lambda \rightarrow 0^{+}$, we have

$$
\left\langle x_{0}-x, y_{0}-A x\right\rangle \geq 0,
$$

for all $x \in X$. Since A is maximal monotone, this implies $y_{0}=A x_{0}$. Hence, we conclude $R(A)=X^{*}$.

Theorem (Galerkin Approximation) Assume X is a reflexive, separable Banach space and A is a bounded, hemicontinuous, coercive monotone operator from X into X^{*}. Let $X_{n}=\operatorname{span}\{\phi\}_{i=1}^{n}$ satisfies the density condition: for each $\psi \in X$ and any $\epsilon>0$ there exists a sequence $\psi_{n} \in X_{n}$ such that $\left|\psi-\psi_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. The x_{n} be the solution to

$$
\begin{equation*}
\left\langle\psi, A x_{n}\right\rangle=\langle\psi, f\rangle \quad \text { for all } \psi \in X_{n}, \tag{2.3}
\end{equation*}
$$

then there exists a subsequence of $\left\{x_{n}\right\}$ that converges weakly to a solution to $A x=f$.
Proof: Since $\langle x, A x\rangle /|x|_{X} \rightarrow \infty$ as $|x|_{X} \rightarrow \infty$ there exists a solution x_{n} to (2.3) and $\left|x_{n}\right|_{X}$ is bounded. Since A is bounded, thus $A x_{n}$ bounded. Thus there exists a subsequence of $\{n\}$ (denoted by the same) such that x_{n} converges weakly to x in X and $A x_{n}$ converges weakly in X^{*}. Since

$$
\lim _{n \rightarrow \infty}\left\langle\psi, A x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left(\left\langle\psi_{n}, f\right\rangle+\left\langle\psi-\psi_{n}, A x_{n}\right\rangle\right)=\langle\psi, f\rangle
$$

$A x_{n}$ converges weakly to f. Since A is monotone

$$
\left\langle x_{n}-u, A x_{n}-A u\right\rangle \geq 0 \quad \text { for all } u \in X
$$

Note that

$$
\lim _{n \rightarrow \infty}\left\langle x_{n}, A x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, f\right\rangle=\langle x, f\rangle .
$$

Thus taking limit $n \rightarrow \infty$, we obtain

$$
\langle x-u, f-A u\rangle \geq 0 \text { for all } u \in X .
$$

Since A is maximum monotone this implies $A x=f$.
The main theorem for monotone operators applies directly to the model problem involving the p-Laplace operator

$$
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f \text { on } \Omega
$$

(with appropriate boundary conditions) and

$$
-\Delta u+c u=f, \quad-\frac{\partial}{\partial n} u \in \beta(u) . \text { at } \partial \Omega
$$

with β maximal monotone on R. Also, nonlinear problems of non-variational form are applicable, e.g.,

$$
L u+F(u)=f \text { on } \Omega
$$

where

$$
L(u)=-\operatorname{div}(\sigma(\nabla u)-\vec{b} u)
$$

and we are looking for a solution $u \in W_{0}^{1, p}(\Omega), 1<p<\infty$. We assume the following conditions:
(i) Monotonicity for the principle part $L(u)$:

$$
(\sigma(\xi)-\sigma(\eta), \xi-\eta)_{R^{n}} \geq 0 \text { for all } \xi, \eta \in R^{n}
$$

(ii) Monotonicity for $F=F(u)$:

$$
(F(u)-F(v), u-v) \geq 0 \text { for all } u, v \in R .
$$

(iii) Coerciveness and Growth condition: for some $c, d>0$

$$
(\sigma(\xi), \sigma) \geq c|\xi|^{p}, \quad|\sigma(\xi)| \leq d\left(1+|\xi|^{p-1}\right)
$$

hold for all $\xi \in R^{n}$.

