
In this course we discuss the well-posededness of the evolution equations in Banach spaces.
Such problems arise in PDEs dynamics and functional equations. We develop the linear and
nonlinear theory for the corresponding solution semigroups. The lectures include for example
the Hille-Yosiida theory, Lumer-Philiips theory for linear semigroup and Crandall-Liggett
theory for nonlinear conrtractive semigroup and Crandall-Pazy theory for nonlinear evolution
equations. Especially, (numerical) approximation theory for PDE solutions are discussed
based on Trotter-Kato theory and Takahashi-Oharu theory, Chernoff theory and the operator
splitting method. The theory and its applications are examined and demonstrated using
many motivated PDE examples including linear dynamics (e.g. heat, wave and hyperbolic
equations) and nonlinear dynamics (e.g. nonlinear diffusion, conservation law, Hamilton-
Jacobi and Navier-Stokes equations). A new class of PDE examples are formulated and the
detailed applications of the theory is carried out.

The lecture also covers the basic elliptic theory via Lax-Milgram, Minty-Browder theory
and convex optimization. Functional analytic methods are also introduced for the basic
PDEs theory.

The students are expected to have the basic knowledge in real and functional analysis
and PDEs.

Lecture notes will be provided. Reference book: ”Evolution equations and Approxima-
tion” K. Ito and F. Kappel, World Scientific.

1 Linear Cauchy problem and C0-semigroup theory

In this section we discuss the Cauchy problem of the form

d

dt
u(t) = Au(t) + f(t), u(0) = u0 ∈ X

in a Banach space X, where u0 ∈ X is the initial condition and f ∈ L1(0, T ;X). Such
problems arise in PDE dynamics and functional equations.

We construct the mild solution u(t) ∈ C(0, T ;X):

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s) ds (1.1)

where a family of bounded linear operator {S(t), t ≥ 0} is C0-semigroup on X.

Definition (C0 semigroup) (1) Let X be a Banach space. A family of bounded linear
operators {S(t), t ≥ 0} on X is called a strongly continuous (C0) semigroup if

S(t+ s) = S(t)S(s) for t, s ≥ 0 with S(0) = I

|S(t)φ− φ| → 0 as t→ 0+ for all φ ∈ X.

(2) A linear operator A in X defined by

Aφ = lim
t→0+

S(t)φ− φ
t

(1.2)
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with

dom(A) = {φ ∈ X : the strong limit of lim
t→0+

S(t)φ− φ
t

in X exists}.

is called the infinitesimal generator of the C0 semigroup S(t).

In this section we present the basic theory of the linear C0-semigroup on a Banach space
X. The theory allows to analyze a wide class of the physical and engineering dynamics using
the unified framework. We also present the concrete examples to demonstrate the theory.
There is a necessary and sufficient condition (Hile-Yosida Theorem) for a closed, densely
defined linear A in X to be the infinitesimal generator of the C0 semigroup S(t). Moreover,
we will show that the mild solution u(t) satisfies

〈u(t), ψ〉 = 〈u0, ψ〉+

∫
(〈x(s), A∗ψ〉+ 〈f(s), ψ〉 ds (1.3)

for all ψ ∈ dom (A∗).
Examples (1) For A ∈ L(X), define a sequence of linear operators in X

SN(t) =
∑
k

1

k!
(At)k.

Then

|SN(t)| ≤
∑ 1

k!
(|A|t)k ≤ e|A| t

and
d

dt
SN(t) = ASN−1(t)

Since
S(t) = eAt = lim

N→∞
SN(t), (1.4)

in the operator norm, we have

d

dt
S(t) = AS(t) = S(t)A.

(2) Consider the the hyperbolic equation

ut + ux = 0, u(0, x) = u0(x) in (0, 1). (1.5)

Define the semigroup S(t) of translations on X = L2(0, 1) by

[S(t)u0](x) = ũ0(x− t), where ũ0(x) = 0, x ≤ 0, ũ0 = u0 on [0, 1]. (1.6)

Then, {S(t), t ≥ 0} is a C0 semigroup on X. If we define u(t, x) = [S(t)u0](x) with
u0 ∈ H1(0, 1) with u0(0) = 0 satisfies (1.8) a.e.. The generator A is given by

Aφ = −φ′ with dom(A) = {φ ∈ H1(0, 1) with φ(0) = 0}.

In fact
S(t)u0 − u0

t
=
ũ0(x− t)− ũ0

t
= −u′0(x), a.e. x ∈ (0, 1).

2



if u0 ∈ dom(A). Thus, u(t) = S(t)u0 satisfies the Cauchy problem d
dt
u(t) = Au(t) if

u0 ∈ dom(A).
On the other hand if we apply the operator exponential formula (1.4) for this A,

u(t, x) =
∞∑
k=0

(−1)k

k!
uk0(x)tk = u0(x− t)

for u0 ∈ C∞(0, 1), which coincides with (1.6). That is, the solution semigroup S(t) is the
extension of the operator exponential formula.
(3) Let Xt ∈ Rd is a Markov process, i.e.

Ex[g(Xt+h)|Ft] = E0,Xt [g(Xh)].

for all g ∈ X = L2(Rn). Define the linear operator S(t) by

(S(t)u0)(x) = E0,x[u0(Xt)], t ≥ 0, u0 ∈ X.

The semigroup property of S(t) follows from the Markov property, i.e.

S(t+s)u0 = E0,x[u0(Xt+s)] = E[E[u0(X0,x
t+s)|Ft] = E[E0,X0,x

t u0(Xs)]] = E[(S(t)u0)(Xs)] = S(s)(S(t)u0).

The strong continuity follows from that X0,x
t − x is a.s for all x ∈ Rn. If Xt = Bt is a

Brownian motion, then the semigroup S(t) is defined by

[S(t)u0](x) =
1

(
√

2πtσ)n

∫
Rn
e−
|x−y|2

2σ2 t u0(y) dy, (1.7)

and u(t) = S(t)u0 satisfies the heat equation.

ut =
σ2

2
∆u, u(0, x) = u0(x) in L2(Rn). (1.8)

1.1 Finite difference in time

Let A be closed, densely defined linear operator dom(A)→ X. We use the finite difference
method in time to construct the mild solution (1.1). For a stepsize λ > 0 consider a sequence
{un} in X generated by

un − un−1

λ
= Aun + fn−1, (1.9)

with

fn−1 =
1

λ

∫ nλ

(n−1)λ

f(t) dt.

Assume that for λ > 0 the resolvent operator

Jλ = (I − λA)−1

3



is bounded. Then, we have the product formula:

un = Jnλu0 +
n−1∑
k=0

Jn−kλ fk λ. (1.10)

In order to un ∈ X is uniformly bounded in n for all u0 ∈ X (with f = 0), it is necessary
that

|Jnλ | ≤
M

(1− λω)n
for λω < 1, (1.11)

for some M ≥ 1 and ω ∈ R.

Hille’s Theorem Define a piecewise constant function in X by

uλ(t) = uk−1 on [tk−1, tk)

Then,
max
t∈[0,T ]

|uλ − u(t)|X → 0

as λ→ 0+ to the mild solution (1.1). That is,

S(t)x = lim
n→∞

(I − t

n
A)[ t

n
]x

exists for all x ∈ X and {S(t), t ≥ 0} is the C0 semigoup on X and its generator is A, where
[s] is the largest integer less than s ∈ R.

Proof: First, note that

|Jλ| ≤
M

1− λω
and for x ∈ dom(A)

Jλx− x = λJλAx,

and thus

|Jλx− x| = |λJλAx| ≤
λ

1− λω
|Ax| → 0

as λ→ 0+. Since dom(A) is dense in X it follows that

|Jλx− x| → 0 as λ→ 0+ for all x ∈ X.

Define the linear operators Tλ(t) and Sλ(t) by

Sλ(t) = Jkλ and Tλ(t) = Jk−1
λ +

t− tk
λ

(Jkλ − Jk−1
λ ), on (tk−1, tk].

Then,
d

dt
Tλ(t) = ASλ(t), a.e. in t ∈ [0, T ].

Thus,

Tλ(t)u0−Tµ(t)u0 =

∫ t

0

d

ds
(Tλ(s)Tµ(t−s)u0) ds =

∫ t

0

(Sλ(s)Tµ(t−s)−Tλ(s)Sµ(t−s))Au0 ds
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Since

Tλ(s)u− Sλ(s)u =
s− tk
λ

Tλ(tk−1)(Jλ − I)u on s ∈ (tk−1, tk].

By the bounded convergence theorem

|Tλ(t)u0 − Tµ(t)u|X → 0

as λ, µ → 0+ for all u ∈ dom(A2). Thus, the unique limit defines the linear operator S(t)
by

S(t)u0 = lim
λ→0+

Sλ(t)u0. (1.12)

for all u0 ∈ dom(A2). Since

|Sλ(t)| ≤
M

(1− λω)[t/n]
≤Meωt

and dom(A2) is dense, (1.12) holds for all u0 ∈ X. Moreover, we have

S(t+ s)u = lim
λ→0+

Jn+m
λ = JnλJ

m
λ u = S(t)S(s)u

and limt→0+ S(t)u = limt→0+ Jtu = u for all u ∈ X. Thus, S(t) is the C0 semigroup on X.
Moreover, {S(t), t ≥ 0} is in the class G(M,ω), i.e.,

|S(t)| ≤Meωt.

Note that

Tλ(t)u0 − u0 = A

∫ t

0

Sλu0 ds.

Since limλ→0+ Tλ(t)u0 = limλ→0+ Sλ(t)u0 = S(t)u0 and A is closed, we have

S(t)u0 − u0 = A

∫ t

0

S(s)u0 ds,

∫ t

0

S(s)u0 ds ∈ dom(A).

If B is a generator of {S(t), t ≥ 0}, then

Bx = lim
t→0+

S(t)x− x
t

= Ax

if x ∈ dom(A). Conversely, if u0 ∈ dom(B), then u0 ∈ dom(A) since A is closed and
t→ S(t)u is continuous at 0 for all u ∈ X and thus

1

t
A

∫ t

0

S(s)u0 ds = Au0 as t→ 0+.

Hence

Au0 =
S(t)u0 − u0

t
= Bu0

That is, A is the generator of {S(t), t ≥ 0}.
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Similarly, we have

n−1∑
k=0

Jn−kλ fk =

∫ t

0

Sλ(t− s)f(s) ds→
∫ t

0

S(t− s)f(s) ds as λ→ 0+

by the Lebesgue dominated convergence theorem. �

The following theorem states the basic properties of C0 semigroups:

Theorem (Semigroup) (1) There exists M ≥ 1, ω ∈ R such that S ∈ G(M,ω) class, i.e.,

|S(t)| ≤M eωt, t ≥ 0. (1.13)

(2) If x(t) = S(t)x0, x0 ∈ X, then x ∈ C(0, T ;X)
(3) If x0 ∈ dom (A), then x ∈ C1(0, T ;X) ∩ C(0, T ; dom(A)) and

d

dt
x(t) = Ax(t) = AS(t)x0.

(4) The infinitesimal generator A is closed and densely defined. For x ∈ X

S(t)x− x = A

∫ t

0

S(s)x ds. (1.14)

(5) λ > ω the resolvent is given by

(λ I − A)−1 =

∫ ∞
0

e−λsS(s) ds (1.15)

with estimate

|(λ I − A)−n| ≤ M

(λ− ω)n
. (1.16)

Proof: (1) By the uniform boundedness principle there exists M ≥ 1 such that |S(t)| ≤ M
on [0, t0] For arbitrary t = k t0 + τ , k ∈ N and τ ∈ [0, t0) it follows from the semigroup
property we get

|S(t)| ≤ |S(τ)||S(t0|k ≤Mek log |S(t0)| ≤Meω t

with ω = 1
t0

log |S(t0)|.
(2) It follows from the semigroup property that for h > 0

x(t+ h)− x(t) = (S(h)− I)S(t)x0

and for t− h ≥ 0
x(t− h)− x(t) = S(t− h)(I − S(h))x0

Thus, x ∈ C(0, T ;X) follows from the strong continuity of S(t) at t = 0.
(3)–(4) Moreover,

x(t+ h)− x(t)

h
=
S(h)− I

h
S(t)x0 = S(t)

S(h)x0 − x0

h
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and thus S(t)x0 ∈ dom(A) and

lim
h→0+

x(t+ h)− x(t)

h
= AS(t)x0 = Ax(t).

Similarly,

lim
h→0+

x(t− h)− x(t)

−h
= lim

h→0+
S(t− h)

S(h)φ− φ
h

= S(t)Ax0.

Hence, for x0 ∈ dom(A)

S(t)x0 − x0 =

∫ t

0

S(s)Ax0 ds =

∫ t

0

AS(s)x0 ds = A

∫ t

0

S(s)x0 ds (1.17)

If xn ∈ don(A)→ x and Axn → y in X, we have

S(t)x− x =

∫ t

0

S(s)y ds

Since

lim
t→0+

1

t

∫ t

0

S(s)y ds = y

x ∈ dom(A) and y = Ax and hence A is closed. Since A is closed it follows from (1.17) that
for x ∈ X ∫ t

0

S(s)x ds ∈ dom(A)

and (1.14) holds. For x ∈ X let

xh =
1

h

∫ h

0

S(s)x ds ∈ dom(A)

Since xh → x as h→ 0+, dom(A) is dense in X.
(5) For λ > ω define Rt ∈ L(X) by

Rt =

∫ t

0

e−λsS(s) ds.

Since A− λ I is the infinitesimal generator of the semigroup eλtS(t), from (1.14)

(λ I − A)Rtx = x− e−λtS(t)x.

Since A is closed and |e−λtS(t)| → 0 as t→∞, we have R = limt→∞Rt satisfies

(λ I − A)Rφ = φ.

Conversely, for φ ∈ dom(A)

R(A− λ I)φ =

∫ ∞
0

e−λsS(s)(A− λ I)φ = lim
t→∞

e−λtS(t)φ− φ = −φ
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Hence

R =

∫ ∞
0

e−λsS(s) ds = (λ I − A)−1

Since for φ ∈ X

|Rx| ≤
∫ ∞

0

|e−λsS(s)x| ≤M

∫ ∞
0

e(ω−λ)s|x| ds =
M

λ− ω
|x|,

we have

|(λ I − A)−1| ≤ M

λ− ω
, λ > ω.

Note that

(λ I − A)−2 =

∫ ∞
0

e−λtS(t) ds

∫ ∞
0

eλ sS(s) ds =

∫ ∞
0

∫ ∞
0

e−λ(t+s)S(t+ s) ds dt

=

∫ ∞
0

∫ ∞
t

e−λσS(σ) dσ dt =

∫ ∞
0

σe−λσS(σ) dσ.

By induction, we obtain

(λ I − A)−n =
1

(n− 1)!

∫ ∞
0

tn−1e−λtS(t) dt. (1.18)

Thus,

|(λ I − A)−n| ≤ 1

(n− 1)!

∫ ∞
0

tn−1e−(λ−ω)t dt =
M

(λ− ω)n
.�

We then we have the necessary and sufficient condition:

Hile-Yosida Theorem A closed, densely defined linear operator A on a Banach space X
is the infinitesimal generator of a C0 semigroup of class G(M,ω) if and only if

|(λ I − A)−n| ≤ M

(λ− ω)n
for all λ > ω (1.19)

Proof: The sufficient part follows from the previous Theorem. In addition, we describe the
Yosida construction. Define the Yosida approximation Aλ ∈ L(X) of A by

Aλ =
Jλ − I
λ

= AJλ. (1.20)

Define the Yosida approximation:

Sλ(t) = eAλt = e−
t
λ eJλ

t
λ .

Since

|Jkλ | ≤
M

(1− λω)k

we have

|Sλ(t)| ≤ e−
t
λ

∞∑
k=0

1

k!
|Jkλ |(

t

λ
)k ≤Me

ω
1−λω t.
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Since
d

ds
Sλ(s)Sλ̂(t− s) = Sλ(s)(Aλ − Aλ̂)Sλ̂(t− s),

we have

Sλ(t)x− Sλ̂(t)x =

∫ t

0

Sλ(s)Sλ̂(t− s)(Aλ − Aλ̂)x ds

Thus, for x ∈ dom(A)

|Sλ(t)x− Sλ̂(t)x| ≤M2teωt |(Aλ − Aλ̂)x| → 0

as λ, λ̂→ 0+. Since dom(A) is dense in X this implies that

S(t)x = lim
λ→0+

Sλ(t)x exist for all x ∈ X,

defines a C0 semigroup of G(M,ω) class. The necessary part follows from (1.18) �

Theorem (Mild solution) (1) If for f ∈ L1(0, T ;X) define

x(t) = x(0) +

∫ t

0

S(t− s)f(s) ds,

then x(t) ∈ C(0, T ;X) and it satisfies

x(t) = A

∫ t

0

x(s) ds+

∫ t

0

f(s) ds. (1.21)

(2) If Af ∈ L1(0, T ;X) then x ∈ C(0, T ; dom(A)) and

x(t) = x(0) +

∫ t

0

(Ax(s) + f(s)) ds.

(3) If f ∈ W 1,1(0, T ;X), i.e. f(t) = f(0) +
∫ t

0
f ′(s) ds, d

dt
f = f ′ ∈ L1(0, T ;X), then

Ax ∈ C(0, T ;X) and

A

∫ t

0

S(t− s)f(s) ds = S(t)f(0)− f(t) +

∫ t

0

S(t− s)f ′(s) ds. (1.22)

Proof: Since ∫ t

0

∫ τ

0

S(t− s)f(s) dsdτ =

∫ t

0

(

∫ t

s

S(τ − s)d τ)f(s) ds,

and

A

∫ t

0

S(s) ds = S(t)− I

we have x(t) ∈ dom(A) and

A

∫ t

0

x(s) ds = S(t)x− x+

∫ t

0

S(t− s)f(s) ds−
∫ t

0

f(s) ds.
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and we have (1.21).
(2) Since for h > 0

x(t+ h)− x(t)

h
=

∫ t

0

S(t− s)S(h)− I
h

f(s) ds+
1

h

∫ t+h

t

S(t+ h− s)f(s) ds

if Af ∈ L1(0, T ;X)

lim
h→0+

x(t+ h)− x(t)

h
=

∫ t

0

S(t− s)Af(s) ds+ f(t)

a.e. t ∈ (0, T ). Similarly,

x(t− h)− x(t)

−h
=

∫ t−h

0

S(t− h− s)S(h)− I
h

f(s) ds+
1

h

∫ t

t−h
S(t− s)f(s) ds

→
∫ t

0

S(t− s)Af(s) ds+ f(t)

a.e. t ∈ (0, T ).
(3) Since

S(h)− I
h

x(t) =
1

h
(

∫ h

0

S(t+ h− s)f(s) ds−
∫ t+h

t

S(t+ h− s)f(s) ds

+

∫ t

0

S(t− s)f(s+ h)− f(s)

h
ds,

letting h→ 0+, we obtain(1.22). �

It follows from Theorems the mild solution

x(t) = S(t)x(0) +

∫ t

0

S(t− s)f(s) ds

satisfies

x(t) = x(0) + A

∫ t

0

x(s) +

∫ t

0

f(s) ds.

Note that the mild solution x ∈ C(0, T ;X) depends continuously on x(0) ∈ X and f ∈
L1(0, T ;X) with estimate

|x(t)| ≤M(eωt|x(0)|+
∫ t

0

eω(t−s)|f(s)| ds).

Thus, the mild solution is the limit of a sequence {xn} of strong solutions with xn(0) ∈
dom(A) and fn ∈ W 1,1(0, T ;X), i.e., since dom(A) is dense in X and W 1,1(0, T ;X) is dense
in L1(0, T ;X),

|xn(t)− x(t)|X → 0 uniformly on [0, T ]
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for
|xn(0)− x(0)|X → 0 and |fn − f |L1(0,T ;X) → 0 as n→∞.

Moreover, the mild solution x ∈ C(0, T : X) is a weak solution to the Cauchy problem

d

dt
x(t) = Ax(t) + f(t) (1.23)

in the sense of (1.3), i.e., for all ψ ∈ dom(A∗) 〈x(t), ψ〉X×X∗ is absolutely continues and

d

dt
〈x(t), ψ〉 = 〈x(t), ψ〉+ 〈f(t), ψ〉 a.e. in (0, T ).

If x(0) ∈ dom(A) and Af ∈ L1(0, T ;X), then Ax ∈ C(0, T ;X), x ∈ W 1,1(0, T ;X) and

d

dt
x(t) = Ax(t) + f(t), a.e. in (0, T )

If x(0) ∈ dom(A) and f ∈ W 1,1(0, T ;X), then x ∈ C(0, T ; dom(A)) ∩ C1(0, T ;X) and

d

dt
x(t) = Ax(t) + f(t), everywhere in [0, T ].

1.2 Weak-solution and Ball’s result

Let A be a densely defined, closed linear operator on a Banach space X. Consider the
Cauchy equation in X:

d

dt
u = Au+ f(t), (1.24)

where u(0) = x ∈ X and f ∈ L1(0, τ ;X) is a weak solution to of (1.24) if for every
ψ ∈dom(A∗) the function t→ 〈u(t), ψ〉 is absolutely continuous on [0, τ ] and

d

dt
〈u(t), ψ〉 = 〈u(t), A∗ψ〉+ 〈f(t), ψ〉, a.e. in [0, τ ]. (1.25)

It has been shown that the mild solution to (1.24) is a weak solution.
Lemma B.1 Let A be a densely defined, closed linear operator on a Banach space X. If
x, y ∈ X satisfy 〈y, ψ〉 = 〈x,A∗ψ〉 for all ψ ∈dom(A∗), then x ∈ dom(A) and y = Ax.

Proof: Let G(A) ⊂ X×X denotes the graph of A. Since A is closed G(A) is closed. Suppose
y 6= Ax. By Hahn-Banach theorem there exist z, z∗ ∈ X∗ such that 〈Ax, z〉+〈x, z∗〉 = 0 and
〈y, z〉 + 〈x, z∗〉 6= 0. Thus z ∈dom(A∗) and z∗ = A∗z. By the condition 〈y, z〉 + 〈x, z∗〉 = 0,
which is a contradiction. �

Then we have the following theorem.

