
Take Home Final, Friday, April 29 and Due May 10th
Problem 1 Consider the beam equation
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where the Young moduli 0 < c̄ ≤ EI(x) ≤ c and the damping moduli Cd(x) ≥ 0 is bounded
and the mass 0 < ρ̄ ≤ ρ(x) ≤ ρ. Consider the following boundary conditions.
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Use the Gelfand triple formulation in Example, page 24 to prove the well-posedness of the
equation.

Problem 2 Consider the nonlinear heat equation

∂
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Show the convergence of the successive iterate (see, (1.4), page 87):

un − un−1

λ
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First show that |un|∞ ≤ |u0|∞ and let D = {|u|∞ ≤ |u0|∞} = Dα. Then, use Theorem 5.0,
page 87 to prove the convergence.
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