3 Convex Functional and Subdifferential

Definition (Convex Functional) (1) A proper convex functional on a Banach space X is a function φ from X to $(-\infty, \infty]$, not identically $+\infty$ such that

$$
\varphi\left((1-\lambda) x_{1}+\lambda x_{2}\right) \leq(1-\lambda) \varphi\left(x_{1}\right)+\lambda \varphi\left(x_{2}\right)
$$

for all $x_{1}, x_{2} \in X$ and $0 \leq \lambda \leq 1$.
(2) A functional $\varphi: X \rightarrow R$ is said to be lower-semicontinuous if

$$
\varphi(x) \leq \liminf _{y \rightarrow x} \varphi(y) \quad \text { for all } x \in X
$$

(3) A functional $\varphi: X \rightarrow R$ is said to be weakly lower-semicontinuous if

$$
\varphi(x) \leq \liminf _{n \rightarrow \infty} \varphi\left(x_{n}\right)
$$

for all weakly convergent sequence $\left\{x_{n}\right\}$ to x.
(4) The subset $D(\varphi)=\{x \in X ; \varphi(x)<\infty\}$ of X is called the domain of φ.
(5) The epigraph of φ is defined by $\operatorname{epi}(\varphi)=\{(x, c) \in X \times R: \varphi(x) \leq c\}$.

Lemma 3 A convex functional φ is lower-semicontinuous if and only if it is weakly lowersemicontinuous on X.
Proof: Since the level set $\{x \in X: \varphi(x) \leq c\}$ is a closed convex subset if φ is lowersemicontinuous. Thus, the claim follows the fact that a convex subset of X is closed if and only if it is weakly closed.

Lemma 4 If φ be a proper lower-semicontinuous, convex functional on X, then φ is bounded below by an affine functional, i.e., there exist $x^{*} \in X^{*}$ and $c \in R$ such that

$$
\varphi(x) \geq\left\langle x^{*}, x\right\rangle+\beta, \quad x \in X
$$

Proof: Let $x_{0} \in X$ and $\beta \in R$ be such that $\varphi\left(x_{0}\right)>c$. Since φ is lower-semicontinuous on X, there exists an open neighborhood $V\left(x_{0}\right)$ of X_{0} such that $\varphi(x)>c$ for all $x \in V\left(x_{0}\right)$. Since the ephigraph $\operatorname{epi}(\varphi)$ is a closed convex subset of the product space $X \times R$. It follows from the separation theorem for convex sets that there exists a closed hyperplane $H \subset X \times R$;

$$
H=\left\{(x, r) \in X \times R:\left\langle x_{0}^{*}, x\right\rangle+r=\alpha\right\} \quad \text { with } x_{0}^{*} \in X^{*}, \alpha \in R,
$$

that separates epi (φ) and $V\left(x_{0}\right) \times(-\infty, c)$. Since $\left\{x_{0}\right\} \times(-\infty, c) \subset\{(x, r) \in X \times R$: $\left.\left\langle x_{0}^{*}, x\right\rangle+r<\alpha\right\}$ it follows that

$$
\left\langle x_{0}^{*}, x\right\rangle+r>\alpha \quad \text { for all }(x, c) \in e p i(\varphi)
$$

which yields the desired estimate.
Theorem C. 6 If $F: X \rightarrow(-\infty, \infty]$ is convex and bounded on an open set U, then F is continuous on U.
Proof: We choose $M \in R$ such that $F(x) \leq M-1$ for all $x \in U$. Let \hat{x} be any element in U. Since U is open there exists a $\delta>0$ such that the open ball $\{x \in X:|x-\hat{x}|<\delta$ is contained in U. For any epsilon $\in(0,1)$, let $\theta=\frac{\epsilon}{M-F(\hat{x})}$. Then for $x \in X$ satisfying $|x-\hat{x}|<\theta \delta$

$$
\left|\frac{x-\hat{x}}{\theta}+\hat{x}-\hat{x}\right|=\frac{|x-\hat{x}|}{\theta}<\delta
$$