Theorem (Ball) There exists for each x ∈ X and f ∈ L1(0, τ ;X) a unique weak solution of
(1.24)satisfying u(0) = x if and only if A is the generator of a strongly continuous semigroup
{T (t)} of bounded linear operator on X, and in this case u(t) is given by

u(t) = T (t)x+

∫ t

0

T (t− s)f(s) ds. (1.26)
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Proof: Let A generate the strongly continuous semigroup {T (t)} on X. Then, for some M ,
|T (t)| ≤M on t ∈ [0, τ ]. Suppose x ∈dom(A) and f ∈ W 1,1(0, τ ;X). Then we have

d

dt
〈u(t), ψ〉 = 〈Au(t) + f(t), ψ〉 = 〈u(t), A∗ψ〉+ 〈f(t), ψ〉.

For (x, f) ∈ X ×L1(0, τ ;X) there exists a sequence (xn, fn) in dom(A)×W 1,1(0, τ ;X) such
that |xn − x|X + |fn − f |L1(0,τ ;X) → 0 as n→∞ If we define

un(t) = T (t)xn +

∫ t

0

T (t− s)fn(s) ds,

then we have

〈un(t), ψ〉 = 〈x, ψ〉+

∫ t

0

(〈un(s), A∗ψ〉+ 〈fn(s), ψ〉) ds

and

|un(t)− u(t)|X ≤M (|xn − x|X +

∫ t

0

|fn(s)− f(s)|X ds).

Passing limit n→]∞, we see that u(t) is a weak solution of (1.24).
Next we prove that u(t) is the only weak solution to (1.24) satisfying u(0) = x. Let ũ(t)

be another such weak solution and set v = u− ũ. Then we have

〈v(t), ψ〉 = 〈
∫ t

0

v(s) dt, A∗ψ〉

for all ψ ∈dom(A∗) and t ∈ [0, τ ]. By Lemma B.1 this implies z(t) =
∫ t

0
v(s) ds ∈dom(A)

and d
dt
z(t) = Az(t) with z(0) = 0. Thus z = 0 and hence u(t) = ũ(t) on [0, τ ].

Suppose that A such that (1.24) has a unique weak solution u(t) satisfying u(0) = x.
For t ∈ [0, τ ] we define the linear operator T (t) on X by T (t)x = u(t) − u0(t), where u0 is
the weak solution of (1.24) satisfying u(0) = 0. If for t = nT + s, where n is a nonnegative
integer and s ∈ [0, τ) we define T (t)x = T (s)T (τ)nx, then T (t) is a semigroup. The map
θ : x → C(0, τ ;X) defined by θ(x) = T (·)x has a closed graph by the uniform bounded
principle and thus T (t) is a strongly continuous semigroup. Let B be the generator of
{T (t)} and x ∈dom(B). For ψ ∈dom(A∗)

d

dt
〈T (t)x, ψ〉|t=0 = 〈Bx, ψ〉 = 〈x,A∗ψ〉.

It follows from Lemma that x ∈dom(A) and Ax = Bx. Thus dom(B) ⊂dom(A). The
proof of Theorem is completed by showing dom(A) ⊂dom(B). Let x ∈dom(A). Since for
z(t) = T (t)x

〈z(t), ψ〉 = 〈
∫ t

0

z(s) dt, A∗ψ〉

it follows from Lemma that
∫ t

0
T (s)x ds and

∫ t
0
T (s)Axds belong to dom(A) and

T (t)x = x+ A

∫ t

0

T (s)x ds

T (t)Ax = Ax+ A

∫ t

0

T (s)Axds

(1.27)
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Consider the function

w(t) =

∫ t

0

T (s)Axds− A
∫ t

0

T (s)x ds.

It then follows from (1.27) that z ∈ C(0, τ ; X). Clearly w(0) = 0 and it also follows from
(1.27) that

d

dt
〈w(t), ψ〉 = 〈w(t), A∗ψ〉. (1.28)

for ψ ∈dom(A∗). But it follows from our assumptions that (1.28) has the unique solution
w = 0. Hence from (1.27)

T (t)x− x = A

∫ t

0

T (s)x ds

and thus

lim
t→0+

T (t)x− x
t

= Ax

which implies x ∈dom(B). �

1.3 Lumer-Phillips Theorem

The condition (1.19) is very difficult to check for a given A in general. For the case M = 1
we have a very complete characterization.

Lumer-Phillips Theorem The followings are equivalent:
(a) A is the infinitesimal generator of a C0 semigroup of G(1, ω) class.
(b) A− ω I is a densely defined linear m-dissipative operator,i.e.

|(λ I − A)x| ≥ (λ− ω)|x| for all x ∈ don(A), λ > ω (1.29)

and for some λ0 > ω
R(λ0 I − A) = X. (1.30)

Proof: It follows from the m-dissipativity

|(λ0 I − A)−1| ≤ 1

λ0 − ω

Suppose xn ∈ dom(A)→ x and Axn → y in X, the

x = lim
n→∞

xn = (λ0 I − A)−1 lim
n→∞

(λ0 xn − Axn) = (λ0 I − A)−1(λ0 x− y).

Thus, x ∈ dom(A) and y = Ay and hence A is closed. Since for λ > ω

λ I − A = (I + (λ− λ0)(λ0 I − A)−1)(λ0 I − A),

if |λ−λ0|
λ0−ω < 1, then (λ I−A)−1 ∈ L(X). Thus by the continuation method we have (λ I−A)−1

exists and

|(λ I − A)−1| ≤ 1

λ− ω
, λ > ω.
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It follows from the Hile-Yosida theorem that (b) → (a).
(b) → (a) Since for x∗ ∈ F (x), the dual element of x, i.e. x∗ ∈ X∗ satisfying 〈x, x∗〉X×X∗ =
|x|2 and |x∗| = |x|

〈e−ωtS(t)x, x∗〉 ≤ |x||x∗| = 〈x, x∗〉
we have for all x ∈ dom(A)

0 ≥ lim
t→0+
〈e
−ωtS(t)x− x

t
, x∗〉 = 〈(A− ω I)x, x∗〉 for all x∗ ∈ F (x).

which implies A− ω I is dissipative. �

Theorem (Dissipative I) (1) A is a ω-dissipative

|λx− Ax| ≥ (λ− ω)|x| for all x ∈ dom (A).

if and only if (2) for all x ∈ dom(A) there exists an x∗ ∈ F (x) such that

〈Ax, x∗〉 ≤ ω |x|2. (1.31)

(2) → (1). Let x ∈ dom(A) and choose an x∗ ∈ F (0) such that 〈A, x∗〉 ≤ 0. Then, for any
λ > 0,

λ |x|2 = λ 〈x, x∗〉 = 〈λx− Ax+ Ax, x∗〉 ≤ 〈λx− Ax, x∗〉+ ω |x|2 ≤ |λx− Ax||x|+ ω |x|2,

which implies (1).
(1) → (2). Without loss of the generality one can assume ω = 0. From (1) we obtain the
estimate

1

λ
(|x| − |x− λAx|) ≤ 0

and

〈Ax, x〉− = − lim
λ→0+

1

λ
(|x| − |x− λAx|) ≤ 0

which implies there exists x∗ ∈ F (x) such that (1.31) holds since 〈Ax, x〉− = 〈Ax, x∗〉 for
some x∗ ∈ F (x). �

Thus, Lumer-Phillips theorem says that if m-diisipative, then (1.31) hold for all x∗ ∈
F (x).

Theorem (Dissipative II) Let A be a closed densely defined operator on X. If A and A∗

are dissipative, then A is m-dissipative and thus the infinitesimal generator of a C0-semigroup
of contractions.

Proof: Let y ∈ R(I − A) be given. Then there exists a sequence xn ∈ dom(A) such that
y=xn − Axn → y as n→∞. By the dissipativity of A we obtain

|xn − xm| ≤ |xn − xm − A(xn − xm)| ≤ |y−ym|

Hence xn is a Cauchy sequence in X. We set x = limn→∞xn. Since A is closed, we see that
x ∈ dom (A) and x − Ax = y, i.e., y ∈ R(I − A). Thus R(I − A) is closed. Assume that
R(I − A) 6= X. Then there exists an x∗ ∈ X∗ such that

〈(I − A)x, x∗) = 0 for all x ∈ dom (A).
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By definition of the dual operator this implies x∗ ∈ dom (A∗) and (I − A)∗x∗ = 0. The
dissipativity of A* implies |x∗| < |x∗ − A∗x∗| = 0, which is a contradiction. �

Example (revisited example 1)

Aφ = −φ′ in X = L2(0, 1)

and for φ ∈ H1(0, 1)

(Aφ, φ)X = −
∫ 1

0

φ′(x)φ dx =
1

2
(|φ(0)|2 − |φ(1)|2)

Thus, A is dissipative if and only if φ(0) = 0, the in flow condition. Define the domain of A
by

dom(A) = {φ ∈ H1(0, 1) : φ(0) = 0}
The resolvent equation is equivalent to

λu+
d

dx
u = f

and

u(x) =

∫ x

0

e−λ (x−s)f(s) ds,

and R(λ I − A) = X. By the Lumer-Philips theorem A generates the C0 semigroup on
X = L2(0, 1).

Example (Conduction equation) Consider the heat conduction equation:

d

dt
u = Au =

∑
i,j

aij(x)
∂2u

∂xi∂xj
+ b(x) · ∇u+ c(x)u, in Ω.

Let X = C(Ω) and dom(A) ⊂ C2(Ω). Assume that a ∈ Rn×n ∈ C(Ω) b ∈ Rn,1 and c ∈ R
are continuous on Ω̄ and a is symmetric and

mI ≤ a(x) ≤M I for 0 < m ≤M <∞.

Then, if x0 is an interior point of Ω at which the maximum of φ ∈ C2(Ω) is attained. Then,

∇φ(x0) = 0,
∑
ij

aij(x0)
∂2u

∂xi∂xj
(x0) ≤ 0.

and thus
(λφ− Aφ)(x0) ≤ ω φ(x0)

where
ω ≤ max

x∈Ω
c(x).

Similarly, if x0 is an interior point of Ω at which the minimum of φ ∈ C2(Ω) is attained, then

(λφ− Aφ)(x0) ≥ 0
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If x0 ∈ ∂Ω attains the maximum, then

∂

∂ν
φ(x0) ≤ 0.

Consider the domain with the Robin boundary condition:

dom(A) = {u ∈ α(x)u(x) + β(x)
∂

∂ν
u = 0 at ∂Ω}

with α, β ≥ 0 and infx∈∂Ω(α(x) + β(x)) > 0. Then,

|λφ− Aφ|X ≥ (λ− ω)|φ|X . (1.32)

for all φ ∈ C2(Ω). It follows from the he Lax Milgram theory that

(λ0 I − A)−1 ∈ L(L2(Ω), H2(Ω)),

assuming that coefficients (a, b, c) are sufficiently smooth. Let

dom(A) = {(λ0 I − A)−1C(Ω)}.

Since C2(Ω) is dense in dom(A), (1.32) holds for all φ ∈ dom(A), which shows A is dissipative.

Example (Advection equation and Mass transport equation) Consider the advection equa-
tion

ut +∇ · (~b(x)u) = ν ∆u.

Let X = L1(Ω). Assume
~b ∈ L∞(Ω)

Let ρ ∈ C1(R) be a monotonically increasing function satisfying ρ(0) = 0 and ρ(x) =
sign(x), |x| ≥ 1 and ρε(s) = ρ( s

ε
) for ε > 0. For u ∈ C1(Ω)

(Au, u) =

∫
Γ

(ν
∂

∂n
u− n ·~b u, ρε(u)) ds+ (~b u− ν∇u, 1

ε
ρ′ε(u)∇u) + (c u, ρε(u)).

where

(~b u,
1

ε
ρ′ε(u)∇u) ≤ ν (∇u, 1

ε
ρ′ε(u)∇u) +

ε

4ν
meas({|u| ≤ ε}).

Assume the inflow condition ν ∂
∂n
u − n · ~b u = 0 on {s ∈ ∂Ω : n · b < 0} and otherwise

ν ∂
∂n
u = 0. Note that for u ∈ L1(Rd)

(u, ρε(u))→ |u|1 and (ψ, ρε(u))→ (ψ, sign0(u)) for ψ ∈ L1(Ω)

as ε→ 0. If c(x) ≤ ω, then it follows that

(λ− ω) |u| ≤ |λu− λAu|. (1.33)

Since H1(Ω) is dense in L1(Ω), (1.33) holds for u ∈ dom(A). For ν = 0 case letting ν → 0+

(1.33) holds for dom(A) = {u ∈ L1(Ω) : (ρ u)x ∈ L1(Ω)}.
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Example (X = Lp(Ω)) Let Au = ν ∆u+ b ·∇u with homogeneous boundary condition u = 0
on X = Lp(Ω). Since

〈∆u, u∗〉 =

∫
Ω

(∆u, |u|p−2u) = −(p− 1)

∫
Ω

(∇u, |u|p−2∇u)

and

(b · ∇u, |u|p−2u)L2 ≤ (p− 1)ν

2
|(∇u, |u|p−2∇u)L2 +

|b|2∞
2ν(p− 1)

(|u|p, 1)L2

we have
〈Au, u∗〉 ≤ ω|u|2

for some ω > 0.

Example (Fractional PDEs I)
In this section we consider the nonlocal diffusion equation of the form

ut = Au =

∫
Rd
J(z)(u(x+ z)− u(x)) dz.

Or, equivalently

Au =

∫
(Rd)+

J(z)(u(x+ z)− 2u(x) + u(x− z)) dz

for the symmetric kernel J in Rd. It will be shown that

(Au, φ)L2 = −
∫
Rd

∫
(Rd)+

J(z)(u(x+ z)− u(x))(φ(x+ z)− φ(x)) dz dx

and thus A has a maximum extension.
Also, the nonlocal Fourier law is given by

Au = ∇ · (
∫
Rd
J(z)∇u(x+ z) dz).

Thus,

(Au, φ)L2 =

∫
Rd×Rd

J(z)∇u(x+ z) · ∇φ(x) dz dx

Under the kernel J is completely monotone, one can prove that A has a maximal monotone
extension.

1.4 Jump diffusion Model for American option

In this section we discuss the American option for the jump diffusion model

ut + (x− σ2

2
)ux +

σ2x2

2
uxx +Bu+ λ = 0, u(T, x) = ψ,

(λ, u− ψ) = 0, λ ≤ 0, u ≥ ψ
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where the generator B for the jump process is given by

Bu =

∫ ∞
−∞

k(s)(u(x+ s)− u(x) + (es − 1)ux) ds.

The CMGY model for the jump kernel k is given by

k(s) =


Ce−M |s||s|1+Y = k+(s) s ≥ 0

Ce−G|s||s|1+Y = k−(s) s ≤ 0

Since∫ ∞
−∞

k(s)(u(x+ s)− u(x)) ds =

∫ ∞
0

k+(s)(u(x+ s)− u(x)) ds+

∫ ∞
0

k−(s)(u(x− s)− u(x)) ds

=

∫ ∞
0

k+(s) + k−(s)

2
(u(x+ s)− 2u(x) + u(x− s)) ds+

∫ ∞
0

k+(s)− k−(s)

2
(u(x+ s)− u(x− s)) ds.

Thus, ∫ ∞
−∞

(

∫ ∞
−∞

k(s)(u(x+ s)− u(x) ds)φ(x) dx

=

∫ ∞
−∞

∫ ∞
0

ks(s)(u(x+ s)− u(x))(φ(x+ s)− φ(x)) ds dx

+

∫ ∞
−∞

(

∫ ∞
0

ku(s)(u(x+ s)− u(s)))φ(x) dx

where

ks(s) =
k+(s) + k−(s)

2
, ku(s) =

k+(s)− k−(s)

2

and hence

(Bu, φ) = −
∫ ∞
−∞

∫ ∞
−∞

ks(s)(u(x+ s)− u(x))(φ(x+ s)− φ(s)) ds dx

+

∫ ∞
−∞

(

∫ ∞
−∞

ku(s)(u(x+ s)− u(s)))φ(x) dx+ ω

∫ ∞
−∞

uxφ dx.

where

ω =

∫ ∞
−∞

(es − 1)k(s) ds.

If we equip V = H1(R) by

|u|2V =

∫ ∞
−∞

∫ ∞
−∞

ks(s)|u(x+ s)− u(x)|2 ds dx+
σ2

2

∫ ∞
−∞
|ux|2 dx,

then A+B ∈ L(V, V ∗) and A+B generates the analytic semigroup on X = L2(R).
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1.5 Numerical approximation of nonlocal operator

In this section we describe our higher order integration method for the convolution;∫ ∞
0

k+(s) + k−(s)

2
(u(x+s)−2u(x)+u(x−s)) ds+

∫ ∞
0

k+(s)− k−(s)

2
(u(x+s)−u(x−s)) ds.

For the symmetric part,∫ ∞
−∞

s2ks(s)
u(x+ s)− 2u(x) + u(x− s)

s2
ds,

where we have

u(x+ s)− 2u(x) + u(x− s)
s2

∼ uxx(x) +
s2

12
uxxxx(x) +O(s4)

We apply the fourth order approximation of uxx by

uxx(x) ∼ u(x+ h)− 2u(x) + u(x− h)

h2
− 1

12

u(x+ 2h)− 4u(x) + 6u(x)− 4u(x− h) + u(x− 2h)

h2

and we apply the second order approximation of uxxxx(x) by

uxxxx(x) ∼ u(x+ 2h)− 4u(x) + 6u(x)− 4u(x− h) + u(x− 2h)

h4
.

Thus, one can approximate∫ h
2

−h
2

s2ks(s)
u(x+ s)− 2u(x) + u(x− s)

s2
ds

by

ρ0 (
uk+1 − 2uk + uk−1

h2
− 1

12

uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2

h2
)

+
ρ1

12

uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2

h2
,

where

ρ0 =

∫ h
2

−h
2

s2ks(s) ds and ρ1 =
1

h2

∫ h
2

−h
2

s4ks(s) ds.

The remaining part of the convolution∫ (k+ 1
2

)h

(k− 1
2

)h

u(xk+j + s)ks(s) ds

can be approximated by three point quadrature rule based on

u(xk+j + s) ∼ u(xk+j) + u′(xk+j)s+
s2

2
u′′(xk+j)
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with

u′(xk+j) ∼
uk+j+1 − uk+j−1

2h

u′′(xk+j) ∼
uk+j+1 − 2uk+j + uk+j−1

h2
.

That is, ∫ (k+ 1
2

)h

(k− 1
2

)h

u(xk+j + s)ks(s) ds

∼ ρk0uk+j + ρk1
uk+j−1 − uk+j+1

2
+ ρk2

uj+k+1 − 2uk+j + uj+k−1

2
where

ρk0 =
∫ (k+ 1

2
)h

(k− 1
2

)h
ks(s) ds

ρk1 = 1
h

∫ (k+ 1
2

)h

(k− 1
2

)h
(s− xk)ks(s) ds

ρk2 = 1
h2

∫ (k+ 1
2

)h

(k− 1
2

)h
(s− xk)2ks(s) ds.

For the skew-symmetric integral∫ h
2

−h
2

ku(s)(u(x+ s)− u(x− s)) ds ∼ ρ2 ux(x) +
ρ3

6
h2 uxxx(x)

where

ρ2 =

∫ h
2

−h
2

2sku(s) ds, ρ3 =
1

h2

∫ h
2

−h
2

2s3ku(s) ds.

We may use the forth order difference approximation

ux(x) ∼ u(x+ h)− u(x− h)

2h
− u(x+ 2h)− 2u(x+ h) + 2u(x− h)− u(x− 2h)

6h

and the second order difference approximation

uxxx(x) ∼ u(x+ 2h)− 2u(x+ h) + 2u(x− h)− u(x− 2h)

h3

and obtain∫ h
2

−h
2

ku(s)(u(x+ s)− u(x− s)) ds

∼ ρ2 (
uk+1 − uk−1

2h
− uk+2 − 2uk+1 + 2uk−1 − uk−1

6h
) +

ρ3

6

uk+2 − 2uk+1 + 2uk−1 − uk−1

h
.

Example (Fractional PDEs II) Consider the fractional equation of the form∫ 0

−t
g(θ)u′(t+ θ) dθ = Au, u(0) = u0,
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where the kernel g satisfies

g > 0, g ∈ L1(−∞, 0) and non-decreasing.

For example, the case of the Caputo (fractional) derivative has

g(θ) =
1

Γ(1− α)
|θ|−α.

Define z(t, θ) = u(t+ θ), θ ∈ (−∞, 0]. Then, d
dt
z = ∂

∂θ
z. Thus, we define the linear operator

A on Z = C((−∞, 0];X) by

Az = z′(θ) with dom(A) = {z′ ∈ X :

∫ 0

−∞
g(θ)z′(θ) dθ = Az(0)}

Theorem 1.1 Assume A is m-dissipative in a Banach space X. Then, A is dissipative and
R(λ I−A) = Z for λ > 0. Thus, A generates the C0-semigroup T (t) on Z = C((−∞, 0];X).

Proof: First we show that A is dissipative. For φ ∈ dom (A) suppose |φ(0)| > |φ(θ)| for all
θ < 0. Define

gε(θ) =
1

ε

∫ θ

θ−ε
g(θ) dθ.

For all x∗ ∈ F (φ(0))

〈
∫ 0

−∞
gε(θ)(φ

′)dθ, x∗〉

= −〈
∫ 0

−∞

g(θ)− g(θ − ε)
ε

〈φ(θ)− φ(0), x∗〉 dθ > 0

since
〈φ(θ)− φ(0), x∗〉 ≤ (|φ(θ)| − |φ(0)|)|φ(0)| < 0, θ < 0.

Thus,

lim
ε→0+
〈
∫ 0

−∞
gε(θ)(φ

′)dθ, x∗〉 = 〈
∫ 0

−∞
g(θ)φ′dθ, x∗〉 > 0. (1.34)

But, since there exists a x∗ ∈ F (φ(0)) such that

〈Ax, x∗〉 ≤ 0

which contradicts to (1.34). Thus, there exists θ0 such that |φ(θ0)| = |φ|Z . Since 〈φ(θ), x∗〉 ≤
|φ(θ)| for x∗ ∈ F (φ(θ0)), θ → 〈φ(θ), x∗〉 attains the maximum at θ0 and thus 〈φ′(θ0), x∗〉 = 0
Hence,

|λφ− φ′|Z ≥ 〈λφ(θ0)− φ′(θ0), x∗〉 = λ |φ(θ0)| = λ |φ|Z . (1.35)

For the range condition λφ−Aφ = f we note that

φ(θ) = eλθφ(0) + ψ(θ)
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where

ψ(θ) =

∫ 0

θ

eλ(θ−ξ)f(ξ) dξ.

