Take Home Final, Friday, April 29 and Due May 10th

Problem 1 Consider the beam equation

$$
\rho(x) \frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}\left(E I(x) \frac{\partial^{2} u}{\partial x^{2}}+C d(x) \frac{\partial^{3} u}{\partial t \partial x^{2}}\right)=0, \quad x \in(0, L)
$$

where the Young moduli $0<\bar{c} \leq E I(x) \leq \bar{c}$ and the damping moduli $C d(x) \geq 0$ is bounded and the mass $0<\bar{\rho} \leq \rho(x) \leq \bar{\rho}$. Consider the following boundary conditions.
(a) (simply supported) $\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)$ and $\frac{\partial^{3} u}{\partial x^{3}}(0, t)=\frac{\partial u^{3}}{\partial x^{3}}(L, t)=0$.
(b) (fixed-free ends) $u(0, t)=\frac{\partial u}{\partial x}(0, t)=0$ and $\frac{\partial u^{2}}{\partial x^{2}}(L, t)=\frac{\partial u^{3}}{\partial x^{3}}(L, t)=0$.

Use the Gelfand triple formulation in Example, page 24 to prove the well-posedness of the equation.

Problem 2 Consider the nonlinear heat equation

$$
\frac{\partial}{\partial t} u=\Delta u-u^{3}, \quad u=0 \text { at } \partial \Omega
$$

Show the convergence of the successive iterate (see, (1.4), page 87):

$$
\frac{u^{n}-u^{n-1}}{\lambda}=\Delta u^{n}-\left(u^{n-1}\right)^{2} u^{n}
$$

First show that $\left|u^{n}\right|_{\infty} \leq\left|u^{0}\right|_{\infty}$ and let $D=\left\{|u|_{\infty} \leq\left|u^{0}\right|_{\infty}\right\}=D_{\alpha}$. Then, use Theorem 5.0, page 87 to prove the convergence.