Hence $\frac{x-\hat{x}}{\theta}+\hat{x} \in U$. By the convexity of F

$$
F(x) \leq(1-\theta) F(\hat{x})+\theta F\left(\frac{x-\hat{x}}{\theta}+\hat{x}\right) \leq(1-\theta) F(\hat{x})+\theta M
$$

and thus

$$
F(x)-F(\hat{x})<\theta(M-F(\hat{x})=\epsilon
$$

Similarly, $\frac{\hat{x}-x}{\theta}+\hat{x} \in U$ and

$$
F(\hat{x}) \leq \frac{\theta}{1+\theta} F\left(\frac{\hat{x}-x}{\theta}+\hat{x}\right)+\frac{1}{1+\theta} F(x)<\frac{\theta M}{1+\theta}+\frac{1}{1+\theta} F(x)
$$

which implies

$$
F(x)-F(\hat{x})>-\theta(M-F(\hat{x})=-\epsilon
$$

Therefore $|F(x)-F(\bar{x})|<\epsilon$ if $|x-\hat{x}|<\theta \delta$ and F is continuous in U.
Definition (Subdifferential) Given a proper convex functional φ on a Banach space X the subdifferential of $\partial \varphi(x)$ is a subset in X^{*}, defined by

$$
\partial \varphi(x)=\left\{x^{*} \in X^{*}: \varphi(y)-\varphi(x) \geq\left\langle x^{*}, y-x\right\rangle \text { for all } y \in X\right\} .
$$

Since for $x_{1}^{*} \in \partial \varphi\left(x_{1}\right)$ and $x_{2}^{*} \in \partial \varphi\left(x_{2}\right)$,

$$
\begin{aligned}
& \varphi\left(x_{1}\right)-\varphi\left(x_{2}\right) \leq\left\langle x_{2}^{*}, x_{1}-x_{2}\right\rangle \\
& \varphi\left(x_{2}\right)-\varphi\left(x_{1}\right) \leq\left\langle x_{1}^{*}, x_{2}-x_{1}\right\rangle
\end{aligned}
$$

it follows that $\left\langle x_{1}^{*}-x_{2}^{*}, x_{1}-x_{2}\right\rangle \geq 0$. Hence $\partial \varphi$ is a monotone operator from X into X^{*}.
Example 1 Let φ be Gateaux differentiable at x. i.e., there exists $w^{*} \in X^{*}$ such that

$$
\lim _{t \rightarrow 0^{+}} \frac{\varphi(x+t v)-\varphi(x)}{t}=\left\langle w^{*}, h\right\rangle \quad \text { for all } h \in X
$$

and w^{*} is the Gateaux differential of φ at x and is denoted by $\varphi^{\prime}(x)$. If φ is convex, then φ is subdifferentiable at x and $\partial \varphi(x)=\left\{\varphi^{\prime}(x)\right\}$. Indeed, for $v=y-x$

$$
\frac{\varphi(x+t(y-x))-\varphi(x)}{t} \leq \varphi(y)-\varphi(x), \quad 0<t<1
$$

Letting $t \rightarrow 0^{+}$we have

$$
\varphi(y)-\varphi(x) \geq\left\langle\varphi^{\prime}(x), y-x\right\rangle \quad \text { for all } y \in X
$$

and thus $\varphi^{\prime}(x) \in \partial \varphi(x)$. On the other hand if $w^{*} \in \partial \varphi(x)$ we have for $y \in X$ and $t>0$

$$
\frac{\varphi(x+t y)-\varphi(x)}{t} \geq\left\langle w^{*}, y\right\rangle
$$

Taking limit $t \rightarrow 0^{+}$, we obtain

$$
\left\langle\varphi^{\prime}(x)-w^{*}, y\right\rangle \geq 0 \quad \text { for all } y \in X
$$

This implies $w^{*}=\varphi^{\prime}(x)$.
Example 2 If $\varphi(x)=\frac{1}{2}|x|^{2}$ then we will show that $\partial \varphi(x)=F(x)$, the duality mapping. In fact, if $x^{*} \in F(x)$, then

$$
\left\langle x^{*}, x-y,\right\rangle=|x|^{2}-\left\langle y, x^{*}\right\rangle \geq \frac{1}{2}\left(|x|^{2}-|y|^{2}\right) \quad \text { for all } y \in X
$$