Thus,

(∆(λ) I − A)φ(0) =

∫ 0

−∞
g(θ)ψ′(θ) dθ)

where

∆(λ) = λ

∫ 0

−∞
g(θ)eλθ dθ > 0

Thus,

φ(0) = (∆(λ) I − A)−1

∫ 0

−∞
g′(θ)ψ(θ) dθ.

Since A is dissipative and
λψ − ψ′ = f ∈ Z, ψ(0) = 0,

thus |ψ|Z ≤
1

λ
|f |Z . Thus φ = (λ I −A)−1f ∈ Z. �

Example (Renewable system) We discuss the renewable system of the form

dp0

dt
= −

∑
i λi p0(t) +

∑
i

∫ L
0
µi(x)pi(x, t) dx

(pi)t + (pi)x = −µi(x)p, p(0, t) = λi p0(t)

for (p0, pi, 1 ≤ i ≤ d) ∈ R × L1(0, T )d. Here, p0(t) ≥ 0 is the total utility and λi ≥ 0 is
the rate for the energy conversion to the i-th process pi. The first equation is the energy
balance law and s is the source = generation −consumption. The second equation is for the
transport (via pipeline and storage) for the process pi and µi ≥ 0 is the renewal rate and
µ̄ ≥ 0 is the natural loos rate. {λi ≥ 0} represent the distribution of the utility to the i-th
process.

Assume at the time t = 0 we have the available utility p0(0) = 1 and pi = 0. Then we
have the following conservation

p0(t) +

∫ t

0

pi(s) ds = 1

if t ≤ L. Let X = R× L1(0, L)d. Let A(µ) defined by

Ax = (−
∑
i

λi p0 +
∑
i

∫ L

0

µi(x) dx,−(pi)x − µi(x)pi)

with domain
dom(A) = {(p0, pi) ∈ R×W 11(0, L)d : pi(0) = λi p0}

Let

signε(s) =


s
|s| |s| > ε

s
ε

|s| ≤ ε
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Then,

(A(p0, p), (sign0(p0), signε(p)) ≤ −(
∑

i λi)|p0|+ |
∫ L

0
µipi dx|∑

i(Ψε(pi(0))−Ψε(pi(L))−
∫ L

0
µipisignε dx)

where

Ψε(s) =


|s| |s| > ε

s2

2ε
+ ε

2
|s| ≤ ε

Since
signε → signε, Ψε → |s|

by the Lebesgue dominated convergence theorem, we have

(A(p0, p), (sign0(p0), sign0(p)) ≤ 0.

The resolvent equation
A(p0, p) = (s, f), (1.36)

has a solution
pi(x) = λip0e

−
∫ x
0 µi +

∫ x
0
e−

∫ x
s µif(s) ds

(
∑

i λi)(1− e
∫ L
0 µi) p0 = s+

∫ L
0
µipi(x) dx

Thus, A generates the contractive C0 semigroup S(t) on X. Moreover, it is cone preserving
S(t)C+ ⊂ C+ since the resolvent is positive cone preserving.

Example (Bi-domain equation)
The electrical behavior of the cardiac tissue is described by a system consisting of PDEs

coupled with ordinary differential equations which model the ionic currents associated with
the reaction terms. The bi-domain model is a mathematical model for the electrical prop-
erties of cardiac muscle that takes into account the anisotropy of both the intracellular and
extracellular spaces. It is formed of the bi-domain equations. The bi-domain model is now
widely used to model defibrillation of the heart. In this paper we consider the feedback
control for bi-domain model.

The weak form of the the bi-domain equation is given by

(
d

dt
u, φ)− (B(∇u+∇ue),∇φ)Ω + (F (u, v), φ) = 0

(B∇u+ (A+ B)∇ue,∇ψ)Ω = 〈s, ψ〉,
(1.37)

for all (φ, ψ) ∈ H1(Ω) × H1(Ω)/R, where (u, ue) ∈ H1(Ω) × H1(Ω)/R is the solution pair
and s is the control current. We consider the boundary current control:

〈s, ψ〉 =

∫
Γ

s(t, x)ψ(x) dx.

Here, A and B are elliptic operators of the form

Bφ = ∇ · (σ̄i∇φ), Aφ = ∇ · (σ̄e∇φ),
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where σ̄i, σ̄e are respectively the intracellular and extracellular conductivity tensors. Note
that one can write (1.37) as

d

dt
u(t)− Lu(t) + F (u(t), v(t))) + Cs(t) = 0, (1.38)

where
L = (A−1 + B−1)−1 = B(A+ B)−1A.

and
Cs = B(A+ B)−1s.

That is, v = u+ ue satisfies
(A+ B)v = Au+ s

where

〈s, φ〉 =

∫
Γ

s(t, x)φ(x) dx

with 〈s, 1〉 = 0. Thus, L is an self adjoint elliptic operator on L2(Ω). The boundary current
control becomes the distributed control of the form Cs(t).
Example (Second order equation) Let V ⊂ H = H∗ ⊂ V ∗ be the Gelfand triple. Let ρ be a
bounded bilinear form on H ×H, µ and σ be bounded bilinear forms on V × V . Assume ρ
and σ are symmetric and coercive and µ(φ, φ) ≥ 0 for all φ ∈ V . Consider the second order
equation

ρ(utt, φ) + µ(ut, φ) + σ(u, φ) = 〈f(t), φ〉 for all φ ∈ V. (1.39)

Define linear operators M (mass), D (dampping), K and (stiffness) by

(Mφ,ψ)H = ρ(φ, ψ), φ, ψ ∈ H

〈Dφ,ψ〉 = µ(φ, ψ) φ, ψ ∈ V

〈Kφ,ψ〉V ∗×V = σ(φ, ψ), φ, ψ ∈ V

We assume ρ is symmetric and H-coercive, σ is symmetric and V -coercive and µ(φ, φ) ≥ 0
for φ ∈ V . Let v = ut and define A on X = V ×H by

A(u, v) = (v,−M−1(Ku+Dv))

with domain
dom (A) = {(u, v) ∈ X : v ∈ V and Ku+Dv ∈ H}

The state space X is a Hilbert space with inner product

((u1, v1), (u,v2)) = σ(u1, u2) + ρ(v1, v2)

and
E(t) = |(u(t), v(t))|2X = σ(u(t), u(t)) + ρ(v(t), v(t))
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defines the energy of the state x(t) = (u(t), v(t)) ∈ X. First, we show that A is dissipative:

(A(u, v), (u, v))X = σ(u, v)+ρ(−M−1(Ku+Dv), v) = σ(u, v)−σ(u, v)−µ(v, v) = −µ(v, v) ≤ 0

Next, we show that R(λ I − A) = X. That is, for (f, g) ∈ X the exists a solution (u, v) ∈
dom (A) satisfying

λu− v = f, λMv +Dv +Ku = Mg,

or equivalently v = λu− f and

λ2Mu+ λDu+Ku = Mg + λMf +Df (1.40)

Define the bilinear form a on V × V

a(φ, ψ) = λ2 ρ(φ, ψ) + λµ(φ, ψ) + σ(φ, ψ)

Then, a is bounded and V -coercive and if we let

F (φ) = (M(g + λ f)φ)H + µ(f, φ)

then F ∈ V ∗. It thus follows from the Lax-Milgram theory there exists a unique solution
u ∈ V to (1.40) and Dv +Ku ∈ H.

For example, consider the wave equation

1
c2(x)

utt + κ(x)ut = ∆u

[∂u
∂n

] + αu = γ ut at Γ

In this example we let V = H1(Ω)/R and H = L2(Ω) and define

σ(φ, ψ) =

∫
Ω

(∇φ,∇ψ) dx+

∫
Γ

αφψ ds

µ(φ, ψ) =

∫
∂Ω

κ(x)φ, ψ dx+

∫
Γ

γ)φ, ψ ds

ρ(φ, ψ) =

∫
Ω

1

c2(x)
φψ dx.

Example (Maxwell system for electro-magnetic equations)

εEt = ∇×H, ∇ · E = ρ

µHt = −∇× E, ∇ ·B = 0

with boundary condition
E × n = 0
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where E is Electric field, BµH is Magnetic field and D = εE is dielectric with ε, µ is electric
and magnetic permittivity, respectively. Let X = L2(Ω)d×L2(Ω)d with the norm defined by

|(E,H)|2X =

∫
Ω

(ε |E|2 + µ |H|2) dx.

The dissipativity follows from∫
Ω

(E · (∇×H)−H · (∇× E)) dx =

∫
Ω

∇ · (E ×H) dx =

∫
∂Ω

n · (E ×H) ds = 0

Let ρ = 0 and thus ∇ · E = 0. The range condition is equivalent to

εE +∇× 1

µ
(∇× E − g) = f

The weak form is given by

(εE, ψ) + (
1

µ
∇× E,∇× ψ) = (f, ψ) + (g,

1

µ
∇× ψ). (1.41)

for ψ ∈ V = {H1(Ω) : ∇ · ψ = 0, n× ψ = 0 at ∂Ω}. Since |∇ × ψ|2 = |∇ψ|2 for ∇ · ψ = 0.
the right hand side of (1.41) defines the bounded coercive quadratic form on V ×V , it follows
from the Lax-Milgram equation that (1.41) has a unique solution in V .

1.6 Dual semigroup

Theorem (Dual semigroup) Let X be a reflexive Banach space. The adjoint S∗(t) of the
C0 semigroup S(t) on X forms the C0 semigroup and the infinitesimal generator of S∗(t)
is A∗. Let X be a Hilbert space and dom(A∗) be the Hilbert space with graph norm and
X−1 be the strong dual space of dom(A∗), then the extension S(t) to X−1 defines the C0

semigroup on X−1.

Proof: (1) Since for t, s ≥ 0

S∗(t+ s) = (S(s)S(t))∗ = S∗(t)S∗(s)

and
〈x, S∗(t)y − y〉X×X∗ = 〈S(t)x− x, y〉X×X∗ → 0.

for x ∈ X and y ∈ X∗ Thus, S∗(t) is weakly star continuous at t = 0 and let B is the
generator of S∗(t) as

Bx = w∗ − lim
S∗(t)x− x

t
.

Since

(
S(t)x− x

t
, y) = (x,

S∗(t)y − y
t

),

for all x ∈ dom(A) and y ∈ dom(B) we have

〈Ax, y〉X×X∗ = 〈x,By〉X×X∗
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and thus B = A∗. Thus, A∗ is the generator of a w∗− continuous semigroup on X∗.
(2) Since

S∗(t)y − y = A∗
∫ t

0

S∗(s)y ds

for all y ∈ Y = dom (A∗). Thus, S∗(t) is strongly continuous at t = 0 on Y .
(3) If X is reflexive, dom (A∗) = X∗. If not, there exists a nonzero y0 ∈ X such that
〈y0, x

∗〉X×X∗ = 0 for all x∗ ∈ dom(A∗). Thus, for x0 = (λ I − A)−1y0 〈λx0 − Ax0, x
∗〉 =

〈x0, λ x
∗ −A∗x∗〉 = 0. Letting x∗ = (λ I −A∗)−1x∗0 for x∗0 ∈ F (x0), we have x0 = 0 and thus

y0 = 0, which yields a contradiction.
(4) X1 = dom (A∗) is a closed subspace of X∗ and is a invariant set of S∗(t). Since A∗ is
closed, S∗(t) is the C0 semigroup on X1 equipped with its graph norm. Thus,

(S∗(t))∗ is the C0 semigroup on X−1 = X∗1

and defines the extension of S(t) to X−1. Since for x ∈ X ⊂ X−1 and x∗ ∈ X∗

〈S(t)x, x∗〉 = 〈x, S∗(t)x∗〉,

S(t) is the restriction of (S∗(t))∗ onto X. �

1.7 Stability

Theorem (Datko 1970, Pazy 1972). A strongly continuous semigroup S(t), t ≥ 0 on a
Banach space X is uniformly exponentially stable if and only if for p ∈ [1,∞) one has∫ ∞

0

|S(t)x|p dt <∞ for all x ∈ X.

Theorem. (Gearhart 1978, Pruss 1984, Greiner 1985) A strongly continuous semi-
group on S(t), t ≥ 0 on a Hilbert space X is uniformly exponentially stable if and only if
the half-plane {λ ∈ C : Reλ > 0} is contained in the resolvent set ρ(A) of the generator A
with the resolvent satisfying

|(λ I − A)−1|∞ <∞

1.8 Sectorial operator and Analytic semigroup

In this section we have the representation of the semigroup S(t) in terms of the inverse
Laplace transform. Taking the Laplace transform of

d

dt
x(t) = Ax(t) + f(t)

we have
x̂ = (λ I − A)−1(x(0) + f̂)

where for λ > ω

x̂ =

∫ ∞
0

e−λtx(t) dt
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is the Laplace transform of x(t). We have the following the representation theory (inverse
formula).

Theorem (Resolvent Calculus) For x ∈ dom(A2) and γ > ω

S(t)x =
1

2πi

∫ γ+i∞

γ−i∞
eλt(λ I − A)−1x dλ. (1.42)

Proof: Let Aµ be the Yosida approximation of A. Since Re σ(Aµ) ≤ ω0

1− µω0

< γ, we have

uµ(t) = Sµ(t)x =
1

2πi

∫ γ+i∞

γ−i∞
eλt(λ I − Aµ)−1x dλ.

Note that
λ(λ I − A)−1 = I + (λ I − A)−1A. (1.43)

Since
1

2πi

∫ γ+i∞

γ−i∞

eλt

λ
dλ = 1

and ∫ γ+i∞

γ−i∞
|λ− ω|−2 dλ <∞,

we have
|Sµ(t)x| ≤M |A2x|,

uniformly in µ > 0. Since

(λ I − Aµ)−1x− (λ I − A)−1x =
µ

1 + λµ
(ν I − A)−1(λ I − A)−1A2x,

where ν =
λ

1 + λµ
, {uµ(t)} is Cauchy in C(0, T ;X) if x ∈ dom(A2). Letting µ → 0+, we

obtain (1.42). �

Next we consider the sectorial operator. For δ > 0 let

Σδ
ω = {λ ∈ C : arg(λ− ω) <

π

2
+ δ}

be the sector in the complex plane C. A closed, densely defined, linear operator A on a
Banach space X is a sectorial operator if

|(λ I − A)−1| ≤ M

|λ− ω|
for all λ ∈ Σδ

ω.

For 0 < θ < δ let Γ = Γω,θ be the integration path defined by

Γ± = {z ∈ C : |z| ≥ δ, arg(z − ω) = ±(π
2

+ θ)},

Γ0 = {z ∈ C : |z| = δ, |arg(z − ω)| ≤ π
2

+ θ}.
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For 0 < θ < δ define a family {S(t), t ≥ 0} of bounded linear operators on X by

S(t)x =
1

2πi

∫
Γ

eλt(λ I − A)−1x dλ. (1.44)

Theorem (Analytic semigroup) If A is a sectorial operator on a Banach space X, then A
generates an analytic (C0) semigroup on X, i.e., for x ∈ X t→ S(t)x is an analytic function
on (0,∞). We have the representation (1.44) for x ∈ X and

|AS(t)x|X ≤
Mθ

t
|x|X (ω = 0).

Proof: Since

AS(t)x =
1

2πi

∫
Γ

eλt(λ(λ I − A)−1x− x) dλ.

we have

|AS(t)x| ≤M

∫ ∞
0

e−sinθ tz dz|x| = M

sin θ t
|x|.�

The elliptic operator A defined by the Lax-Milgram theorem defines a sectorial operator
on Hilbert space X.

Theorem (Sectorial operator) Let V, H are Hilbert spaces and assume H ⊂ V ∗. Let
ρ(u, v) is bounded bilinear form on H ×H and

ρ(u, u) ≥ |u|2H for all u ∈ H

Let a(u, v) to be a bounded bilinear form on V × V with

σ(u, u) ≥ δ |u|2V for all u ∈ V.

Define the linear operator A by

ρ(Au, φ) = a(u, φ) for all φ ∈ V.

Then, for Reλ > 0we have
|(λ I − A)−1|L(V,V ∗) ≤ 1

δ

|(λ I − A)−1|L(H) ≤ M
|λ|

|(λ I − A)−1|L(V ∗,H) ≤ M√
|λ|

|(λ I − A)−1|L(H,V ) ≤ M√
|λ|

Proof: Let a(u, v) to be a bounded bilinear form on V × V . Define M ∈ L(H,H) by

(Mu, v) = ρ(u, v) for all u, v ∈ H

and A0 ∈ L(V, V ∗) by
〈A0u, v〉 = σ(u, v) for v ∈ V
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Then, A = M−1A0 and for f ∈ V ∗ and Reλ > 0, (λ I − A)u = M−1f is equivalent to

λρ(u, φ) + a(u, φ) = 〈f, φ〉, for all φ ∈ V. (1.45)

It follows from the Lax-Milgram theorem that (1.45) has a unique solution, given f ∈ V ∗
and

Reλρ(u, u) + a(u, u) ≤ |f |V ∗|u|V .

Thus,

|(λ I − A)−1|L(V ∗,V ) ≤
1

δ
.

Also,
|λ| |u|2H ≤ |f |V ∗|u|V +M |u|2V = M1 |f |2V ∗

for M1 = 1 + M
δ2 and thus

|(λ I − A)−1|L(V ∗,H) ≤
√
M1

|λ|1/2
.

For f ∈ H ⊂ V ∗

δ |u|2V ≤ Reλ ρ(u, u) + a(u, u) ≤ |f |H |u|H , (1.46)

and
|λ|ρ(u, u) ≤ |f |H |u|H +M |u|2V ≤M1|f |H |u|H

Thus,

|(λ I − A)−1|L(H) ≤
M1

|λ|
.

Also, from (1.46)
δ |u|2V ≤ |f |H |u|H ≤M1 |f |2.

which implies

|(λ I − A)−1|L(H,V ) ≤
M2

|λ|1/2
.

1.9 Approximation Theory

In this section we discuss the approximation theory for the linear C0-semigroup. Equivalence
Theorem (Lax-Richtmyer) states that for consistent numerical approximations, stability and
convergence are equivalent. In terms of the linear semigroup theory we have

Theorem (Trotter-Kato theorem) Let X and Xn be Banach spaces and A and An be
the infinitesimal generator of C0 semigroups S(t) on X and Sn(t) on Xn of G(M,ω) class.
Assume a family of uniformly bounded linear operators Pn ∈ L(X,Xn) and En ∈ L(Xn, X)
satisfy

PnEn = I |EnPnx− x|X → 0 for all x ∈ X (1.47)

Then, the followings are equivalent.
(1) there exist a λ0 > ω such that for all x ∈ X

|En(λ0 I − An)−1Pnx− (λ0 I − A)−1x|X → 0 as n→∞, (1.48)
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(2) For every x ∈ X and T ≥ 0

|EnSn(t)Pnx− S(t)x|X → as n→∞.

uniformly on t ∈ [0, T ].

Proof: Since for λ > ω

En(λ I − A)−1Pnx− (λ I − A)−1x =

∫ ∞
0

EnSn(t)Pnx− S(t)x dt

(1) follows from (2). Conversely, from the representation theory

EnSn(t)Pnx− S(t)x =
1

2πi

∫ γ+i∞

γ−i∞
(En(λ I − A)−1Pnx− (λ I − A)−1x) dλ

where
(λ I − A)−1 − (λ0 I − A)−1 = (λ− λ0)(λ I − A)−1(λ0 I − A)−1.

Thus, from the proof of Theorem (Resolvent Calculus) (1) holds for x ∈ dom(A2). But since
dom(A2) is dense in X, (2) implies (1). �

Remark (Stability) If An is uniformly dissipative:

|λun − Anun| ≥ (λ− ω) |un|

for all un ∈ dom(An) and some ω ≥ 0, then An generates ω contractive semigroup Sn(t) on
Xn.

Remark (Consistency)
(λI − An)un = Pnf

Pn(λI − A)u = Pnf

we have
(λ I − An)(Pnu− un) + PnAu− AnPnu = 0

Thus
|Pnu− un| ≤M |PnAu− AnPnu|

The consistency(1.48) follows from

|PnAu− AnPnu| → 0

for all u in a dense subset of dom(A).

Corollary Let the assumptions of Theorem hold. The statement (1) of Theorem is equivalent
to (1.47) and the followings:

(C.1) there exists a subset D of dom(A) such that D = X and (λ0 I − A)D = X.

(C.2) for all u ∈ D there exists a sequence ūn ∈ dom(An) such that limEnūn = u and
limEnAnūn = Au.

31



Proof: Without loss of generality we can assume λ0 = 0. First we assume that condition (1)
hold. We set D = dom(A) and thus AD = X. For u ∈ dom(A) we set ūn = A−1

n PnAu and
u = A−1x. Then,

Enūn − u = EnA
−1
n Pnx− A−1x→ 0

and
EnAnūn − Au = EnAnA

−1
n Pnx− AA−1x = EnPnx− x→ 0

as n→∞. Hence conditions (C.1)–(C.2) hold.
Conversely, we assume conditions (C.1)–(C.2) hold. For x ∈ AD we choose u ∈ D such

that u = A−1x and set un = A−1
n Pnx = A−1

n PnAu. We then for u we choose ūn according to
(C.2). Thus, we obtain

|ūn − Pnu| = |Pn(Enūn − u)| ≤M |Enūn − u| → 0

as n→∞ and

|ūn − un| ≤ |A−1
n (Anūn − PnAu)| ≤ |A−1

n Pn||EnAnūn − Au| → 0

as n∞. It thus follows that |un − Pnu| → 0 as n→∞. Since

EnA
−1
n Pn − A−1 = En(A−1

n PnA− Pn)A−1 + (EnPn − I)A−1,

we have

|EnA−1
n Pnx− A−1x| ≤ |En(un − Pnu)|+ |EnPnu− u| ≤M |un − Pnu|+ |EnPnu− u| → 0

as n→∞ for all x ∈ AD. �

Example 1 (Trotter-Kato theoarem) Consider the heat equation on Ω = (0, 1)× (0, 1):

d

dt
u(t) = ∆u, u(0, x) = u0(x)

with boundary condition u = 0 at the boundary ∂Ω. We use the central difference approxi-
mation on uniform grid points: (i h, j h) ∈ Ω with mesh size h = 1

n
:

d

dt
ui,j(t) = ∆hu =

1

h
(
ui+1,j − ui,j

h
− ui,j − ui−1,j

h
) +

1

h
(
ui,j+1 − ui,j

h
− ui,j − ui,j−1

h
)

for 1 ≤ i, j ≤ n1, where ui,0 = ui,n = u1, j = un,j = 0 at the boundary node. First, let
X = C(Ω) and Xn = R(n−1)2

with sup norm. Let Enui,j = the piecewise linear interpolation
and (Pnu)i,j = u(i h, j h) is the point-wise evaluation. We will prove that ∆h is dissipative
on Xn. Suppose uij = |un|∞. Then, since

λui,j − (∆hu)i,j = fij

and

−(∆hu)i,j =
1

h2
(4ui,j − ui+1,j − ui,j+1 − ui−1,j − ui,j−1) ≥ 0
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we have

0 ≤ ui,j ≤
fi,j
λ
.

Thus, ∆h is dissipative on Xn with sup norm. Next X = L2(Ω) and Xn with `2 norm. Then,

(−∆hun, un) =
∑
i,j

|ui,j − ui−1,j

h
|2 + |ui,j − ui,j−1

h
|2 ≥ 0

and thus ∆h is dissipative on Xn with `2 norm.

Example 2 (Galerkin method) Let V ⊂ H = H∗ ⊂ V ∗ is the Gelfand triple. Consider the
parabolic equation

ρ(
d

dt
un, φ) = a(un, φ) (1.49)

for all φ ∈ V , where the ρ is a symmetric mass form

ρ(φ, φ) ≥ c |φ|2H

and a is a bounded coercive bilinear form on V × V such that

a(φ, φ) ≥ δ |φ|2V .

Define A by
ρ(Au, φ) = a(u, φ) for all φ ∈ V.

By the Lax-Milgram theorem
(λI − A)u = f ∈ H

has a unique solution satisfying

λρ(u, φ)− a(u, φ) = (f, φ)H

for all φ ∈ V . Let dom(A) = (I − A)−1H. Assume

Vn = {u =
∑

akφ
n
k , φnk ∈ V } is dense in V

Consider the Galerkin method, i.e. un(t) ∈ Vn satisfies

ρ(
d

dt
un(t), φ) = a(un, φ).

Since for u = (λ I − A)−1f and ūn ∈ Vn

λρ(un, φ) + a(un, φ) = (f, φ) for φ ∈ Vn

λρ(ūn, φ) + a(ūn, φ) = λρ(ūn − u, φ) + a(ūn − u, φ) + (f, φ) for φ ∈ Vn

λρ(un − ūn, φ) + a(un − ūn, φ) = λρ(ūn − u, φ) + a(ūn − u, φ).

Thus,

|un − ūn| ≤
M

δ
|ūn − u|V .
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Example 2 (Discontinuous Galerkin method) Consider the parabolic system for u = ~u ∈
L2(Ω)d

∂

∂t
u = ∇ · (a(x)∇u) + c(x)u

where a ∈ Rd × d is symmetric and

a|ξ|2 ≤ (ξ, a(x), ξ)Rd ≤ a|ξ|2, ξ ∈ Rd

for 0 < a ≤ a < ∞. The region Ω is dived into n non-overlapping sub-domains Ωi with
boundaries ∂Ωi such that Ω = ∪Ωi. At the interface Γij = ∂Ωi ∩ ∂Ωj define

[[u]] = u|∂Ωi
− u|∂Ωj

<< u >>= 1
2
(u|∂Ωi

+ u|∂Ωj
).

The approximate solution uh(t) in

Vh = {uh ∈ L2(Ω) : uh is linear on Ωi}.

Define the bilinear for on Vh × Vh

ah(u, v) =
∑
i

∫
Ωi

(a(x)∇u,∇v) dx−
∑
i>j

∫
Γij

(<< n·(a∇u) >> [[v]]± << n·(a∇v) >> [[u]]+
β

h
[[u]][[v]] ds),

whee h is the meshsize and β > 0 is sufficiently large. If + on the third term ah is symmetric
and for the case − then ah enjoys the coercivity

ah(u, u) ≥
∑
i

∫
Ωi

(a(x)∇u,∇u) dx,∈ u ∈ Vh,

regardless of β > 0.
Example 3 (Population dynaimcs) The transport equation

∂p
∂t

+ ∂p
∂x

+m(x)p(x, t) = 0

p(0, t) =
∫
β(x)p(x, t) dx

Define the difference approximation

Anp = (−pi − pi−1

h
−m(xi)pi, 1 ≤ i ≤ n), p0 =

∑
i

βi pi

Then,

(Anp, sign0(p)) ≤ (
∑

mi − βi)|pi| ≤ 0

Thus, An on L1(0, 1) is dissipative.

(A,Enφ)− (PnAn, φ).
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Example 4 (Yee’s scheme)
Consider the two dimensional Maxwell’s equation. Consider the staggered grid; i.e. E =

(E1
i− 1

2
,j
, E2

i,j− 1
2

) is defined at the the sides and H = Hi− 1
2
,j− 1

2
is defined at the center of the

cell Ωi,j = ((i− 1)h, ih)× ((j − 1)h, jh).

εi− 1
2
,j

d
dt
E1
i− 1

2
,j

= −
H
i− 1

2 ,j+
1
2
−H

i− 1
2 ,j−

1
2

h

εi,j+ 1
2

d
dt
E2
i,j+ 1

2

=
H
i+ 1

2 ,j+
1
2
−H

i− 1
2 ,j−+ 1

2

h

µi− 1
2
,j− 1

2

d
dt
Hi− 1

2
,j− 1

2
=

E2

i,j− 1
2

−E2

i−1,j− 1
2

h
−

E1

i− 1
2 ,j
−E1

i− 1
2 ,j−1

h
,

(1.50)

where E1
i− 1

2
,j

= 0, j = 0, j = N and E2
i,j− 1

2
,j

= 0, i = 0, j = N .

Since

N∑
i=1

N∑
j=1

−
Hi− 1

2
,j+ 1

2
−Hi− 1

2
,j− 1

2

h
E1
i− 1

2
,j

+
Hi+ 1

2
,j+ 1

2
−Hi− 1

2
,j−+ 1

2
h

E

2

i,j+ 1
2

+(
E2
i,j− 1

2

− E2
i−1,j− 1

2

h
−
E1
i− 1

2
,j
− E1

i− 1
2
,j−1

h
)Hi− 1

2
,j− 1

2
= 0

(1.50) is uniformly dissipative. The range condition λ I − Ah = (f, g) ∈ Xh is equivalent to
the minimization for E

min
1

2
(εi− 1

2
,jE

1
i− 1

2
,j

+ εi,j+ 1
2
E2
i,j+ 1

2
) +

1

2

1

µi,j
(|
E2
i,j− 1

2

− E2
i−1,j− 1

2

h
|2 + |

E1
i− 1

2
,j
− E1

i− 1
2
,j−1

h
|2)

−(f 1
i− 1

2
,j
− 1

µi,j

g
i− 1

2 ,j+
1
2
−g

i− 1
2 ,j−

1
2

h
, E1

i− 1
2
,j
− (f 2

i,j+ 1
2

+ 1
µi,j

H
i+ 1

2 ,j+
1
2
−H

i− 1
2 ,j−+ 1

2

h
)E2

i,j+ 1
2

.

Example 5 Legende-Tau method

2 Dissipative Operators and Semigroup of Nonlinear

Contractions

In this section we consider
du

dt
∈ Au(t), u(0) = u0 ∈ X

for the dissipative mapping A on a Banach space X.

Definition (Dissipative) A mapping A on a Banach space X is dissipative if

|x1 − x2 − λ (y1 − y2)| ≥ |x1 − x2| for all λ > 0 and [x1, y1], [x2, y2] ∈ A,

or equivalently
〈y1 − y2, x1 − x2〉− ≤ 0 for all [x1, y1], [x2, y2] ∈ A.
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and if in addition R(I − λA) = X, then A is m-dissipative.

In particular, it follows that if A is dissipative, then for λ > 0 the operator (I − λA)−1

is a single-valued and nonexpansive on R(I − λA), i.e.,

|(I − λA)−1x− (I − λA)−1y| ≤ |x− y| for all x, y ∈ R(I − λA).

Define the resolvent and Yosida approximation A by

Jλx = (I − λA)−1x ∈ dom (A), x ∈ dom (Jλ) = R(I − λA)

Aλ = λ−1(Jλx− x), x ∈ dom (Jλ).
(2.1)

We summarize some fundamental properties of Jλ and Aλ in the following theorem.

Theorem 1.4 Let A be an ω− dissipative subset of X ×X, i.e.,

|x1 − x2 − λ (y1 − y2)| ≥ (1− λω) |x1 − x2| (2.2)

for all 0 < λ < ω−1 and [x1, y1], [x2, y2] ∈ A and define ‖Ax‖ by

‖Ax‖ = inf{|y| : y ∈ Ax}.

Then for 0 < λ < ω−1,

(i) |Jλx− Jλy| ≤ (1− λω)−1 |x− y| for x, y ∈ dom (Jλ).
(ii) Aλx ∈ AJλx for x ∈ R(I − λA).
(iii) For x ∈ dom(Jλ) ∩ dom (A) |Aλx| ≤ (1− λω)−1 ‖Ax‖ and thus

|Jλx− x| ≤ λ(1− λω)−1 ‖Ax‖.

(iv) If x ∈ dom (Jλ), λ, µ > 0, then

µ

λ
x+

λ− µ
λ

Jλx ∈ dom (Jµ)

and

Jλx = Jµ

(
µ

λ
x+

λ− µ
λ

Jλx

)
.

(v) If x ∈ dom (Jλ) ∩ dom (A) and 0 < µ ≤ λ < ω−1, then

(1− λω)|Aλx| ≤ (1− µω) |Aµy|.

(vi) Aλ is ω−1(1− λω)−1-dissipative and for x, y ∈ dom(Jλ)

|Aλx− Aλy| ≤ λ−1(1 + (1− λω)−1) |x− y|.

Proof: (i)− (ii) If x, y ∈ dom (Jλ) and we set u = Jλx and v = Jλy, then there exist û and
v̂ such that x = u− λ û and y = v − λ v̂. Thus, from (2.2)

|Jλx− Jλy| = |u− v| ≤ (1− λω)−1|u− v − λ (û− v̂)| = (1− λω)−1 |x− y|.
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Next, by the definition Aλx = λ−1(u− x) = û ∈ Au = AJλx.
(iii) Let x ∈ dom (Jλ) ∩ dom (A) and x̂ ∈ Ax be arbitrary. Then we have Jλ(x − λ x̂) = x
since x− λ x̂ ∈ (I − λA)x. Thus,

|Aλx| = λ−1|Jλx−x| = λ−1|Jλx−Jλ(x−λ x̂)| ≤ (1−λω)−1λ−1 |x−(x−λ x̂)| = (1−λω)−1 |x̂|.

which implies (iii).
(iv) If x ∈ dom (Jλ) = R(I −λA) then we have x = u−λ û for [u, û] ∈ A and thus u = Jλx.
For µ > 0

µ

λ
x+

λ− µ
λ

Jλx =
µ

λ
(u− λ û) +

λ− µ
λ

u = u− µ û ∈ R(I − µA) = dom (Jµ).

and

Jµ

(
µ

λ
x+

λ− µ
λ

Jλx

)
= Jµ(u− µ û) = u = Jλx.

(v) From (i) and (iv) we have

λ |Aλx| = |Jλx− x| ≤ |Jλx− Jµx|+ |Jµx− x|

≤
∣∣∣∣Jµ(µλ x+

λ− µ
λ

Jλx

)
− Jµx

∣∣∣∣+ |Jµx− x|

≤ (1− µω)−1

∣∣∣∣µλ x+
λ− µ
λ

Jλx− x
∣∣∣∣+ |Jµx− x|

= (1− µω)−1(λ− µ) |Aλx|+ µ |Aµx|,

which implies (v) by rearranging.
(vi) It follows from (i) that for ρ > 0

|x− y − ρ (Aλx− Aλy)| = |(1 +
ρ

λ
) (x− y)− ρ

λ
(Jλx− Jλy)|

≥ (1 +
ρ

λ
) |x− y| − ρ

λ
|Jλx− Jλy|

≥ ((1 +
ρ

λ
)− ρ

λ
(1− λω)−1) |x− y| = (1− ρω(1− λω)−1) |x− y|.

The last assertion follows from the definition of Aλ and (i). �

Theorem 1.5
(1) A dissipative set A ⊂ X ×X is m-dissipative, if and only if

R(I − λ0A) = X for some λ0 > 0.

(2) An m-dissipative mapping is maximal dissipative, i.e., all dissipative set containing A in
X ×X coincide with A.
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(3) If X = X∗ = H is a Hilbert space, then the notions of the maximal dissipative set and
m-dissipative set are equivalent.

Proof: (1) Suppose R(I − λ0A) = X. Then it follows from Theorem 1.4 (i) that Jλ0 is
contraction on X. We note that

I − λA =
λ0

λ

(
I − (1− λ0

λ
) Jλ0

)
(I − λ0A) (2.3)

for 0 < λ < ω−1. For given x ∈ X define the operator T : X → X by

Ty = x+ (1− λ0

λ
) Jλ0y, y ∈ X

Then

|Ty − Tz| ≤ |1− λ0

λ
| |y − z|

where |1− λ
λ0
| < 1 if 2λ > λ0. By Banach fixed-point theorem the operator T has a unique

fixed point z ∈ X, i.e., x = (I − (1− λ0

λ
Jλ0)z. Thus,

x ∈ (I − (1− λ0

λ
) Jλ0)(I − λ0A)dom (A).

and it thus follows from (2.3) that R(I − λA) = X if λ > λ0

2
. Hence, (1) follows from

applying the above argument repeatedly.
(2) Assume A is m-dissipative. Suppose Ã is a dissipative set containing A. We need to
show that Ã ⊂ A. Let [x, x̂] ∈ Ã Since x− λ x̂ ∈ X = R(I − λA), for λ > 0, there exists a
[y, ŷ] ∈ A such that x− λ x̂ = y − λ ŷ. Since A ⊂ Ã it follows that [y, ŷ] ∈ A and thus

|x− y| ≤ |x− y − λ (x̂− ŷ)| = 0.

Hence, [x, x̂] = [y, ŷ] ∈ A.
(3) It suffices to show that if A is maximal dissipative, then A is m-dissipative. We use the
following extension lemma (Lemma 1.6). Let y be any element of H. By Lemma 1.6, taking
C = H, we have that there exists x ∈ H such that

(ξ − x, η − x+ y) ≤ 0 for all [ξ, η] ∈ A.

and thus
(ξ − x, η − (x− y)) ≤ 0 for all [ξ, η] ∈ A.

Since A is maximal dissipative, this implies that [x, x − y] ∈ A, that is x − y ∈ Ax, and
therefore y ∈ R(I −H). �

Lemma 1.6 Let A be dissipative and C be a closed, convex, non-empty subset of the Hilbert
space H such that dom (A) ∈ C. Then for every y ∈ H there exists x ∈ C such that

(ξ − x, η − x+ y) ≤ 0 for all [ξ, η] ∈ A.

Proof: Without loss of generality we can assume that y = 0, for otherwise we define Ay =
{[ξ, η + y] : [ξ, η] ∈ A} with dom (Ay) = dom (A). Since A is dissipative if and only if Ay is
dissipative , we can prove the lemma for Ay. For [ξ, η] ∈ A, define the set

C([ξ, η]) = {x ∈ C : (ξ − x, η − x) ≤ 0}.

Thus, the lemma is proved if we can show that
⋂

[ξ,η]∈A C([ξ, η]) is non-empty.
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2.0.1 Properties of m-dissipative operators

In this section we discuss some properties of m-dissipative sets.

Lemma 1.7 Let X∗ be a strictly convex Banach space. If A is maximal dissipative, then
Ax is a closed convex set of X for each x ∈ dom (A).

Proof: It follows from Lemma that the duality mapping F is single-valued. First, we show
that Ax is convex. Let x̂1, x̂2 ∈ Ax and set x̂ = αx̂1 + (1−α) x̂2 for 0 ≤ α ≤ 1. Then, Since
A is dissipative, for all [y, ŷ] ∈ A

Re 〈x̂− ŷ, F (x− y)〉 = αRe 〈x̂1 − ŷ, F (x− y)〉+ (1− α)Re 〈x̂2 − ŷ, F (x− y)〉 ≤ 0.

Thus, if we define a subset Ã by

Ãz =


Az if z ∈ dom (A) \ {x}

Ax ∪ {x̂} if z = x,

then Ã is a dissipative extension of A and dom (Ã) = dom (A). Since A is maximal dissipa-
tive, it follows that Ãx = Ax and thus x̂ ∈ Ax as desired.

Next, we show that Ax is closed. Let x̂n ∈ Ax and limn→∞ x̂n = x̂. Since A is dissipative,
Re 〈x̂n − ŷ, x − y〉 ≤ 0 for all [y, ŷ] ∈ A. Letting n → ∞, we obtain Re 〈x̂ − ŷ, x − y〉 ≤ 0.
Hence, as shown above x̂ ∈ Ax as desired. �

Definition 1.4 A subset A of X × X is said to be demiclosed if xn → x and yn ⇀ y and
[xn, yn] ∈ A imply that [x, y] ∈ A. A subset A is closed if [xn, yn], xn → x and yn → y imply
that [x, y] ∈ A.

Theorem 1.8 Let A be m-dissipative. Then the followings hold.
(i) A is closed.
(ii) If {xλ} ⊂ X such that xλ → x and Aλxλ → y as λ→ 0+, then [x, y] ∈ A.

Proof: (i) Let [xn, x̂n] ∈ A and (xn, x̂n)→ (x, x̂) in X ×X. Since A is dissipative Re 〈x̂n −
ŷ, xn − y〉i ≤ 0 for all [y, ŷ] ∈ A. Since 〈·, ·〉i is lower semicontinuous, letting n → ∞, we
obtain Re 〈x̂− ŷ, x− y〉i ≤ for all [y, ŷ] ∈ A. Then A1 = [x, x̂] ∪A is a dissipative extension
of A. Since A is maximal dissipative, A1 = A and thus [x, x̂] ∈ A. Hence, A is closed.
(ii) Since {Aλx} is a bounded set in X, by the definition of Aλ, lim |Jλxλ − xλ| → 0 and
thus Jλxλ → x as λ→ 0+. But, since Aλxλ ∈ AJλxλ, it follows from (i) that [x, y] ∈ A. �

Theorem 1.9 Let A be m-dissipative and let X∗ be uniformly convex. Then the followings
hold.
(i) A is demiclosed.
(ii) If {xλ} ⊂ X such that xλ → x and {|Aλx|} is bounded as λ → 0+, then x ∈ dom (A).
Moreover, if for some subsequence Aλnxn ⇀ y, then y ∈ Ax.
(iii) limλ→0+ |Aλx| = ‖Ax‖.
Proof: (i) Let [xn, x̂n] ∈ A be such that lim xn = x and w − lim x̂n = x̂ as n → ∞. Since
X∗ is uniformly convex, from Lemma the duality mapping is single-valued and uniformly
continuous on the bounded subsets of X. Since A is dissipative Re 〈x̂n − ŷ, F (xn − y)〉 ≤ 0
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for all [y, ŷ] ∈ A. Thus, letting n→∞, we obtain Re 〈x̂− ŷ, F (x− y)〉 ≤ 0 for all [y, ŷ] ∈ A.
Thus, [x, x̂] ∈ A, by the maximality of A.
Definition 1.5 The minimal section A0 of A is defined by

A0x = {y ∈ Ax : |y| = ‖Ax‖} with dom (A0) = {x ∈ dom (A) : A0x is non-empty}.

Lemma 1.10 Let X∗ be a strictly convex Banach space and let A be maximal dissipative.
Then, the followings hold.
(i) If X is strictly convex, then A0 is single-valued.
(ii) If X reflexible, then dom (A0) = dom (A).
(iii) If X strictly convex and reflexible, then A0 is single-valued and dom (A0) = dom (A).

Theorem 1.11 Let X∗ is a uniformly convex Banach space and let A be m-dissipative.
Then the followings hold.
(i) limλ→0+ F (Aλx) = F (A0x) for each x ∈ dom (A).

Moreover, if X is also uniformly convex, then
(ii) limλ→0+ Aλx = A0x for each x ∈ dom (A).

Proof: (1) Let x ∈ dom (A). By (ii) of Theorem 1.4

|Aλx| ≤ ‖Ax‖

Since {Aλx} is a bounded sequence in a reflexive Banach space (i.e., since X∗ is uniformly
convex, X∗ is reflexive and so isX), there exists a weak convergent subsequence {Aλnx}. Now
we set y = w− limn→∞ Aλnx. Since from Theorem 1.4 Aλnx ∈ AJλnx and limn→∞ Jλnx = x
and from Theorem 1.10 A is demiclosed, it follows that [x, y] ∈ A. Since by the lower-
semicontinuity of norm this implies

‖Ax‖ ≤ |y| lim inf
n→∞

|Aλnx| ≤ lim sup
n→∞

|Aλnx| ≤ ‖Ax‖,

we have |y| = ‖Ax‖ = limn→∞ |Aλnx| and thus y ∈ A0x. Next, since |F (Aλnx)| = |Aλnx| ≤
‖Ax‖, F (Aλnx) is a bounded sequence in the reflexive Banach space X∗ and has a weakly
convergent subsequence F (Aλkx) of F (Aλnx). If we set y∗ = w − limk→∞ F (Aλkx), then it
follows from the dissipativity of A that

Re 〈Aλkx− y, F (Aλkx)〉 = λ−1
n Re 〈Aλkx− y, F (Jλkxx)〉 ≤ 0,

or equivalently |Aλkx|2 ≤ Re 〈y, F (Aλnx)〉. Letting k → ∞, we obtain |y|2 ≤ Re 〈y, y∗〉.
Combining this with

|y∗| ≤ lim
k→∞

|F (Aλkx)| = lim
k→∞

|Aλkx| = |y|,

we have
|y∗| ≤ Re 〈y, y∗〉 ≤ |〈y, y∗〉| ≤ |y||y∗| ≤ |y|2.

Hence,
〈y, y∗〉 = |y|2 = |y∗|2
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and we have y∗ = F (y). Also, limk→∞ |F (Aλkx)| = |y| = |F (y)|. It thus follows from the
uniform convexity of X∗ that

lim
k→∞

F (Aλkx) = F (y).

Since Ax is a closed convex set of X from Theorem , we can show that x → F (A0x) is
single-valued. In fact, if C is a closed convex subset of X, the y is an element of minimal
norm in C, if and only if

|y| ≤ |(1− α)y + α z| for all z ∈ C and 0 ≤ α ≤ 1.