Thus $x^{*} \in \partial \varphi(x)$. Conversely, if $x^{*} \in \partial \varphi(x)$, then

$$
\begin{equation*}
\frac{1}{2}\left(|y|^{2}-|x|^{2}\right) \geq\left\langle x^{*}, y-x\right\rangle \quad \text { for all } y \in X \tag{3.1}
\end{equation*}
$$

We let $y=t x, 0<t<1$ and obtain

$$
\frac{1+t}{2}|x|^{2} \leq\left\langle x, x^{*}\right\rangle
$$

and thus $|x|^{2} \leq\left\langle x, x^{*}\right\rangle$. Similarly, if $t>1$, then we conclude $|x|^{2} \geq\left\langle x, x^{*}\right\rangle$ and therefore $|x|^{2}=\left\langle x, x^{*}\right\rangle$ and $\left|x^{*}\right| \geq|x|$. On the other hand, letting $y=x+\lambda u, \lambda>0$ in (3.1), we have

$$
\lambda\left\langle x^{*}, u\right\rangle \leq \frac{1}{2}\left(|x+\lambda u|^{2}-|x|^{2}\right) \leq \lambda|u||x|+\lambda|u|^{2},
$$

which implies $\left\langle x^{*}, u\right\rangle \leq|u||x|$. Hence $\left|x^{*}\right| \leq|x|$ and we obtain $|x|^{2}=\left|x^{*}\right|^{2}=\left\langle x^{*}, x\right\rangle$.
Example 3 Let K be a closed convex subset of X and I_{K} be the indicator function of K, i.e.,

$$
I_{K}(x)= \begin{cases}0 & \text { if } x \in K \\ \infty & \text { otherwise }\end{cases}
$$

Obviously, I_{K} is convex and lower-semicontinuous on X. By definition we have for $x \in K$

$$
\partial I_{K}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x-y\right\rangle \geq 0 \text { for all } y \in K\right\}
$$

Thus $D\left(I_{K}\right)=D\left(\partial I_{K}\right)=K$ and $\partial_{K}(x)=\{0\}$ for each interior point of K. Moreover, if x lies on the boundary of K, then $\partial I_{K}(x)$ coincides with the cone of normals to K at x.

Note that $\partial F(x)$ is closed and convex and may be empty.
Theorem C. 10 If a convex function F is continuous at \bar{x} then $\partial F(\bar{x})$ is non empty.
Proof: Since F is continuous at x for any $\epsilon>0$ there exists a neighborhood U_{ϵ} of \bar{x} such that

$$
F(x) \leq F(\bar{x})+\epsilon, \quad x \in U_{\epsilon} .
$$

Then $U_{\epsilon} \times(F(\bar{x})+\epsilon, \infty)$ is an open set in $X \times R$ and is contained in epi F. Hence (epi $\left.F\right)^{o}$ is non empty. Since F is convex epi F is convex and (epi $F)^{\circ}$ is convex. For any neighborhood of O of $(\bar{x}, F(\bar{x}))$ there exists a $t<1$ such that $(\bar{x}, t F(\bar{x})) \in O$. But, $t F(\bar{x})<F(\bar{x})$ and so $(\bar{x}, t F(\bar{x})) \notin$ epi F. Thus $(\bar{x}, F(\bar{x})) \notin(\text { epi } F)^{o}$. By the Hahn Banach separation theorem, there exists a closed hyperplane $S=\left\{(x, a) \in X \times R:\left\langle x^{*}, x\right\rangle+\alpha a=\beta\right\}$ for nontrivial $\left(x^{*}, \alpha\right) \in X^{*} \times R$ and $\beta \in R$ such that

$$
\begin{align*}
& \left\langle x^{*}, x\right\rangle+\alpha a>\beta \text { for all }(x, a) \in(\text { epi } F)^{o} \\
& \left\langle x^{*}, \bar{x}\right\rangle+\alpha F(\bar{x})=\beta . \tag{3.2}
\end{align*}
$$