Hence,
〈z − y, y〉+ ≥ 0.

and from Theorem 1.10
0 ≤ Re 〈z − y, f〉 = Re 〈z, f〉 − |y|2 (2.4)

for all z ∈ C and f ∈ F (y). Now, let y1, y2 be arbitrary in A0x. Then, from (2.4)

|y1|2 ≤ Re 〈y2, F (y1)〉 ≤ |y1||y2|

which implies that 〈y2, F (y1)〉 = |y2|2 and |F (y1)| = |y2|. Therefore, F (y1) = F (y2) as
desired. Thus, we have shown that for every sequence {λ} of positive numbers that converge
to zero, the sequence {F (Aλx)} has a subsequence that converges to the same limit F (A0x).
Therefore, limλ→0 F (Aλx)→ F (A0x).

Furthermore, we assume that X is uniformly convex. We have shown above that for
x ∈ dom (A) the sequence {Aλ} contains a weak convergent subsequence {Aλnx} and if
y = w − limn→∞ Aλnx then [x, y] ∈ A0 and |y| = limn→∞ |Aλnx|. But since X is uniformly
convex, it follows from Theorem 1.10 that A0 is single-valued and thus y = A0x. Hence,
w − limn→∞ Aλnx = A0x and limn→∞ |Aλnx| = |A0x|. Since X is uniformly convex, this
implies that limn→∞ Aλnx = A0x. �

Theorem 1.12 Let X is a uniformly convex Banach space and let A be m-dissipative. Then
dom (A) is a convex subset of X.

Proof: It follows from Theorem 1.4 that

|Jλx− x| ≤ λ ‖Ax‖ for x ∈ dom (A)

Hence |Jλx− x| → 0 as λ→ 0+. Since Jλx ∈ dom (A) for X ∈ X, it follows that

dom (A) = {x ∈ X : |Jλx− x| → 0 as λ→ 0+}.

Let x1, x2 ∈ dom (A) and 0 ≤ α ≤ 1 and set

x = αx1 + (1− α)x2.

Then, we have
|Jλx− x1| ≤ |x− x1|+ |Jλx1 − x1|

|Jλx− x2| ≤ |x− x2|+ |Jλx2 − x2|
(2.5)
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where x − x1 = (1 − α) (x2 − x1) and x − x2 = α (x1 − x2). Since {Jλx} is a bounded set
and a uniformly convex Banach space is reflexive, it follows that there exists a subsequence
{Jλnx} that converges weakly to z. Since the norm is weakly lower semicontinuous, letting
n→∞ in (2.5) with λ = λn, we obtain

|z − x1| ≤ (1− α) |x1 − x2|

|z − x2| ≤ α |x1 − x2|

Thus,
|x1 − x2| = |(x1 − z) + (z − x2)| ≤ |x1 − z|+ |z − x2| ≤ |x1 − x2|

and therefore |x1−z| = (1−α) |x1−x2|, |z−x2| = α |x1−x2| and |(x1−z)+(z−x2)| = |x1−x2|.
But, since X is uniformly convex we have z = x and w− lim Jλnx = x as n→∞. Since we
also have

|x− x1| ≤ lim inf
n→∞

|Jλnx− Jλnx1| ≤ |x− x1|

|Jλnx−Jλnx1| → |x−x1| and w− lim Jλnx−Jλnx1 = x−x1 as n→∞. Since X is uniformly
convex, this implies that limλ→0+ Jλx = x and x ∈ dom (A). �

2.1 Generation of Nonlinear Semigroups

In this section, we consider the generation of nonlinear semigroup by Crandall-Liggett on a
Banach space X.
Definition 2.1 Let X0 be a subset of X. A semigroup S(t), t ≥ of nonlinear contractions on
X0 is a function with domain [0,∞)×X0 and range in X0 satisfying the following conditions:

S(t+ s)x = S(t)S(s)x and S(0)x = x for x ∈ X0, t, s ≥ 0

t→ S(t)x ∈ X is continuous

|S(t)x− S(t)y| ≤ |x− y| for t ≥ 0, x, y ∈ X0

Let A be a ω-dissipative operator and Jλ = (I − λA)−1 is the resolvent. The following
estimate plays an essential role in the Crandall-Liggett generation theory.

Lemma 2.1 Assume a sequence {an,m} of positive numbers satisfies

an,m ≤ α an−1,m−1 + (1− α) an−1,m (2.6)

and a0,m ≤ mλ and an,0 ≤ nµ for λ ≥ µ > 0 and α = µ
λ
. Then we have the estimate

an,m ≤ [(mλ− nµ)2 +mλ2]
1
2 + [(mλ− nµ)2 + nλµ]

1
2 . (2.7)

Proof: From the assumption, (2.7) holds for either m = 0 or n = 0. We will use the induction
in n, m, that is if (2.7) holds for (n + 1,m) when (2.7) is true for (n,m) and (n,m − 1),
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then (2.7) holds for all (n,m). Let β = 1 − α. We assume that (2.7) holds for (n,m) and

(n,m− 1). Then, by (2.6) and Cauchy-Schwarz inequality αx+ βy ≤ (α+ β)
1
2 (αx2 + βy2)

1
2

an+1,m ≤ α an,m−1 + β an,m

≤ α ([((m− 1)λ− nµ)2 + (m− 1)λ2]
1
2 + [((m− 1)λ− nµ)2 + nλµ]

1
2 )

+β ([(mλ− nµ)2 +mλ2]
1
2 + [(mλ− nµ)2 + nλµ]

1
2 )

= (α + β)
1
2 (α [((m− 1)λ− nµ)2 + (m− 1)λ2] + β [(mλ− nµ)2 +mλ2])

1
2

+(α + β)
1
2 (α [((m− 1)λ− nµ)2 + nλµ] + β [(mλ− nµ)2 + nλµ])

1
2

≤ [(mλ− (n+ 1)µ)2 +mλ2]
1
2 + [(mλ− (n+ 1)µ)2 + (n+ 1)λµ]

1
2 .

Here, we used α + β = 1, αλ = µ and

α [((m− 1)λ− nµ)2 + (m− 1)λ2] + β [(mλ− nµ)2 +mλ2])

≤ (mλ− nµ)2 +mλ2 − αλ(mλ− nµ) = (mλ− (n+ 1)µ)2 +mλ2 − µ2

α [((m− 1)λ− nµ)2 + nλµ] + β [(mλ− nµ)2 + nλµ]

≤ (mλ− nµ)2 + (n+ 1)λµ− 2αλ(mλ− nµ) ≤ (mλ− (n+ 1)µ)2 + (n+ 1)λµ− µ2.�

Theorem 2.2 Assume A be a dissipative subset of X ×X and satisfies the range condition

dom (A) ⊂ R(I − λA) for all sufficiently small λ > 0. (2.8)

Then, there exists a semigroup of type ω on S(t) on dom (A) that satisfies for x ∈ dom (A)

S(t)x = lim
λ→0+

(I − λA)−[ t
λ

]x, t ≥ 0 (2.9)

and
|S(t)x− S(t)x| ≤ |t− s| ‖Ax‖ for x ∈ dom (A), and t, s ≥ 0.

Proof: First, note that from (2.10) dom (A) ⊂ dom (Jλ). Let x ∈ dom (A) and set an,m =
|Jnµx− Jmλ x| for n, m ≥ 0. Then, from Theorem 2.4

a0,m = |x− Jmλ x| ≤ |x− Jλx|+ |Jλx− J2
λx|+ · · ·+ |Jm−1

λ x− Jmλ x|

≤ m |x− Jλx| ≤ mλ ‖Ax‖.

Similarly, an,0 = |Jnµx− x| ≤ nµ ‖Ax‖. Moreover,

an,m = |Jnµx− Jmλ x| ≤ |Jnµx− Jµ
(
µ

λ
Jm−1
λ x+

λ− µ
λ

Jmλ x

)
|

≤ µ

λ
|Jn−1
µ x− Jm−1

λ x|+ λ− µ
λ
|Jn−1
µ x− Jmλ x|

= α an−1,m−1 + (1− α) an−1,m.
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It thus follows from Lemma 2.1 that

|J
[ t
µ

]
µ x− J [ t

λ
]

λ x| ≤ 2(λ2 + λt)
1
2 ‖Ax‖. (2.10)

Thus, J
[ t
λ

]

λ x converges to S(t)x uniformly on any bounded intervals, as λ→ 0+. Since J
[ t
λ

]

λ is
non-expansive, so is S(t). Hence (2.9) holds. Next, we show that S(t) satisfies the semigroup
property S(t+ s)x = S(t)S(s)x for x ∈ dom (A) and t, s ≥ 0. Letting µ→ 0+ in (2.10), we
obtain

|S(t)x− J [ t
λ

]

λ x| ≤ 2(λ2 + λt)
1
2 . (2.11)

for x ∈ dom (A). If we let x = J
[ s
λ

]

λ z, then x ∈ dom (A) and

|S(t)J
[ s
λ

]

λ z − J [ t
λ

]

λ J
[ s
λ

]

λ z| ≤ 2(λ2 + λt)
1
2 ‖Az‖ (2.12)

where we used that ‖AJ [ s
λ

]

λ z‖ ≤ ‖Az‖ for z ∈ dom (A). Since [ t+s
λ

] − ([ t
λ
] + [ s

λ
]) equals 0 or

1, we have

|J [ t+s
λ

]

λ z − J [ t
λ

]

λ J
[ s
λ

]

λ z| ≤ |Jλz − z| ≤ λ ‖Az‖. (2.13)

It thus follows from (2.11)–(2.13) that

|S(t+ s)z − S(t)S(s)z| ≤ |S(t+ s)x− J [ t+s
λ

]

λ z|+ |J [ t+s
λ

]

λ z − J [ t
λ

]

λ J
[ s
λ

]

λ z|

+|J [ t
λ

]

λ J
[ s
λ

]

λ z − S(t)J
[ s
λ

]

λ z|+ |S(t)J
[ s
λ

]

λ z − S(t)S(s)z| → 0

as λ→ 0+. Hence, S(t+ s)z = S(t)S(s)z.
Finally, since

|J [ t
λ

]

λ x− x| ≤ [
t

λ
] |Jλx− x| ≤ t ‖Ax‖

we have |S(t)x − x| ≤ t ‖Ax‖ for x ∈ dom (A). From this we obtain |S(t)x − x| → 0 as
t→ 0+ for x ∈ dom (A) and also

|S(t)x− S(s)x| ≤ |S(t− s)x− x| ≤ (t− s) ‖Ax‖

for x ∈ dom (A) and t ≥ s ≥ 0. �

2.2 Cauchy Problem

Definition 3.1 Let x0 ∈ X and ω ∈ R. Consider the Cauchy problem

d

dt
u(t) ∈ Au(t), u(0) = x0. (2.14)

(1) A continuous function u(t) : [0, T ] → X is called a strong solution of (2.14) if u(t) is
Lipschitz continuous with u(0) = x0, strongly differentiable a.e. t ∈ [0, T ], and (2.14) holds
a.e. t ∈ [0, T ].
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(2) A continuous function u(t) : [0, T ]→ X is called an integral solution of type ω of (2.14)
if u(t) satisfies

|u(t)− x| − |u(t̂)− x| ≤
∫ t

t̂

(ω |u(s)− x|+ 〈y, u(s)− x〉+) ds (2.15)

for all [x, y] ∈ A and t ≥ t̂ ∈ [0, T ].

Theorem 3.1 Let A be a dissipative subset of X ×X. Then, the strong solution to (2.14)
is unique. Moreover if the range condition (2.10) holds, then then the strong solution u(t) :
[0,∞)→ X to (2.14) is given by

u(t) = lim
λ→0+

(I − λA)−[ t
λ

]x for x ∈ dom (A) and t ≥ 0.

Proof: Let ui(t), i = 1, 2 be the strong solutions to (2.14). Then, t → |u1(t) − u2(t)| is
Lipschitz continuous and thus a.e. differentiable t ≥ 0. Thus

d

dt
|u1(t)− u2(t)|2 = 2 〈u′1(t)− u′2(t), u1(t)− u2(t)〉i

a.e. t ≥ 0. Since u′i(t) ∈ Aui(t), i = 1, 2 from the dissipativeness of A, we have d
dt
|u1(t) −

u2(t)|2 ≤ 0 and therefore

|u1(t)− u2(t)|2 ≤
∫ t

0

d

dt
|u1(t)− u2(t)|2 dt ≤ 0,

which implies u1 = u2.
For 0 < 2λ < s let uλ(t) = (I − λA)−[ t

λ
]x and define gλ(t) = λ−1(u(t)− u(t− λ))− u′(t)

a.e. t ≥ λ. Since limλ→0+ |gλ| = 0 a.e. t > 0 and |gλ(t)| ≤ 2M for a.e. t ∈ [λ, s], where M
is a Lipschitz constant of u(t) on [0, s], it follows that limλ→0+

∫ s
λ
|gλ(t)| dt = 0 by Lebesgue

dominated convergence theorem. Next, since

u(t− λ) + λ gλ(t) = u(t)− λu′(t) ∈ (I − λA)u(t),

we have u(t) = (I − λA)−1(u(t− λ) + λ gλ(t)). Hence,

|uλ(t)− u(t)| ≤ |(I − λA)−[ t−λ
λ

]x− u(t− λ)− λ gλ(t)|

≤ |uλ(t− λ)− u(t− λ)|+ λ |gλ(t)|

a.e. t ∈ [λ, s]. Integrating this on [λ, s], we obtain

λ−1

∫ s

s−λ
|uλ(t)− u(t)| dt ≤ λ−1

∫ λ

0

|uλ(t)− u(t)| dt+

∫ s

λ

|gλ(t)| dt.

Letting λ → 0+, it follows from Theorem 2.2 that |S(s)x − u(s)| = 0 since u is Lipschitz
continuous, which shows the desired result. �

In general, the semigroup S(t) generated on dom (A) in Theorem 2.2 in not necessary
strongly differentiable. In fact, an example of an m-dissipative A satisfying (2.10) is given,
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for which the semigroup constructed in Theorem 2.2 is not even weakly differentiable for all
t ≥ 0. Hence, from Theorem 3.1 the corresponding Cauchy problem (2.14) does not have a
strong solution. However, we have the following.

Theorem 3.2 Let A be an ω-dissipative subset satisfying (2.10) and S(t), t ≥ 0 be the
semigroup on dom (A), as constructed in Theorem 2.2. Then, the followings hold.
(1) u(t) = S(t)x on dom (A) defined in Theorem 2.2 is an integral solution of type ω to the
Cauchy problem (2.14).
(2) If v(t) ∈ C(0, T ;X) be an integral of type ω to (2.14), then |v(t)−u(t)| ≤ eωt |v(0)−u(0)|.
(3) The Cauchy problem (2.14) has a unique solution in dom (A) in the sense of Definition
2.1.

Proof: A simple modification of the proof of Theorem 2.2 shows that for x0 ∈ dom (A)

S(t)x0 = lim
λ→0+

(I − λA)−[ t
λ

]x0

exists and defines the semigroup S(t) of nonlinear ω-contractions on dom (A), i.e.,

|S(t)x− S(t)y| ≤ eωt |x− y| for t ≥ 0 and x, y ∈ dom (A).

For x0 ∈ dom (A) we define for λ > 0 and k ≥ 1

ykλ = λ−1(Jkλx0 − Jk−1
λ x0) = AλJ

k−1
λ x0 ∈ AJkλ . (2.16)

Since A is ω-dissipative, 〈yλ,k − y, Jkλx0 − x〉− ≤ ω |Jkλx0 − x| for [x, y] ∈ A. Since from
Lemma 1.1 (4) 〈y, x〉− − 〈z, x〉+ ≤ 〈y − z, x〉−, it follows that

〈ykλ, Jkλx0 − x〉− ≤ ω |Jkλx0 − x|+ 〈y, Jkλx0 − x〉+ (2.17)

Since from Lemma 1.1 (3) 〈x+ y, x〉− = |x|+ 〈y, x〉−, we have

〈λykλ, Jkλx0 − x〉− = |Jkλx0 − x|+ 〈−(Jk−1
λ x0 − x), Jkλx0 − x〉− ≥ |Jkλx0 − x| − |Jk−1

λ x0 − x|.

It thus follows from (2.17) that

|Jkλx0 − x| − |Jk−1
λ x0 − x| ≤ λ (ω |Jkλx0 − x|+ 〈y, Jkλx0 − x〉+).

Since J [ t
λ

] = Jkλ on t ∈ [kλ, (k + 1)λ), this inequality can be written as

|Jkλx0 − x| − |Jk−1
λ x0 − x| ≤

∫ (k+1)λ

kλ

(ω |J [ t
λ
λ x0 − x|+ 〈y, J

[ t
λ

]

λ x0 − x〉+ dt.

Hence, summing up this in k from k = [ t̂
λ
] + 1 to [ t

λ
] we obtain

|J [ t
λ

]

λ x0 − x| − |J
[ t̂
λ

]

λ x0 − x| ≤
∫ [ t

λ
]λ

[ t̂
λ

]λ

(ω |J [ s
λ

]

λ x0 − x|+ 〈y, J
[ s
λ

]

λ x0 − x〉+ ds.

46



Since |J [ s
λ

]

λ x0| ≤ (1 − λω)−k |x0| ≤ ekλω |x0|, by Lebesgue dominated convergence theorem
and the upper semicontinuity of 〈·, ·〉+, letting λ→ 0+ we obtain

|S(t)x0 − x| − |S(t̂)x0 − x| ≤
∫ t

t̂

(ω |S(s)x0 − x|+ 〈y, S(t)x0 − x〉+) ds (2.18)

for x0 ∈ dom (A). Similarly, since S(t) is Lipschitz continuous on dom (A), again by Lebesgue
dominated convergence theorem and the upper semicontinuity of 〈·, ·〉+, (2.18) holds for all
x0 ∈ dom (A).
(2) Let v(t) ∈ C(0, T ;X) be an integral of type ω to (2.14). Since [Jkλx0, y

k
λ] ∈ A, it follows

from (2.15) that

|v(t)− Jkλx0| − |v(t̂)− Jkλx0| ≤
∫ t

t̂

(ω |v(s)− Jkλx0|+ 〈ykλ, v(s)− Jkλx0〉+) ds. (2.19)

Since λ ykλ = −(v(s) − Jkλx0) + (v(s) − Jk−1
λ x0) and from Lemma 1.1 (3) 〈−x + y, x〉+ =

−|x|+ 〈y, x〉+, we have

〈λykλ, v(s)−Jkλx0〉+ = −|v(s)−Jkλx0|+〈v(s)−Jk−1
λ x0, v(s)−Jkλx0〉+ ≤ −|v(s)−Jkλx0|+|v(s)−Jk−1

λ x0|.

Thus, from (2.19)

(|v(t)− Jkλx0| − |v(t̂)− Jkλx0|)λ ≤
∫ t

t̂

(ωλ |v(s)− Jkλx0| − |v(s)− Jkλx0|+ |v(s)− Jk−1
λ x0|) ds

Summing up the both sides of this in k from [ τ̂
λ
] + 1 to [ τ

λ
], we obtain∫ [ τ

λ
]λ

[ τ̂
λ

]λ

(|v(t)− J [σ
λ

]

λ x0| − |v(t̂)− J [σ
λ

]

λ x0| dσ

≤
∫ t

t̂

(−|v(s)− J [ τ
λ

]

λ x0|+ |v(s)− J [ τ̂
λ

]

λ x0|+
∫ [ τ

λ
]λ

[ τ̂
λ

]λ

ω |v(s)− J [σ
λ

]

λ x0| dσ) ds.

Now, by Lebesgue dominated convergence theorem, letting λ→ 0+∫ τ

τ̂

(|v(t)− u(σ)| − |v(t̂)− u(σ)|) dσ +

∫ t

t̂

(|v(s)− u(τ)| − |v(s)− u(τ̂)|) ds

≤
∫ t

t̂

∫ τ

τ̂

ω |v(s)− u(σ)| dσ ds.

(2.20)

For h > 0 we define Fh by

Fh(t) = h−2

∫ t+h

t

∫ t+h

t

|v(s)− u(σ)| dσ ds.

Then from (2.20) we have
d

dt
Fh(t) ≤ ω Fh(t) and thus Fh(t) ≤ eωtFh(0). Since u, v are

continuous we obtain the desired estimate by letting h→ 0+. �
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Lemma 3.3 Let A be an ω-dissipative subset satisfying (2.10) and S(t), t ≥ 0 be the
semigroup on dom (A), as constructed in Theorem 2.2. Then, for x0 ∈ dom (A) and [x, y] ∈ A

|S(t)x0 − x|2 − |S(t̂)x0 − x|2 ≤ 2

∫ t

t̂

(ω |S(s)x0 − x|2 + 〈y, S(s)x0 − x〉s ds (2.21)

and for every f ∈ F (x0 − x)

lim sup
t→0+

Re 〈S(t)x0 − x0

t
, f〉 ≤ ω |x0 − x|2 + 〈y, x0 − x〉s. (2.22)

Proof: Let yλk be defined by (2.16). Since A is ω-dissipative, there exists f ∈ F (Jkλx0 − x)
such that Re (ykλ − y, f〉 ≤ ω |Jkλx0 − x|2. Since

Re 〈ykλ, f〉 = λ−1Re 〈Jkλx0 − x− (Jk−1
λ x0 − x), f〉

≥ λ−1(|Jkλx0 − x|2 − |Jk−1
λ x0 − x||Jkλx0 − x|) ≥ (2λ)−1(|Jkλx0 − x|2 − |Jk−1

λ x0 − x|2),

we have from Theorem 1.4

|Jkλx0 − x|2 − |Jk−1
λ x0 − x|2 ≤ 2λRe 〈ykλ, f〉 ≤ 2λ (ω |Jkλx0 − x|2 + 〈y, Jkλx0 − x〉s.

Since J
[ t
λ

]

λ x0 = Jkλx0 on [kλ, (k + 1)λ), this can be written as

|Jkλx0 − x|2 − |Jk−1
λ x0 − x|2 ≤

∫ (k+1)λ

kλ

(ω |J [ t
λ
λ x0 − x|2 + 〈y, J [ t

λ
]

λ x0 − x〉s) dt.

Hence,

|J [ t
λ

]

λ x0 − x|2 − |J
[ t̂
λ

]

λ x0 − x|2 ≤ 2λ

∫ [ t
λ

]λ

[ t̂
λ

]λ

(ω |J [ s
λ

]

λ x0 − x|2 + 〈y, J [ s
λ

]

λ x0 − x〉s) ds.

Since |J [ s
λ

]

λ x0| ≤ (1 − λω)−k |x0| ≤ ekλω |x0|, by Lebesgue dominated convergence theorem
and the upper semicontinuity of 〈·, ·〉s, letting λ→ 0+ we obtain (2.21).

Next, we show (2.22). For any given f ∈ F (x0 − x) as shown above

2Re 〈S(t)x0 − x0, f〉 ≤ |S(t)x0 − x|2 − |x0 − x|2.

Thus, from (2.21)

Re 〈S(t)x0 − x0, f〉 ≤
∫ t

0

(ω |S(s)x0 − x|2 + 〈y, S(s)x0 − x〉s) ds

Since s→ S(s)x0 is continuous, by the upper semicontinuity of 〈·, ·〉s, we have (2.22). �

Theorem 3.4 Assume that A is a close dissipative subset of X ×X and satisfies the range
condition (2.10) and let S(t), t ≥ 0 be the semigroup on dom (A), defined in Theorem 2.2.
Then, if S(t)x is strongly differentiable at t0 > 0 then

S(t0)x ∈ dom (A) and
d

dt
S(t)x |t=t0 ∈ AS(t)x,
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and moreover

S(t0)x ∈ dom (A0) and
d

dt
S(t)x

∣∣
t=t0 = A0S(t0)x.

Proof: Let d
dt
S(t)x |t=t0 = y . Then S(t0 − λ)x − (S(t0)x − λ y) = o(λ), where |o(λ)|

λ
→ 0 as

λ → 0+. Since S(t0 − λ)x ∈ dom (A), there exists a [xλ, yλ] ∈ A such that S(t0 − λ)x =
xλ − λ yλ and

λ (y − yλ) = S(t0)x− xλ + o(λ). (2.23)

If we let x = xλ, y = yλ and x0 = S(t0)x in (2.22), then we obtain

Re 〈y, f〉 ≤ ω |S(t0)x− xλ|2 + 〈yλ, S(t0)x− xλ〉s.

for all f ∈ (S(t0)x− xλ). It follows from Lemma 1.3 that there exists a g ∈ F (S(t0)x− xλ)
such that 〈yλ, S(t)x− xλ〉s = Re 〈yλ, g〉 and thus

Re 〈y − yλ, g〉 ≤ ω |S(t0)x− xλ|2.

From (2.23)

λ−1|S(t0)x− xλ|2 ≤
|o(λ)|
λ
|S(t0)x− xλ|+ ω |S(t0)x− xλ|2

and thus

(1− λω)

∣∣∣∣S(t0)x− xλ
λ

∣∣∣∣→ 0 as λ→ 0+.

Combining this with (2.23), we obtain

xλ → S(t0)x and yλ → y

as λ→ 0+. Since A is closed, it follows that [S(t0)x, y] ∈ A, which shows the first assertion.
Next, from Theorem 2.2

|S(t0 + λ)x− S(t0)x| ≤ λ ‖AS(t0)x‖ for λ > 0

This implies that |y| ≤ ‖AS(t0)x‖. Since y ∈ AS(t0)x, it follows that S(t0)x ∈ dom (A0)
and y ∈ A0S(t0)x. �

Theorem 3.5 Let A be a dissipative subset of X ×X satisfying the range condition (2.10)
and S(t), t ≥ 0 be the semigroup on dom (A), defined in Theorem 2.2. Then the followings
hold.
(1) For ever x ∈ dom (A)

lim
λ→0+

|Aλx| = lim inf
t→0+

|S(t)x− x|.

(2) Let x ∈ dom (A). Then, limλ→0+ |Aλx| < ∞ if and only if there exists a sequence {xn}
in dom (A) such that limn→∞ xn = x and supn ‖Axn‖ <∞.

Proof: Let x ∈ dom (A). From Theorem 1.4 |Aλx| is monotone decreasing and lim |Aλx|
exists (including ∞). Since |J [ t

λ
]

λ − x| ≤ t |Aλx|, it follows from Theorem 2.2 that

|S(t)x− x| ≤ t lim
λ→0+

|Aλx|
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thus

lim inf
t→0+

1

t
|S(t)x− x| ≤ lim

λ→0+
|Aλx|.

Conversely, from Lemma 3.3

− lim inf
t→0+

1

t
|S(t)x− x||x− u| ≤ 〈v, x− u〉s

for [u, v] ∈ A. We set u = Jλx and v = Aλx. Since x− u = −λAλx,

− lim inf
t→0+

1

t
|S(t)x− x|λ|Aλx| ≤ −λ |Aλx|2

which implies

lim inf
t→0+

1

t
|S(t)x− x| ≥ |Aλx|.

Theorem 3.7 Let A be a dissipative set of X ×X satisfying the range condition (2.10) and
let S(t), t ≥ 0 be the semigroup defined on dom (A) in Theorem 2.2.

(1) If x ∈ dom (A) and S(t)x is differentiable a.e., t > 0, then u(t) = S(t)x, t ≥ 0 is a
unique strong solution of the Cauchy problem (2.14).

(2) If X is reflexive. Then, if x ∈ dom (A) then u(t) = S(t)x, t ≥ 0 is a unique strong
solution of the Cauchy problem (2.14).

Proof: The assertion (1) follows from Theorems 3.1 and 3.5. If X is reflexive, then since an
X-valued absolute continuous function is a.e. strongly differentiable, (2) follows from (1). �

2.2.1 Infinitesimal generator

Definition 4.1 Let X0 be a subset of a Banach space X and S(t), t ≥ 0 be a semigroup of
nonlinear contractions on X0. Set Ah = h−1(T (h)− I) for h > 0 and define the strong and
weak infinitesimal generators A0 and Aw by

A0x = limh→0+ Ahx with dom (A0) = {x ∈ X0 : limh→0+ Ahx exists}

A0x = w − limh→0+ Ahx with dom (A0) = {x ∈ X0 : w − limh→0+ Ahx exists},
(2.24)

respectively. We define the set D̂ by

D̂ = {x ∈ X0 : lim inf
h→0

|Ahx| <∞} (2.25)

Theorem 4.1 Let S(t), t ≥ 0 be a semigroup of nonlinear contractions defined on a closed
subset X0 of X. Then the followings hold.
(1) 〈Awx1 − Awx2, x

∗〉 ≤ 0 for all x1, x2 ∈ dom (Aw) and x∗ ∈ F (x1 − x2). In particular, A0

and Aw are dissipative.

(2) If X is reflexive, then dom (A0) = dom (Aw) = D̂.
(3) If X is reflexive and strictly convex, then dom(Aw) = D̂. In addition, if X is uniformly
convex, then dom (Aw) = dom (A0) = D̂ and Aw = A0.
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Proof: (1) For x1, x2 ∈ X0 and x∗ ∈ F (x1 − x2) we have

〈Ahx1 − Ahx2, x
∗〉 = h−1(〈S(h)x1 − S(h)x2, x

∗〉 − |x1 − x2|2)

≤ h−1(|S(h)x1 − S(h)x2||x1 − x2| − |x1 − x2|2) ≤ 0.

Letting h→ 0+, we obtain the desired inequality.
(2) Obviously, dom (A0) ⊂ dom (Aw) ⊂ D̂. Let x ∈ D̂. It suffices to show that x ∈ dom (A0).
We can show that t → S(t)x is Lipschitz continuous. In fact, there exists a monotonically
decreasing sequence {tk} of positive numbers and L > 0 such that tk → 0 as k → ∞ and
|S(tk)x− x| ≤ L tk. Let h > 0 and nk be a nonnegative integer such that 0 ≤ h− nktk < tk.
Then we have

|S(t+ h)x− S(t)x| ≤ |S(t)x− x| = |S(h− nktk + nktk)x− x|

≤ |S(h− nktk)x− x|+ Lnktk ≤ |S(h− nktk)x− x|+ Lh

By the strong continuity of S(t)x at t = 0, letting k →∞, we obtain |S(t+h)x−S(t)x| ≤ Lh.
Now, since X is reflexive this implies that S(t)x is a.e. differentiable on (0,∞). But since
S(t)x ∈ dom (A0) whenever d

dt
S(t)x exists, S(t)x ∈ dom (A0) a.e. t > 0. Thus, since

|S(t)x− x| → 0 as t→ 0+, it follows that x ∈ dom (A0).
(3) Assume that X is reflexive and strictly convex. Let x0 ∈ D̂ and Y be the set of all weak
cluster points of t−1(S(t)x0 − x0) as t→ 0+. Let Ã be a subset of X ×X defined by

Ã = A0 ∪ [x0, co Y ] and dom (Ã) = dom (A0) ∪ {x0}

where co Y denotes the closure of the convex hull of Y . Note that from (1)

〈A0x1 − A0x2, x
∗〉 ≤ 0 for all x1, x2 ∈ dom (A0) and x∗ ∈ F (x1 − x2)

and for every y ∈ Y

〈A0x1 − y, x∗〉 ≤ 0 for all x1 ∈ dom (A0) and x∗ ∈ F (x1 − x0).

This implies that Ã is a dissipative subset of X ×X. But, since X is reflexive, t → S(t)x0

is a.e. differentiable and

d

dt
S(t)x0 = A0S(t)x0 ∈ ÃS(t)x0, a.e., t > 0.

It follows from the dissipativity of Ã that

〈 d
dt

(S(t)x0 − x0), x∗〉 ≤ 〈y, x∗〉, a.e, t > 0 and y ∈ Ãx0 (2.26)

for x∗ ∈ F (S(t)x0 − x0). Note that for h > 0

〈h−1(S(t+h)x0−S(t)x0), x∗〉 ≤ h−1(|S(t+h)x0−x0|−|S(t)x0−x0|)|x∗| for x∗ ∈ F (S(t)x0−x0).

51



Letting h→ 0+, we have

〈 d
dt

(S(t)x0 − x0), x∗〉 ≤ |S(t)x0 − x0|
d

dt
|S(t)x0 − x0|, a.e. t > 0

The converse inequality follows much similarly. Thus, we have

|S(t)x0 − x0|
d

dt
|S(t)x0 − x0| = 〈

d

dt
(S(t)x0 − x0), x∗〉 for x∗ ∈ F (S(t)x0 − x0). (2.27)

It follows from (2.26)–(2.27) that
d

dt
|S(t)x0 − x0| ≤ |y| for y ∈ Y and a.e. t > 0 and thus

|S(t)x0 − x0| ≤ t ‖Ãx0‖ for all t > 0. (2.28)

Note that Ãx0 = co Y is a closed convex subset of X. Since X is reflexive and strictly convex,
there exists a unique element y0 ∈ Ãx0 such that |y0| = ‖Ãx0‖. Hence, (2.28) implies that
co Y = y0 = Awx0 and therefore x0 ∈ dom (Aw).

Next, we assume that X is uniformly convex and let x0 ∈ dom(Aw) = D̂. Then

w − lim
S(t)x0 − x0

t
= y0 as t→ 0+.

From (2.28)
|t−1(S(t)x0 − x0)| ≤ |y0|, a.e. t > 0.

Since X is uniformly convex, these imply that

lim
S(t)x0 − x0

t
= y0 as t→ 0+.

which completes the proof. �

Theorem 4.2 Let X and X∗ be uniformly convex Banach spaces. Let S(t), t ≥ 0 be
the semigroup of nonlinear contractions on a closed subset X0 and A0 be the infinitesimal
generator of S(t). If x ∈ dom (A0), then
(i) S(t)x ∈ dom (A0) for all t ≥ 0 and the function t → A0S(t)x is right continuous on
[0,∞).
(ii) S(t)x has a right derivative d+

dt
S(t)x for t ≥ 0 and d+

dt
S(t)x = A0S(t)x, t ≥ 0.

(iii) d
dt
S(t)x exists and is continuous except a countable number of values t ≥ 0.

Proof: (i) − (ii) Let x ∈ dom (A0). By Theorem 4.1, dom (A0) = D̂ and thus S(t)x ∈
dom (A0) and

d+

dt
S(t)x = A0S(t)x for t ≥ 0. (2.29)

Moreover, t → S(t)x a.e. differentiable and d
dt
S(t)x = A0S(t)x a.e. t > 0. We next prove

that A0S(t)x is right continuous. For h > 0

d

dt
(S(t+ h)x− S(t)x) = A0S(t+ h)x− A0S(t)x, a.e. t > 0.
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From (2.27)

|S(t+ h)x− S(t)x| d
dt
|S(t+ h)x− S(t)x| = 〈A0S(t+ h)x− A0S(t)x, x∗〉 ≤ 0

for all x∗ ∈ F (S(t + h)x − S(t)x), since A0 is dissipative. Integrating this over [s, t], we
obtain

|S(t+ h)x− S(t)x| ≤ |S(s+ h)x− S(s)x| for 0 ≤ s ≤ t

and therefore

|d
+

dt
S(t)x| ≤ |d

+

ds
S(s)x|.

Hence t→ |A0S(t)x| is monotonically non-increasing function and thus it is right continuous.
Let t0 ≥ 0 and let {tk} be a decreasing sequence of positive numbers such that tk → t0.
Without loss of generality, we may assume that w − limk→∞ A0S(tk) = y0. The right
continuity of |A0S(t)x| at t = t0, thus implies that

|y0| ≤ |A0S(t0)x| (2.30)

since norm is weakly lower semicontinuous. Let Ã0 be the maximal dissipative extension of
A0. It then follows from Theorem 1.9 that Ã is demiclosed and thus y0 ∈ ÃS(t)x. On the
other hand, for x ∈ dom (A0) and y ∈ Ãx, we have

〈 d
dt

(S(t)x− x), x∗〉 ≤ 〈y, x∗〉 for all x∗ ∈ F (S(t)x− x)

a.e. t > 0, since Ã is dissipative and d
dt
S(t)x = A0S(t)x ∈ ÃS(t)x a.e. t > 0. From (2.27)

we have
t−1|S(t)x− x| ≤ |Ãx| = ‖Ã0x‖ for t ≥ 0

where Ã0 is the minimal section of Ã. Hence A0x = Ã0x. It thus follows from (2.30) that
y0 = A0S(t0)x and limk→∞ A0S(tk)x = y0 since X is uniformly convex. Thus, we have
proved the right continuity of A0S(t)x for t ≥ 0.
(iii) Integrating (2.29) over [t, t+ h], we have

S(t+ h)x− S(t)x =

∫ t+h

t

A0S(s)x ds

for t, h ≥ 0. Hence it suffices to prove that the function t → A0S(t)x is continuous except
a countable number of t > 0. Using the same arguments as above, we can show that if
|A0S(t)x| is continuous at t = t0, then A0S(t)x is continuous at t = t0. But since |A0S(t)x|
is monotone non-increasing, it follows that it has at most countably many discontinuities,
which completes the proof. �

Theorem 4.3 Let X and X∗ be uniformly convex Banach spaces. If A be m-dissipative,
then A is demiclosed, dom (A) is a closed convex set and A0 is single-valued operator with
dom (A0) = dom (A). Moreover, A0 is the infinitesimal generator of a semigroup of contrac-
tions on dom (A).
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Proof: It follows from Theorem 1.9 that A is demiclosed. The second assertion follows from
Theorem 1.12. Also, from Theorem 3.4

d

dt
S(t)x = A0S(t)x, a.e. t > 0

and
|S(t)x− x| ≤ t |A0x|, t > 0 (2.31)

for x ∈ dom (A). Let A0 be the infinitesimal generator of the semigroup S(t), t ≥ 0 generated
by A defined in Theorem 2.2. Then, (2.31) implies that by Theorem 4.1 x ∈ dom (A0) and
by Theorem 4.2 d+

dt
S(t)x = A0S(t)x and A0S(t)x is right continuous in t. Since A is closed,

A0x = lim
t→0+

A0S(t)x ∈ Ax.

Hence, (2.30) implies that A0x = A0x.
When X is a Hilbert space we have the nonlinear version of Hille-Yosida theorem as

follows.
Theorem 4.4 Let H be a Hilbert space. Then,
(1) The infinitesimal generator A0 of a semigroup of contractions S(t), t ≥ 0 on a closed
convex set X0 has a dense domain in X0 and there exists a unique maximal dissipative
operator A such that A0 = A0.

Conversely,
(2) If A0 is a maximal dissipative operator, then dom (A) is a closed convex set and A0 is
the infinitesimal generator of contractions on dom (A).

Proof: (2) Since from Theorem 1.7 the maximal dissipative operator in a Hilbert space is
m-dissipative, (2) follows from Theorem 4.3. �

Example (Nonlinear Diffusion) Consider the nonlinear diffusion equation of the form

ut = Au = ∆γ(u)− β(u)

on X = L1(Ω). Assume γ : R→ R is maximal monotone. and γ : R→ R is monotone. Let

dom(A) = {there exists a v ∈ W 1,1(Ω) such that v ∈ γ(u) and ∆v ∈ X}

Thus, sign(x−y) = sign(γ(x)−γ(y)). Let ρ ∈ C2(R) be a monotonically increasing function
satisfying ρ(0) = 0 and ρ(x) = sign(x), |x| ≥ 1 and ρε(x) = ρ(x

ε
) for ε > 0. Note that for

u ∈ X
(u, ρε(u))→ |u| and (ψ, ρε(u))→ (ψ, sign0(u)) for ψ ∈ X

as ε→ 0+.

(Au1 − Au2, ρε(γ(u1)− γ(u2))) = −(∇(γ(u1)− γ(u2)), ρ′ε∇(γ(u1)− γ(u2)))

−(β(u1)− β(u2), ρε(γ(u1)− γ(u2)) ≤ 0.
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Letting ε→ 0∗ we obtain

(Au1 − Au2, sign0(u1 − u2)) ≤ 0

for all u1, u2 ∈ dom(A).
For the range condition: we consider v ∈ γ(u) such that

λ γ−1(v)−∆v + β(γ−1(v)) = f, (2.32)

Let ∂j = λ γ−1(·) + β(γ−1(·)). For f ∈ L2(Ω) consider the minimization

1

2

∫
Ω

(|∇v|2 + j(v)− f(x)v) dx

over v ∈ H1
0 (Ω). It has a unique solution v ∈ H2(Ω) ∩H1

0 (Ω) such that

∆v + f ∈ ∂j(v).

For f ∈ X we choose fn ∈ L2(Ω) such that |fn − f |X → 0 as n → ∞. As show above
un = ∆vn + fn,

|un − um|X ≤M |fn − fm|X
Thus, there exists u ∈ X such that ∆vn → u − f . Moreover, there exists a v ∈ W 1,q, 1 <
q < d

d−1
such that vn → v in X and ∆v = u− f . In fact, let p > d. For all h0 ∈ Lp(Ω) and

~h ∈ Lp(Ω)d

−∆φ = h0 +∇ · ~h
has a unique solution φ ∈ W 1,p(Ω) and

|φ|W 1,p ≤M (|h|p + |~h|p).

By the Green’s formula

|(h0, vn)− (h,∇vn)| = | − (∆vn, φ)| ≤M (|h|p + |~h|p|)|∆vn|1.

Since h0 ∈ Lp(Ω) and h ∈ Lp(Ω)d are arbitraly

|vn|W 1,q ≤M |∆vn|,

Since W 1,q(Ω) is compactly embedded into L1(Ω),

vn → v, v ∈ W 1,q
0 (Ω).

Since ∂j is maximal monotone u ∈ ∂j(v) equivalently u ∈ γ−1(v) and ∆v + f ∈ ∂j(v).

Example (Conservation law) We consider the scalar conservation law

ut + (f(u))x + f0(x, u) = 0, t > 0 u(x, 0) = u0(x), x ∈ Rd (2.33)

where f : R→ Rd is C1. Let X = L1(Rd) and define

Au = −(f(u))x,
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where we assume f0 = 0 for the sake of simplicity of our presentation. Define

C = {φ ∈ Z : φ ≥ 0}.

Since Ac = 0 for all constant c, it follows that

φ− c ∈ C =⇒ (I − λA)−1φ− c ∈ C.

Similarly,
c− φ ∈ C =⇒ c− (I − λA)−1φ ∈ C.

Thus, without loss of generality, one can assume f is bounded.
We use the following lemma.

Lemma 2.1 For ψ ∈ H1(Rd) and φ ∈ L2
div = {φ ∈ (L2(Rd))d : ∇ · φ ∈ L2(Rd)} we have

(φ,∇ψ) + (∇ · φ, ψ) = 0

Proof: Note that for ζ ∈ C∞0 (Rd)

(φ,∇(ζ ψ)) + (∇ · φ, ζ ψ) = 0

Let g ∈ C∞(Rd) satisfying g = 1 for |x| ≤ 1 and g = 0 if |x| ≥ 2 and set ζ = g(x
r
). Then we

have

(φ, ζ∇ψ +
1

r
ψ∇g) + (∇ · φ, ζ ψ) = 0.

Since g(x
r
)→ 1 a.e. in Rd as r →∞ thus the lemma follows from Fatou’s lemma. �.

dissipativity Note that

−(f(u1)x − f(u2)x, ρ(u1 − u2)) = (f(u1)− f(u2), ρ′(u1 − u2) (u1 − u2)x),

If we define Ψ(x) =
∫ x

0
σρ′(σ) dσ and ρε(x) = ρ(x

ε
) for ε > 0. then

|(η (u1 − u2), ρ′ε(u1 − u2) (u1 − u2)x)| = ε (Ψ(
u1 − u2

ε
), ηx) ≤M ε |ηx|1 → 0

as ε→ 0. Note that for u ∈ L1(Rd)

(u, ρε(u))→ |u| and (ψ, ρε(u))→ (ψ, sign0(u)) for ψ ∈ L1(Rd)

as ε→ 0+. Thus,
〈Au1 − Au2, sign0(u1 − u2)〉 ≤ 0

and A is dissipative.
It will be show that

range(λ I − A) = X,

i.e., for any g ∈ X there exists an entropy solution satisfying

(sign(u− k)(λu− g), ψ) ≤ (sing(u− k)(f(u)− f(k)), ψx)
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for all ψ ∈ C1
0(Rd) and k ∈ R. Hence A has a maximal monotone extension in L1(Rd).

In fact, for ε > 0 consider the viscous equation

λu− ε∆u+ f(u)x = g (2.34)

First, assume f is Lipschitz continuos, one can show that

λu− ε∆u− f(u)x : H1(Rd)→ (H1(Rd))∗

is monotone, hemi-continuous and coercive. It thus follows from the Minty-Browder theorem
that(2.34) has a solution uε ∈ H1(Rd) for all g ∈ L2(Rd) ∩ L1(Rd). Since f(u)x ∈ L2(Rd),
u ∈ H2(Rd).
L∞(Rd) estimate From (2.34)

(λu− ε∆u+ f(u)x, |u|p−2u) = (g, |u|p−2u).