Since $\overline{(\text { epi } F)^{o}}=\overline{\text { epi } F}$ every neighborhood of $(x, a) \in$ epi F contains an element of (epi $\left.\varphi\right)^{o}$. Suppose $\left\langle x^{*}, x\right\rangle+\alpha a<\beta$. Then

$$
\left\{\left(x^{\prime}, a^{\prime}\right) \in X \times R:\left\langle x^{*}, x^{\prime}\right\rangle+\alpha a^{\prime}<\beta\right\}
$$

is an neighborhood of (x, a) and contains an element of (epi $F)^{o}$, which contradicts to (3.2). Hence

$$
\begin{equation*}
\left\langle x^{*}, x\right\rangle+\alpha a \geq \beta \quad \text { for all }(x, a) \in \operatorname{epi} F . \tag{3.3}
\end{equation*}
$$

Suppose $\alpha=0$. For any $u \in U_{\epsilon}$ there is an $a \in R$ such that $F(u) \leq a$. Then from (3.3)

$$
\left\langle x^{*}, u\right\rangle=\left\langle x^{*}, u\right\rangle+\alpha a \geq \beta
$$

and thus

$$
\left\langle x^{*}, u-\bar{x}\right\rangle \geq 0 \text { for all } u \in U_{\epsilon} .
$$

Choose a δ such that $|u-\bar{x}| \leq \delta$ implies $u \in U$. For any nonzero element $x \in X$ let $t=\frac{\delta}{|x|}$. Then $|(t x+\bar{x})-\bar{x}|=|t x|=\delta$ so that $t x+\bar{x} \in U_{\epsilon}$. Hence

$$
\left\langle x^{*}, x\right\rangle=\left\langle x^{*},(t x+\bar{x})-\bar{x}\right\rangle / t \geq 0 .
$$

Similarly, $-t x+\bar{x} \in U_{\epsilon}$ and

$$
\left\langle x^{*}, x\right\rangle=\left\langle x^{*},(-t x+\bar{x})-\bar{x}\right\rangle /(-t) \leq 0 .
$$

Thus, $\left\langle x^{*}, x\right\rangle$ and $x^{*}=0$, which is a contradiction. Therefore α is nonzero. It now follows from (3.2)-(3.3) that

$$
\left\langle-\frac{x^{*}}{\alpha}, x-\bar{x}\right\rangle+F(\bar{x}) \leq F(x)
$$

for all $x \in X$ and thus $-\frac{x^{*}}{\alpha} \in \partial F(\bar{x})$.
Definition (Lower semi-continuous) (1) A functional F is lower-semi continuous if

$$
\liminf _{n \rightarrow \infty} F\left(x_{n}\right) \geq F\left(\lim _{n \rightarrow \infty} x_{n}\right)
$$

(2) A functional F is weakly lower-semi continuous if

$$
\liminf _{n \rightarrow \infty} F\left(x_{n}\right) \geq F\left(w-\lim _{n \rightarrow \infty} x_{n}\right)
$$

Theorem (Lower-semicontinuous) (1) Norm is weakly lower-semi continuous.
(2) A convex lower-semicontinuous functional is weakly lower-semi continuous.

Proof: Assume $x_{n} \rightarrow x$ weakly in X. Let $x^{*} \in F(x)$, i.e., $\left\langle x^{*}, x\right\rangle=\left|x^{*}\right||x|$. Then, we have

$$
|x|^{2}=\lim _{n \rightarrow \infty}\left\langle x^{*}, x_{n}\right\rangle
$$

and

$$
\left|\left\langle x^{*}, x_{n}\right\rangle\right| \leq\left|x_{n}\right|\left|x^{*}\right| .
$$