Since
λ|u|pp + (f ′(u)ux, |u|p−2u)− ε(p− 1)(|u|

p
2
−1ux, |u|

p
2
−1ux)

≤ (λ− δ

2
− |f ′|∞

2εδ(p− 1)
)|u|pp,

we have

|u|p ≤ (
1

2
λ− |f ′|∞

2ελ(p− 1)
)−1|g|p.

By letting p→∞ we obtain

|u|∞ ≤
1

λ
|g|∞. (2.35)

Thus, without loss of generality, f is C1(R)d.
W 1,1(Rd) estimate Assuming g ∈ W 11(Rd), v = ux satisfies

λ v − ε∆v + (f ′(u)v)x = gx.

Using the same arguments as above
|v| ≤ |gx|1.

Thus, uε is of bounded variation uniformly in ε > 0. Since BV (Ω) is compact in L1(Ω) for
any bounded set in Rd. Thus, for g ∈ W 1,1 there exists a strong limit u of uε in L1(R) as
ε→ 0+ and u ∈ BV ∩ L∞ such that∫

(λu− g)φ dx−
∫

(f(u), φx) dx = 0

for all φ0(Rd), i.e. Since (2.35) holds uniformly ε > 0 and W 11 is dense in L1, one can show
that R(λ I − A) = X.
Entropy solution We show that for every k ∈ R and nonnegative function ψ ∈ C∞0 (Rd)

(sign(u− k)(λu− g, , ψ)− ε(∆u, ψ) ≤ (sign(u− k)(f(x)− f(k)), ψx) + ε (|u− k|,∆ψ) ≥ 0
(2.36)
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It suffices to prove for u ∈ C2
0(Rd). Note that

(ρε(u− k)f(u)x, ψ) = ((

∫ u

k

ρε(s− k)f ′(u) ds)x, ψ)

= −(

∫ u

k

ρε(s− k)fu(t, x, u) ds, ψx)

Since
∫ k+ε

k
ρε(s− k) ds = ε

∫ 1

0
ρ(s) ds→ 0 as ε→ 0, letting ε→ 0 we obtain

(sgn(u− k)f(u)x, ψ) = −(sgn(u− k)(f(u)− f(k)), ψx)

Next,
−(ρε(u− k)∆u, ψ) = (ρ′ε(u− k)ux, ψ ux) + (ρε(u− k)ux, ψx)

where

(ρε(u− k)ux, ψx) = (−Ψε(u− k), De|taψ)→ −(|u− k|,∆ψ) as ε→ 0.

Thus, we obtain
−(ρε(u− k)∆u, ψ) ≥ −(|u− k|,∆ψ)

and uε satisfies (2.37). Letting ε→ 0+,

(sign(u− k)(λu− g, , ψ)− ε(∆u, ψ) ≤ (sign(u− k)(f(x)− f(k)), ψx) ≥ 0 (2.37)

for all limit of uε as ε→ 0+, i.e. u is an entropy solution. It can be shown that the entropy
solution is unique.

Example (Hamilton Jacobi equation) Consider the Hamilton Jacobi equation for value func-
tion v = v(t, x) ∈ R:

vt + f(vx) = 0. (2.38)

Note that u is a solution to a scalar conservation in R1, then v =
∫ x

u dx satisfies the the
Hamilton-Jacobi equation. Let X = C0(Rd) and

Av = −f(vx) dom(A) = {f(vx) ∈ X}

Then, for v1, v2 ∈ C1(Rd) ∩X

〈A(v1 − v2), δx0〉 = −(f((v1)x(x0))− f((v2)x(x0))) = 0

where x0 ∈ Rn such that |v|X = |v(x0)|.
We prove the range condition

range(λ I − A) = X for λ > 0.

That is, there exists a unique viscosity solution to λv− f(vx) = g; for all φ ∈ C1(Ω) if v− φ
attains a local maximum at x0 ∈ Rd, then

λ v(x0)− g(x0) + f(φx(x0)) ≤ 0
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and if v − φ attains a local minimum at x0 ∈ Rd, then

λ v(x0)− g(x0) + f(φx(x0)) ≥ 0.

Thus, A is maximal monotone and (2.38) has an intgral solution.
Consider the equation of the form

λV + Ĥ(x, Vx)− ν ∆V = ω f.

Assume that Ĥ is C1 and there exist c̃1 > 0, c̃2 > 0 and c̃3 ∈ L2(Rd) such that

|Ĥ(x, p)− Ĥ(x, q)| ≤ c̃1 |p− q| and Ĥ(t, x, 0) ∈ L2(Rd)

and
|Ĥx(x, p)| ≤ c̃3(x) + c̃2 |p|

Define the Hilbert space H = H1(Rd) by

H = {φ ∈ L2(Rd) : φx ∈ L2(Rd)}

with inner product

(φ, ψ)H =

∫
Rd
φ(x)ψ(x) + φx(x) · ψx(x) dx.

Define the single valued operator A on H by

AV = −Ĥ(x, Vx) + ε∆V

with dom (A) = H3(Rd). We show that A− λ I is m-dissipative for some λ. First, A− ω̂ I
with λ =

c̃21
2ε

is monotone since

(Aφ− Aψ, φ− ψ)H = −ε (|φx − ψx|22 + |∆(φ− ψ)|22)

−(Ĥ(·, φx)− Ĥ(·, ψx), φx − ψx −∆(φ− ψ))

≤ λ |φ− ψ|2H −
ε

2
|φx − ψx|2H ,

where we used the following Lemma 2.1.
Let us define the linear operator T on X by Tφ = ν

2
∆. with dom (T ) = H3(Rd). Then

T is a self-adjoint operator in H. Moreover, if let X̃ = H2(Rd) then X̃∗ = L2(Rd) where
H = H1(Rd) is the pivoting space and H = H∗ and T ∈ L(X̃, X̃∗) is hermite and coercive.
Thus, T is maximal monotone. Hence equation ω V − AV = ω f in L2(Rd) has a unique
solution V ∈ H. Note that from (2.7) for φ ∈ H2(Rd)

Ĥ(x, φx)x = Ĥx(x, φx) + Ĥp(x, φx)φxx ∈ L2(Rd).

Thus, if f ∈ H then the solution V ∈ dom (A) and thus A is maximum monotone in H.
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Step 3: We establish W 1,∞(Rd) estimate of solutions to

ω V +H(x, Vx)− ν ∆V = ω f,

when fx, Hx(x, 0) ∈ L∞(Rd) and H satisfies

(2.9) |Hx(x, p)−Hx(x, 0)| ≤M1 |p| and |Hp(x, p)| ≤M2

√
1 + |x|2.

Consider the equation of the form

(2.10) ω V + ψH(x, Vx)− ν ∆V = ω f

where

ψ(x) =
c2

c2 + |x|2
for c ≥ 1.

Then ψ(x)H(x, p) satisfies (2.6)–(2.7) and thus there exists a unique solution V ∈ H3(Rd)
to (2.10) for sufficiently large ω > 0. Define U = Vx. Then, from (2.10) we have

(2.11) ω (U, φ) + (ψxH(x, U) + ψHp(x, U) · Ux, φ) + ν (Ux, φx) = ω (fx, φ)

for φ ∈ H1(Rd)d. Let

|U | =
√
U2

1 + · · ·+ U2
n and |U |p =

(∫
Rd
|U(x)|p dx

) 1
p

Define the functions Ψ, Φ : R+ → R+ by

Ψ(r) =

 r
p
2 for r ≤ R2

Rp−2r for r ≥ R2

and Φ(r) =

 r
p
2
−1 for r ≤ R2

Rp−2 for r ≥ R2.

Setting φ = Φ(|U |2)U ∈ H1(Rd)d in (2.11), we obtain

(2.12)

ω |Ψ(|U |2)|1 − (
2x · U
c2 + |x|2

Φ(|U |2), ψ H(x, U))

+(ψ (Hx(x, U)− ω fx),Φ(|U |2)U) + (ψHp(x, U),Φ(|U |2)(
1

2
|U |2)x)

+ν {2 (Φ′(|U |2)(
1

2
|U |2)x, (

1

2
|U |2)x) + (Φ(|U |2)Ux, Ux))} = 0.

Since from (2.9)

|H(x, p)| ≤ const
√

1 + |x|2 (1 + |p|),

there exists constants k1, k2 independent of c ≥ 1 and R > 0 such that

(
2x · U
c2 + |x|2

Φ(|U |2), ψ H(x, U)))) ≤ k1 (ψ,Ψ(|U |2)) + k2 |Φ(|U |2)U |q
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where q = p
p−1

. It thus follows from (2.9) and (2.12) that

ω |Ψ(|U |2)|1 +
1

ν
(Φ(|U |2)Ux, Ux) ≤ ω̃|Ψ(|U |2)|1 + (k2 + |Hx(x, 0)|p + ω |fx|p) |Φ(|U |2)U |q.

for some constant ω̃ > 0 independent of c ≥ 1 and R > 0. Since |Ψ(|U |2)|1 ≥ |Φ(|U |2)U |qq, it
follows that for ω ≥ ω̃

|Ψ(|U |2)|1 +
1

2ν
(Φ(|U |2)Ux, Ux)

is uniformly bounded in R > 0. Letting R → ∞, it follows from Fatou’s lemma that
U ∈ Lp(Rd) and from (2.12)

ω (|U |p − |fx|p) + (ψ
2x · U
c2 + |x|2

|U |p−2, H(x, U) + (ψHp(x, U), |U |p−2(
1

2
|U |2)x)

+(ψHx(x, U), |U |p−2U) + ν {(p− 2) (|U |p−4, (
1

2
|U |2)x, (

1

2
|U |2)x) + (|U |p−2Ux, Ux)}.

Thus we have

|U |p ≤ |fx|p +
1

ω
(σp |U |p + k2 + |Hx(x, 0|p)

where

σp = k1 +M1 +
|ψHp(x, U)|2∞

(p− 2)ν
.

Letting p→∞, we obtain

(2.13) |U |∞ ≤ |fx|∞ +
1

ω
((k1 +M1) |U |∞ + k2 + |Hx(x, 0|∞).

For c ≥ 1 let us denote by V c, the unique solution of (2.10). Let ζ(x) = χ(x/r) ∈
C2(Rd), r ≥ 1 where χ = χ(|x|) ∈ C2(Rd) is a nonincreasing function such that

χ(s) = 1 for 0 ≤ s ≤ 1 and χ(s) = exp(−|s|) for s ≥ 2.

and we assume −∆χ ≤ k3 χ. Then

(2.14) ω (V c, ζ ξ) + (ψH(x, U c), ζ ξ)− ν (∆V c, ζ ξ) = ω (f, ζ ξ)

for all ξ ∈ L2(Rd), and U c = V c
x satisfies

(2.15) ω (U c, ζ φ) + (ψH(x, U c),∇ · (ζ φ))− ν (tr U c
x,∇ · ζ φ) = ω (fx, ζ φ)

for all φ ∈ H1(Rd)d. Setting φ = U c in (2.15), we obtain

ω (ζ U c, U c) + (ψH(x, U c), U c · ζx + ζ∇ · U c)

+ν {(ζ U c
x, U

c
x)−

1

2
(∆ζ, |U c|2)} = ω (fx, ζ U).
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Since |U c|∞ is uniformly bounded in c ≥ 1, it follows that for any compact set Ω in Rd there
exists a constant MΩ independent of c ≥ 1 such that

ω (ζ U c, U c) + ν (ζ U c
x, U

c
x) ≤MΩ.

Hence for every compact set Ω of Rd Since if Ωr = {|x| < r}, then H2(Ωr) is compactly
embedded into H1(Ωr), it follows that there exists a subsequence of {V c} which converges
strongly in H1(Ωr). By a standard diagonalization process, we can construct a subsequence
{V ĉ} which converges to a function V strongly in H1(Ω̂)) and weakly in H2(Ω̂) for every
compact set Ω̂ in Rd. Let U = Vx. Then, U ĉ converges weakly in H1(Ω̂)d and strongly
in L2(Ω̂). Since L2(Ω̂) convergent sequence has an a.e. pointwise convergent subsequence,
without loss of generality we can assume that U ĉ converges to U a.e. in Rd. Hence, by
Lebesgue dominated convergence theorem

Hp(·, U ĉ)→ Hp(·, U) and Hx(·, U ĉ)→ Hx(·, U)

strongly in L2(Ω̂)d. It follows from (2.14)–(2.15) that the limit V satisfies

(2.16) ω (V, ζ ξ) + (H(x, Vx), ζ ξ)− ν(∆V, ζ ξ) = ω (V, ζ ξ)

for all ξ ∈ L2
loc(R

d) and

(2.17) ω (U, ζ φ) + (H(x, U),∇ · (ζ φ))− ν (tr Ux, (ζ φ)x) = ω (fx, ζ φ)

for all φ ∈ H1
loc(R

d). Setting φ = |U |p−2U in (2.17), we obtain
(2.18)

ω (ζ, |U |p) + (ζ Hp(x, U), |U |p−2(
1

2
|U |2)x) + (ζ Hx(x, U), |U |p−2U)− ω (fx, ζ |U |p−2U)

+ν {(p− 2) (ζ |U |p−4(
1

2
|U |2)x, (

1

2
|U |2)x) + (ζ |U |p−2Ux, Ux))−

1

p
(∆ζ, |U |p)} = 0

for all ζ = χ(x/r). Thus,

(2.19) (ζ, |U |p)
1
p ≤ (ζ, |fx|p)

1
p +

1

ω
(cp (ζ, |U |p)

1
p + (ζ, |Hx(x, 0)|p)

1
p )

where cp = M1 + k3

p
+ |ζ Hp(x,U)|2∞

2ν (p−2)
and

(2.20) (Hx(x, 0)−Hx(x, p), p) ≤M1 |p|2 all x ∈ Rd.

Now, letting p→∞ we obtain from (2.19)

(ω −M1) sup
|x|≤r

|U | ≤ ω |fx|∞ + |Hx(x, 0)|∞.

Since r ≥ 1 is arbitrary, we have

(2.21) (ω −M1) |U |∞ ≤ ω |fx|∞ + |Hx(x, 0)|∞
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Setting ξ = V in (2.16), we obtain

ω (ζ, |V |2) + (ζ,Hp(x, U))− ω (f, ζ V ) + ν { (ζ |V |2)x,−
1

2
(∆ζ, |U |2)} = 0.

Also, from (2.18)

ω (ζ, |U |2) + (ζ Hp(x, U), U · Ux) + (ζ Hx(x, U), U)− ω (fx, ζ U)

+ν {(ζ Ux, Ux))−
1

2
(∆ζ, |U |2)} = 0

Since |U |∞ is bounded, thus V ∈ H2
`oc. In fact

ω (ζ V, V ) + ν (ζ Ux, Ux) ≤ a1 |U |2∞ + a2ω ((ζf, f) + (ζfx, fx)

for some constants a1, a2.
Step 4: Next we prove that for ω > max(M1, ωα) equation

ω V − Aν(t)V = ω f

has a unique solution satisfying (2.21). We define the sequence {Vk} in H2
`oc(R

d) by the
successive iteration

(2.22) ω Vk+1 − Aν(t)Vk+1 − (ω − ω0)Vk = ω0 f.

From Step 3 (2.22) has a solution Vk+1 satisfying

(2.23) (ω −M1) |Uk+1|∞ ≤ (ω − ω0) |Uk|∞ + ω0 |fx|∞ + |Hx(x, 0)|∞

Thus,

|Uk|∞ ≤ (1− ω − ω0

ω −M1

)−1 (ω0 |fx|∞ + |Hx(x, 0)|∞)

ω −M1

=
ω0 |fx|∞ + |Hx(x, 0)|∞

ω0 −M1

= α

for all k ≥ 1. {Vk} is bounded sequence in W 1,∞(Rd) and thus in H2
`oc(R

d). Moreover, we
have from (2.4)

|Vk+1 − Vk|X ≤
ω − ω0

ω − ωα
|Vk − Vk−1|X .

Thus {Vk} is a Cauchy sequence in X and {Vk} converges to V in X. Let us define the
single-valued operator B on X by Bφ = −H(x, φx). Since {BVk} is bounded in L∞(Rd) we
may assume that BVk converges weakly star to w in L∞(Rd). If we show that w = Bu, then
V ∈ H2(Rd) solves the desired equation. Since {Vk} is bounded in H2(Ωr), {Vk} is strongly
precompact in H1(Ωr) for each r > 0. Hence BVk → BV a.e. in Ωr and thus w = BV .
Step 5: Next, we consider the case when H ∈ C1 is without the Lipschitz bound in p but
satisfies (2.2). Consider the cut-off function of H(x, p) by

HM(x, p) =


Hp(x,

p
|p|)(p−M

p
|p|) +H(M p

|p|) if |p| ≥M

H(x, p) if |p| ≤M.
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From Step 3 and (2.20) equation

ω V +HM(x, Vx)− ν ∆V = ω f

has the unique solution V and U = Vx satisfies (2.21) with M1 = βM + a. Let M > 0
be so that (ω − (βM + a))M ≤ ω |fx|∞ + |Hx(x, 0)|∞. Then, |U |∞ ≤ M . and thus
V ∈ H2

loc(R
d) ∩W 1,∞(Rd) satisfies

(2.24) ω V +H(x, Vx)− ν ∆V = ω f

and

(2.25) (ω − (βM + a))M ≤ ω |fx|∞ + |Hx(x, 0)|∞

for ω > M1. If β = 0, then
ϕ(V )− ϕ(f)

ω
≤ aϕ(V ) + b

where b = |Hx(x, 0)|∞.

Step 6: We prove that the solution V ν to (2.24) converges to a viscosity solution V to

(2.26) ω V +H(x, Vx) = ω f

as ν → 0+. First we show that for all φ ∈ C2(Ω) if V ν − φ attains a local maximum
(minimum, respectively) at x0 ∈ Rn, then

(2.27) ω (V (x0)− f(x0)) +H(x0, φx(x0))− ν (∆V )(x0) ≤ 0 (≥ 0, respectively).

For φ ∈ C2(Ω) we assume that V ν − φ attains a local maximum at x0 ∈ Rd. Let Ω = {x ∈
Rd : |x−x0| < 1} and Γ denote its boundary. Then without loss of generality we can assume
that V ν − φ attains the unique global maximum 1 at x0 and V ν − φ ≤ 0 on Γ. In fact we
can choose ζ ∈ C∞(Ω) such that V ν − (φ− ζ) attains the unique global maximum 1 at x0,
V ν − (φ − ζ) ≤ 0 on Γ and ζx(x0) = 0. Let ψ = sup(0, V ν − φ) ∈ W 1,∞

0 (Ω). Multiplying
ψp−1 to (2.26) and integrating over Ω, we obtain

ω |ψ|pp + (η · (V ν − φ)x, ψ
p−1) + ν (p− 1) (ψx, ψ

p−2ψx) = −(δ ψ, ψp−1),

where

η =

∫ 1

0

Hp(x, φx + θ (V ν − φ)x) dθ

and
δ = ω (φ− f) +H(x, φx)− ν ∆φ.

Since

|(η · ψx, ψp−1)| ≤ 1

4ν(p− 1)
|η|2L∞(Ω) |ψ|pp + ν(p− 1) |ψ

p
2
−1ψx|22

it follows that

(ω − |η|2∞
4ν(p− 1)

) |ψ|pp ≤ −(δψ, ψp−1).
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Letting p→∞, we can conclude that δ(x0) ≤ 0 since δ ∈ C(Ω). Setting ψ = inf(0, V ν −φ))
and assuming V ν − φ has the unique global minimum −1 at x0 and V ν − φ ≥ 0 on Γ, the
same argument as above shows the second assertion.

Next, we show that there exists a subsequence of {V ν} that converges to a viscosity
solution V to

(2.28) ω V +H(x, Vx) = ω f,

i.e., for all φ ∈ C1(Ω) if V − φ attains a local maximum at x0 ∈ Rd, then

(2.29a) ω (V (x0)− f(x0)) +H(x0, φx(x0)) ≤ 0

and if V − φ attains a local minimum at x0 ∈ Rh, then

(2.29b) ω (V (x0)− f(x0)) +H(x0, φx(x0)) ≥ 0.

It follows from Step 5 that for some γ > 0 independent of ν

|V ν |W 1,∞(Ω) ≤ γ

Thus there exists a subsequence of {V ν} (denoted by the same) that converges weakly star
to V in W 1,∞(Rd), and thus the convergence is uniform in Ω. We prove (2.29a) first for
φ ∈ C2(Ω). Assume that for φ ∈ C2(Ω) V ν − φ has a local maximum at x0 ∈ Ω. We can
choose ζ ∈ C∞(Ω) such that ζx(x0) = 0 and V ν − (φ− ζ) has a strict local maximum at x0.
For ν > 0 sufficiently small, V ν − (φ− ζ) has a local maximum at some xν ∈ Ω and xν → x0

as ν → 0+. From (2.27)

ω (V ν(xν)− f(xν)) +H(xν , φx(xν))− ν (∆φ)(xν) ≤ 0

We conclude (2.29a), since V ν(xν) → V (x0), φx(xν) − ζx(xν) → φx(x0) − ζx(x0) = φx(x0)
and ν ∆φ(xν) → 0 as ν → 0+. For φ ∈ C1(Ω) exactly the same argument is applied to the
convergent sequence φn ∈ C2(Ω) to φ in C1(Ω) to prove (2.29a).

Step 7: We show that if V ,W ∈ Dα are viscosity solutions to ω (V − f) +H(x, Vx) = 0 and
ω (W − g) +H(x,Wx) = 0, respectively, then

(3.30) (ω − ωα) |u− v|X ≤ ω |f − g|X .

For δ > 0 let

ψ(x) =
1√

1 + |x|2+δ

If u, v ∈ Dα then

(2.31) lim
|x|→∞

ψ(x)V (x) = lim
|x|→∞

ψ(x)W (x) = 0.

We choose a function β ∈ C∞(Rd) satisfying

0 ≤ β ≤ 1, β(0) = 1, β(x) = 0 if |x| > 1.
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Let M = max (|u|Xδ , |W |Xδ). Define the function Φ : Rn ×Rn → R by

(2.32) Φ(x, y) = ψ(x)V (x)− ψ(y)W (y) + 3Mβε(x− y)

where
βε(x) = β(

x

ε
) for x ∈ Rd.