Thus,

$$
\liminf _{n \rightarrow \infty}\left|x_{n}\right| \geq|x| .
$$

(2) Since F is convex,

$$
F\left(\sum_{k} t_{k} x_{k}\right) \leq \sum_{k} t_{k} F\left(x_{k}\right)
$$

for all convex combination of x_{k}, i.e., $\sum \sum_{k} t_{k}=1, t_{k} \geq 0$. By the Mazur lemma there exists a sequence of convex combination of weak convergent sequence $\left(\left\{x_{k}\right\},\left\{F\left(x_{k}\right)\right\}\right)$ to $(x, F(x))$ in $X \times R$ that converges strongly to $(x, F(x))$ and thus

$$
F(x) \leq \liminf n \rightarrow \infty F\left(x_{n}\right) .
$$

Theorem (Weierstrass) If $\varphi(x)$ is a lower-semicontinuous proper convex functional on a reflexible Banach X satisfying the coercivity $\lim _{|x| \rightarrow \infty} \varphi(x)=\infty$. Then there exists a minimizer $x^{*} \in X$ of φ. A minimizer x^{*} satisfies the (necessary) condition

$$
0 \in \partial \varphi\left(x^{*}\right)
$$

Proof: Since $\varphi\left(x_{0}\right)$ is coercive there exist a bounden minimizing sequence $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} \varphi\left(x_{n}\right)=\eta=\inf _{x \in X} \varphi(x)=0$. Since X is reflexible, there exits a weakly convergent
subsequence $x_{n_{k}}$ to $x^{*} \in X$. Since if the convex functional is lower-semicontinuous, then is weakly lower-semicontinuous. Thus, $\eta=\varphi\left(x^{*}\right)$. Since $\varphi(x)-\varphi\left(x^{*}\right) \geq 0$ for all $x \in X$, $0 \in \partial \varphi\left(x^{*}\right)$.

Theorem(Rockafellar) Let X be real Banach space. If φ is lower-semicontinuous proper convex functional on X, then $\partial \varphi$ is a maximal monotone operator from X into X^{*}.
Proof: We prove the theorem when X is reflexive. By Apuland theorem we can assume that X and X^{*} are strictly convex. By Minty-Browder theorem $\partial \varphi$ it suffices to prove that $R(F+\partial \varphi)=X^{*}$. For $x_{0}^{*} \in X^{*}$ we must show that equation $x_{0}^{*} \in F x+\partial \varphi(x)$ has at least a solution x_{0} Define the proper convex functional on X by

$$
f(x)=\frac{1}{2}|x|_{X}^{2}+\varphi(x)-\left\langle x_{0}^{*}, x\right\rangle .
$$

Since f is lower-semicontinuous and $f(x) \rightarrow \infty$ as $|x| \rightarrow \infty$ there exists $x_{0} \in D(f)$ such that $f\left(x_{0}\right) \leq f(x)$ for all $x \in X$. Since F is monotone

$$
\varphi(x)-\varphi\left(x_{0}\right) \geq\left\langle x_{0}^{*}, x-x_{0},\right\rangle-\left\langle x-x_{0}, F(x)\right\rangle .
$$

Setting $x_{t}=x_{0}+t\left(u-x_{0}\right)$ and since φ is convex, we have

$$
\varphi(u)-\varphi\left(x_{0}\right) \geq \frac{1}{t}\left(\varphi\left(x_{t}\right)-\varphi\left(x_{0}\right)\right) \geq\left\langle x_{0}^{*}, u-x_{0},\right\rangle-\left\langle F\left(x_{t}\right), u-x_{0}\right\rangle .
$$

Taking limit $t \rightarrow 0^{+}$, we obtain

$$
\varphi(u)-\varphi\left(x_{0}\right) \geq\left\langle x_{0}^{*}, u-x_{0}\right\rangle-\left\langle F\left(x_{0}\right), u-x_{0}\right\rangle,
$$

which implies $x_{0}^{*}-F\left(x_{0}\right) \in \partial \varphi\left(x_{0}\right)$.
We have the perturbation result.
Theorem Assume that X is a real Hilbert space and that A is a maximal monotone operator on X. Let φ be a proper, convex and lower semi-continuous functional on X satisfying $\operatorname{dom}(A) \cap \operatorname{dom}(\partial \varphi)$ is not empty and

$$
\varphi\left((I+\lambda A)^{-1} x\right) \leq \varphi(x)+\lambda M, \quad \text { for all } \lambda>0, x \in D(\varphi)
$$

where M is some non-negative constant. Then the operator $A+\partial \varphi$ is maximal monotone.
We use the following lemma.
Lemma Let A and B be m-dissipative operators on X. Then for every $y \in X$ the equation

$$
\begin{equation*}
y \in-A x-B_{\lambda} x \tag{3.4}
\end{equation*}
$$

has a unique solution $x \in \operatorname{dom}(A)$.
Proof: Equation (3.4) is equivalent to $y=x_{\lambda}-w_{\lambda}-B_{\lambda} x_{\lambda}$ for some $w_{\lambda} \in A\left(x_{\lambda}\right)$. Thus,

$$
\begin{aligned}
x_{\lambda} & -\frac{\lambda}{\lambda+1} w_{\lambda}=\frac{\lambda}{\lambda+1} y+\frac{1}{\lambda+1}\left(x_{\lambda}+\lambda B_{\lambda} x_{\lambda}\right) \\
& =\frac{\lambda}{\lambda+1} y+\frac{1}{\lambda+1}(I-\lambda B)^{-1} .
\end{aligned}
$$

Since A is m-dissipative, we conclude that (3.4) is equivalent to that x_{λ} is the fixed point of the operator

$$
\mathcal{F}_{\lambda} x=\left(I-\frac{\lambda}{\lambda+1} A\right)^{-1}\left(\frac{\lambda}{\lambda+1} y+\frac{1}{\lambda+1}(I-\lambda B)^{-1} x\right) .
$$

By m-dissipativity of the operators A and B their resolvents are contractions on X and thus

$$
\left|\mathcal{F}_{\lambda} x_{1}-\mathcal{F}_{\lambda} x_{2}\right| \leq \frac{\lambda}{\lambda+1}\left|x_{1}-x_{2}\right| \text { for all } \lambda>0, \quad x_{1}, x_{2} \in X
$$

Hence, \mathcal{F}_{λ} has the unique fixed point x_{λ} and $x_{\lambda} \in \operatorname{dom}(A)$ solves (3.4).
Proof of Theorem: From Lemma there exists x_{λ} for $y \in X$ such that

$$
y \in x_{\lambda}-(-A)_{\lambda} x_{\lambda}+\partial \varphi\left(x_{\lambda}\right)
$$

Moreover, one can show that $\left|x_{\lambda}\right|$ is bounded uniformly. Since

$$
y-x_{\lambda}+(-A)_{\lambda} x_{\lambda} \in \partial \varphi\left(x_{\lambda}\right)
$$

for $z \in X$

$$
\varphi(z)-\varphi\left(x_{\lambda}\right) \geq\left(z-x_{\lambda}, y-x_{\lambda}+(-A)_{\lambda} x_{\lambda}\right)
$$

Letting $\lambda(I+\lambda A)^{-1} x$, so that $z-x_{\lambda}=\lambda(-A)_{\lambda} x_{\lambda}$ and we obtain

$$
\left(\lambda(-A)_{\lambda} x_{\lambda}, y-x_{\lambda}+(-A)_{\lambda} x_{\lambda}\right) \leq \varphi\left((I+\lambda A)^{-1}\right)-\varphi\left(x_{\lambda}\right) \leq \lambda M
$$

and thus

$$
\left|(-A)_{\lambda} x_{\lambda}\right|^{2} \leq\left|(-A)_{\lambda} x_{\lambda}\right|\left|y-x_{\lambda}\right|+M .
$$

Since $x_{\lambda} \mid$ is bounded and so that $\left|(-A)_{\lambda} x_{\lambda}\right|$.