Off the support of βε(x−y), Φ ≤ 2M , while if |x|+|y| → ∞ on this support, then |x|, |y| → ∞
and thus from (2.30) lim|x|+|y|→∞ Φ ≤ 3M . We may assume that V (x̄)−W (x̄) > 0 for some
x̄. Then,

Φ(x̄, x̄) = ψ(x̄)(V (x̄)−W (x̄)) + 3M βε(0) > 3M.

Hence Φ attains its maximum value at some point (x0, y0) ∈ Rd×Rd. Moreover, |x0−y0| ≤ ε
since βε(x0 − y0) > 0. Now x0 is a maximum point of

ψ(x)

(
V (x)− ψ(y0)W (y0)− 3Mβε(x− y0) + Φ(x0, y0)

ψ(x)

)
and since ψ > 0 the function

x→ V (x)− ψ(y0)W (y0)− 3Mβε(x− y0) + Φ(x0, y0)

ψ(x)

attains a maximum 0 at x0. Since

ψ(y0)W (y0)− 3Mβε(x0 − y0) + Φ(x0, y0) = ψ(x0)V (x0)

and V is a viscosity solution

(2.33) ψ(x0)(ω (V (x0)− f(x0)) +H(x0, p)) ≤ 0,

where

p =
2 + δ

2
ψ(x0)V (x0)ψ(x0)|x0|δ x0 −

3Mβ′ε(x0 − y0)

ψ(x0)
.

and we used the fact that (|x|2+δ)′ = (2 + δ)|x|δx. Moreover since V ∈ Dα

(2.34) |p| ≤ α

Similarly, the function

y → W (y)− ψ(x0)V (x0) + 3Mβε(x0 − y)− Φ(x0, y0)

ψ(y)

attains a minimum 0 at y0 and since W is a viscosity solution

(2.35) ψ(y0)(ω (W (y0)− g(y0)) +H(y0, q)) ≥ 0,

where

q =
2 + δ

2
ψ(y0)W (y0)ψ(y0)|y0|δ y0 −

3Mβ′ε(x0 − y0)

ψ(y0)
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and |q| ≤ α. Thus by (2.33) and (2.35) we have

(2.36)
ω (ψ(x0)V (x0)− ψ(y0)W (y0))

≤ ψ(y0)H(y0, q)− ψ(x0)H(x0, p) + ω(ψ(x0)f(x0)− ψ(y0)g(y0))

Since Φ(x0, y0) ≥ Φ(x̄, x̄) we have

ψ(x0)V (x0)− ψ(y0)W (y0) ≥ ψ(x̄)(V (x̄)−W (x̄)) + 3M (1− βε(x0 − y0))

and thus

(ψ(x0)−ψ(y0))V (x0) +ψ(y0)(V (x0)−W (y0)) ≥ ψ(x̄)(V (x̄)−W (x̄)) + 3M (1−βε(x0− y0)).

Since
(2.37)

|(ψ(x0)−ψ(y0))V (x0)| = ψ(y0)ψ(x0)|V (x0)|(
√

1 + |y0|2+δ−
√

1 + |x0|2+δ) ≤ const |x0− y0|,

it follows that V (x0) ≥ W (y0) for sufficiently small ε > 0. Note that

ψ(y0)H(y0, q)− ψ(x0)H(x0, p) = (ψ(y0)− ψ(x0))H(x0, p)

+ψ(y0)(H(y0, p)−H(x0, p)) + ψ(y0)(H(y0, q)−H(y0, p)).

From (2.36)–(2.37) we have that

(2.38)
ω (ψ(x0)V (x0)− ψ(y0)W (y0)− (ψ(x0)f(x0)− ψ(y0)g(y0)))

≤ O(ε) + ψ(y0) (c1(y0), p− q) + c2 |p− q|).

where O(ε)→ 0 as ε→ 0. Now we evaluate p− q, i.e.,

p− q =
2 + δ

2
(ψ(x0)V (x0)− ψ(y0)W (y0))ψ(y0)|y0|δ y0

+
2 + δ

2
ψ(x0)V (x0)(ψ(x0) |x0|δx0 − ψ(y0)|y0|δy0)

+3Mβ′ε(x0 − y0) (
√

1 + |x0|2+δ −
√

1 + |y0|2+δ).

Since

|ψ(x0)V (x0)ψ(x0)|x0|δ x0| ≤ |u|X
|x0|δ

√
1 + |x0|2

1 + |x0|2+δ
|x0| ≤M3

for some M3 > 0, it follows from (2.34) that

3|β′ε(x0 − y0)
√

1 + |x0|2+δ| ≤M4

for some M4 > 0. Thus,

|3Mβ′ε(x0 − y0) |
√

1 + |x0|2+δ −
√

1 + |y0|2+δ| ≤ const (2 + δ)MM4|x0 − y0|.
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and therefore

2 + δ

2
ψ(x0)V (x0)(ψ(x0)|x0|δx0 − ψ(y0)|y0|δy0) + 3Mβε(x0 − y0) (|x0|2+δ − |y0|2+δ) = O(ε).

In the right-hand side of (2.38) we have

ψ(y0)((c1(y0), p− q) + c2 |p− q|)

≤ O(ε) +
2 + δ

2

β |y0|2+δ + c2α |y0|1+δ

1 + |y0|2+δ
(ψ(x0)u(x0)− ψ(y0)v(y0)).

Hence from (2.38) we conclude

(2.39) ωy0 (ψ(x0)u(x0)− ψ(y0)v(y0)) ≤ ψ(x0)f(x0)− ψ(y0)g(y0) +O(ε)

where

ωδ = sup
y0

(ω − 2 + δ

2

β |y0|2+δ + c2α |y0|1+δ

1 + |y0|2+δ
).

Assume that ω > λα. For x ∈ Rd we have

ψ(x)(u(x)− v(x)) + 3M = Φ(x, x) ≤ Φ(x0, y0) ≤ ψ(x0)u(x0)− ψ(y0)v(y0) + 3M

and so by (2.39)

ωδ sup
Rd

ψ(x)(u(x)− v(x))+ ≤ ω (ψ(x0)u(x0)− ψ(y0)v(y0)) ≤ ψ(x0)f(x0)− ψ(y0)g(y0) +O(ε)

≤ sup
Rd

ψ(f − g)+ + |ψ(x0)g(x0)− ψ(y0)g(y0)|+O(ε)

≤ sup
Rd

ψ(f − g)+ + ωψg(ε) +O(ε)

where ωψg(·) is the modulus of continuity of ψg. Letting ε→ 0, we obtain

(3.40) ωδ sup
Rd

ψ(x)(u(x)− v(x))+ ≤ sup
Rn

ψ(f − g)+

Since |ψ|Xδ → |ψ|X as δ → 0+ for ψ ∈ X we obtain (2.30) by taking limit δ → 0+ in (2.40).
Example (Plastic equations) Consider the visco-plastic equation of the form

vt + div(σ) = 0

where the stress σ(ε) = σt minimizes

h(σ)− ε : σ

and the strain ε is given by

εi,j =
1

2
(
∂

∂xi
vj +

∂

∂xi
vj).
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That is,
σ ∈ ∂h∗(ε)

where h∗ is the conjugate of h

h∗(ε) = sup
σ∈C
{ε : σ − h(σ)}

For the case of the linear elastic system

σ11

3 Evolution equations

In this section we consider the evolution equation of the form

d

dt
x(t) ∈ A(t)u(t) (3.1)

in a Banach space X ∩D, where D is a closed set. We assume the dissipativity: there exist
a constant ω = ωD and continuous functions f : [0, T ]→ X and L : R+ → R+ independent
of t, s ∈ [0, T ] such that

(1−λω) |x1−x2| ≤ |x1−x2−λ (y1−y2)|+λ |f(t)−f(s)|L(x2)|K(|y2|), K(r) = 1+c r (3.2)

for all x1 ∈ D ∩ dom (A(t)) x2 ∈ D ∩ dom (A(s))and y1 ∈ A(t)x1, y2 ∈ A(s)x2, and

A(t), t ∈ [0, T ] is m-dissipative and Jλ(t) = (λ I − A(t))−1 : D → D ∩ dom(A(t)). (3.3)

Thus, one constructs the mild solution as

u(t) = lim
λ→0+

Π
[t/λ]
k=1 Jλ(tk)u0, tk = kλ.

That is,
ui − ui−1

λ
∈ A(ti)ui, ti = i λ. (3.4)

Remark Assume there exists a Liapunov functional ϕ such that

ϕ(ui)− ϕ(ui−1)

λ
≤ aϕ(ui) + b. (3.5)

for (3.4). Define
Dα = {u ∈ D : ϕ(u) ≤ α}.

That is,
J(ti) : Di−1 → Di ∩ dom(A(ti))

where Di = {u ∈ D : ϕ(u) ≤ αi} and αi = (1−aλ)−1(αi−1+b). Assume the local dissipativity
condition: (3.2) holds with ω = ωDα . It is said that (A(t), X) is locally quasi-dissipative
operator in the sense of Kobayashi and Oharu.
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Theorem 1.1 (Crandall-Pazy Theorem) Let (A(t), X) satisfy (3.2)–(3.3). Then,

U(t, s) = lim
λ→0+

Π
[ t−s
λ

]

i=1 Jλ(s+ iλ)x

exists for x ∈ dom (A(0)) and 0 ≤ s ≤ t ≤ T . The U(t, s) for 0 ≤ s ≤ t ≤ T defines an
evolution operator on domA(0) and moreover satisfies

|U(t, s)x− U(t, s)y| ≤ eω (t−s) |x− y|

for 0 ≤ s ≤ t ≤ T and x, y ∈ dom (A(0)).

Proof: Let hi = λ and ti = s + iλ in (3.2). Then xi = Jλ(ti)xi−1, where we dropped
the superscript λ and xm = (Πm

i=1Jλ(ti))x. Thus |xi| ≤ (1 − ωλ)−m ≤ e2ω(T−s) |x| = M1

for 0 < mλ ≤ T − s. Let x̂j is the approximation solution corresponding to the stepsize

ĥ− j = µ and t̂j = s+ jµ. Define am,n = |xm − x̂n|. We first evaluate a0,n, am,0.

am,0 = |xm − x| ≤
m∑
k=1

|(Πm
i=kJλ(ti))x− (Πm

i=k+1Jλ(ti))x|

≤
m∑
k=1

(1− ωλ)−(m−k+1)λ |||A(ti)x||| ≤ e2ω(T−s)mλM(x).

where M(x) = supt∈[0,T ] |||A(t)x|||. Similarly, we have

a0,n ≤ e2ω(T−s)nµM(x).

Next, we establish the recursive formula for ai,j. For λ ≥ µ > 0

ai,j = |xi − x̂j| ≤ |Jλ(ti)xi−1 − Jµ(t̂j)x̂j−1|

≤ |Jλ(ti)xi−1 − Jµ(ti)x̂j−1|+ |Jµ(ti)x̂j−1 − Jµ(t̂j)x̂j−1|

From Theorem 1.4

|Jλ(ti)xi−1 − Jµ(ti)x̂j−1|

= |Jµ(ti)(
µ

λ
xi−1 +

λ− µ
λ

Jλ(ti)xi−1)− Jµ(ti)x̂j−1|

≤ (1− ω µ)−1(
µ

λ
|xi−1 − x̂j−1|+

λ− µ
λ
|xi − x̂j−1|).

Hence for i, j ≥ 1 we have

ai,j ≤ (1− ωµ)−1(α ai−1,j−1 + β ai,j−1) + bi,j

where

α =
µ

λ
, and β =

λ− µ
λ
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and
bi,j = |Jµ(ti)x̂j−1 − Jµ(t̂j)x̂j−1| ≤ µ |f(ti)− f(t̂j)|L(|x̂j|)K(|Aµ(t̂j)x̂j−1|).

We show that if yi = Aλ(ti)xi−1, then there exists a constant M2 = M2(x0, T, ||A(s)x0||)
such that |yi| ≤M2 Since xi = Jλ(ti)xi−1 and Aλ(ti)xi−1 ∈ A(ti)xi, from (H.1) we have

|||A(ti)xi||| = |Aλ(ti)xi−1| ≤ |Aλ(ti−1)xi−1|+ |f(ti)− f(ti−1)|L(M1)(1 + |Ah(ti−1)xi−1|))

≤ (1− λ)−1(|||A(ti−1)xi−1|||+ |f(ti)− f(ti−1)|L(M1)(1 + |||A(ti−1)xi−1|||).

If we define ai = |||A(ti)xi|||, then

(1− ω λ) ai ≤ ai−1 + bi(1 + ai−1).

where bi = L(M1)|f(ti) − f(ti−1)|. Thus, it follows from the proof of Lemma 2.4 that
|||A(ti)xi||| ≤M2, for some constant M2 = M(x0, T ). Since

|yi| ≤ (1− ωλ)−1(|||A(ti−1)xi−1|||+ |f(ti)− f(ti−1)|L(M1)(1 + |||A(ti−1)xi−1|||),

thus |yi| is uniformly bounded.
It follows from [Crandall-Pazy, Ito-Kappel] that

am,n ≤ e2ω(T−s)M(x) [((nµ−mλ)2 + nµ(λ− µ))1/2 + ((nµ−mλ)2 +mλ(λ− µ))1/2]

+(1− ωµ)−n
n−1∑
j=0

min(m−1,j)∑
i=0

βj−1αi
(
j
i

)
bm−i,n−j,

where mλ, nµ ≤ T − s. Let ρ be the modulus of continuity of f on [0, T ], i.e.,

ρ(r) = sup {|f(t)− f(τ) : 0 ≤ t, τ ≤ T and |t− τ | ≤ r}

Then ρ is is nondecreasing and subadditive; i.e., ρ(r1 + r2) ≤ ρ(r1) + ρ(r2) for r1, r2 ≥ 0.
Thus,

J =
n−1∑
j=0

min(m−1,j)∑
i=0

βj−1αi
(
j
i

)
bm−i,n−j

≤ Cµ

(
n ρ(|nµ−mλ)|) +

n−1∑
j=0

∑
i=0

(m− 1)j βj−1αi
(
j
i

)
ρ(|jµ− iλ)|)

)
.

where we used () with C = L(M1)K(M2), the subadditivity of of ρ and the estimate

min(m−1,j)∑
i=0

βj−1αi
(
j
i

)
≤ 1.

71



Next, let δ > 0, be given and write

n−1∑
j=0

min(m−1,j)∑
i=0

βj−1αi
(
j
i

)
ρ(|jµ− iλ)|) = I1 + I2

where I1 is the sum over indecies such that |jµ − iλ| < δ, while I2 is the sum over indecies
satisfying |jµ− iλ| ≥ δ. Clearly I1 ≤ nρ(δ), but

I2 ≤ ρ(T )
n−1∑
j=0

min(m−1,j)∑
i=0

βj−1αi
(
j
i

)
|jµ− iλ|2

δ2
=
ρ(T )

δ2
n(n−1)(λµ−µ2) ≤ ρ(T )n2

δ2
µ(λ−µ)

Therefore,

J ≤ Cnµ

(
ρ(|nµ−mλ|+ ρ(δ) +

ρ(T )

δ2
nµ(λ− µ)

)
.

Combining these inealities, we obtain

am,n ≤ e2ω(T−s)M(x) [((nµ−mλ)2 + nµ(λ− µ))1/2 + ((nµ−mλ)2 +mλ(λ− µ))1/2]

+e2ω(T−s)C nµ

(
ρ(|nµ−mλ|+ ρ(δ) +

ρ(T )

δ2
nµ(λ− µ)

)
.

Now, we can choose, e.g, δ2 =
√
λ− µ and it follows that an,m as function of m, n and λ, µ,

tends to zero as |nµ −mλ| → 0 and n, m → ∞, subject to 0 < nµ, mλ ≤ T − s, and the
convergence is uniform in s.

Theorem 1.1 Let (A(t), X) satisfy (3.2)–(3.3). Then,

U(t, s) = lim
λ→0+

Π
[ t−s
λ

]

i=1 Jλ(s+ iλ)x

exists for x ∈ dom (A(0)) and 0 ≤ s ≤ t ≤ T . The U(t, s) for 0 ≤ s ≤ t ≤ T defines an
evolution operator on A(0) and moreover satisfies

|U(t, s)x− U(t, s)y| ≤ eω (t−s) |x− y|

for 0 ≤ s ≤ t ≤ T and x, y ∈ dom (A(0)).

Moreover, we have the following lemma.

Lemma 1.2 If x ∈ D̂, then there exists a constant L such that

|U(s+ r, s)x− U(ŝ+ r, ŝ)x| ≤ Lρ(|s− ŝ|)

for r ≥ 0 and s, ŝ, s+ r, ŝ+ r ≤ T .

Proof: Let ak = |xk − x̂k| where

xk = Πk
i=1(I − λA(s+ i λ))−1x and x̂k = Πk

i=1(I − λA(ŝ+ i λ))−1x.
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Then, for λ = r
n

ak = |Jλ(s+ k λ)xk−1 − Jλ(ŝ+ k λ)x̂k−1|

≤ |Jλ(s+ k λ)xk−1 − Jλ(ŝ+ k λ)xk−1|+ |Jλ(ŝ+ k λ)xk−1 − Jλ(ŝ+ k λ)x̂k−1|

≤ λCρ (|s− ŝ|) + (1− λω)−1 ak−1

for some C. Thus, we obtain

|ak| ≤
e2ωr − 1

2ω
ρ(|s− ŝ|),

and letting λ→ 0 we obtain the desired result. �

3.1 DS-approximation and integral solution

In order to discuss the convergence of the sequence {xi} to the solution of (2.1) we introduce
the following notions.

Definition 2.1 Given s ∈ [0, T ] and x0 ∈ D ∩ dom (A(s)), uλ(t) is said to be a DS–
approximation of (2.1) if

uλ(t) = xλi , t ∈ (tλi−1, t
λ
i ]

where for some α > 0 the sequence of {tλi , xλi , yλi , ελi } in R×Dα ×X ×X satisfies

(2.10)

s = tλ0 < tλ1 < · · · < tλi < · · · < tλNλ = T

xλi ∈ dom (A(tλi ))

yλi =
xλi − xλi−1

tλi − tλi−1

− ελi ∈ A(tλi )x
λ
i , 1 ≤ i ≤ Nλ

dλ = max (tλi − tλi−1)→ 0,
∑Nλ

i=1 (tλi − tλi−1) |ελi | → 0 as λ→ 0.

Definition 2.2 A continuous function u(t) : [s, T ] → X in is said to be a mild solution of
(2.1) on [s, T ] if there exists a DS–approximation uλ(·) such that limn→∞ |uλ(t)− u(t)| = 0
uniformly on [s, T ]. If for α > 0 uλ(t) ∈ Dα, t ∈ [s, T ] then we say that the mild solution is
confined to Dα.

We next introduce the notion of integral solution that plays an important role in char-
acterizing the mild solution and establishing the uniqueness of the mild solution.

Definition 2.3 A continuous function u : [s, T ] → X is said to be an integral solution on
[s, T ] of (2.1) if there exists a constant β > 0 such that for ω = ωβ the following integral
inequality is satisfied.

(2.11) |u(t)− x| − |u(τ)− x| ≤
∫ t

τ

〈y, u(σ)− x〉+ + ω |u(σ)− x|+ C |f(σ)− f(r)| dσ
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for s ≤ τ ≤ t ≤ T, r ∈ [s, T ] and [x, y] ∈ A(r) with x ∈ Dβ, where C = L(|x|)K(|y|).
Definition 2.4 An operator U(t, s), 0 ≤ s ≤ t ≤ T of nonlinear operators from D into itself
is called a nonlinear evolution operator on D if

U(t, s)x = U(t, r)U(r, s)x and U(t, t)x = x for x ∈ D, 0 ≤ s ≤ r ≤ t ≤ T

t→ U(t, s)x ∈ X is continuous for each s ≥ 0 and x ∈ D.

Let {tµj , x
µ
j , y

µ
j , ε

µ
j } be a DS–approximation sequence in R × Dα × X × X starting from

x(ŝ) = x̂0 that satisfies

(2.12)

ŝ = tµ0 < tµ1 < · · · < tµj < · · · < tµNµ = T

xµj ∈ dom (A(tµj ))

yµj =
xµj − x

µ
j−1

tµj − t
µ
j−1

− εµj ∈ A(tµj )xµj , 1 ≤ j ≤ Nµ

dµ = max (tµj − t
µ
j−1)→ 0,

∑Nµ
j=1 (tµj − t

µ
j−1) |εµj | → 0 as µ→ 0.

Define
hλi = tλi − tλi−1, 1 ≤ i ≤ Nλ and hµj = tµj − t

µ
j−1, 1 ≤ j ≤ Nµ

Then we have

(2.13)
xλi − hλi yλi − xλi−1 = hλi ε

λ
i , yλi ∈ A(tλi )x

λ
i , 1 ≤ i ≤ Nλ

xµj − h
µ
j y

µ
j − x

µ
j−1 = hµj ε

µ
j , yµj ∈ A(tµj )xµj , 1 ≤ j ≤ Nµ.

We now discuss the estimate of ai,j = |xλi − x
µ
j | due to Kobayasi, Kobayashi, Oharu [KKO].

We define

(2.14)

αi,j =
hµj

hλi + hµj
, βi,j =

hλi
hλi + hµj

, γi,j =
hλi h

µ
j

hλi + hµj
,

ci,j(σ) =
(
(tλi − t

µ
j − σ)2 + dλ(t

λ
i − s) + dµ(tµj − ŝ)

) 1
2 , di,j = |f(tλi )− f(tµj )|.

We start with the following technical lemma which is essential for establishing the main
estimate.

Lemma 2.2 For 1 ≤ i ≤ Nλ, 1 ≤ j ≤ Nµ and σ ∈ we have

αi,j ci−1,j(σ) + βi,j ci−1,j(σ) ≤ ci,j(σ)

Proof: Since αi,j + βi,j = 1 by Cauchy Schwarz inequality we have

I = αi,j ci−1,j(σ) + βi,j ci−1,j(σ) ≤ (αi,j c
2
i−1,j(σ) + βi,j ci−1,j(σ))

1
2 .
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Since tλi−1 = tλi − hλi and tµj−1 = tµj − h
µ
j

(tλi−1 − t
µ
j − σ)2 = (tλi − t

µ
j − σ)2 − 2hλi (t

λ
i − t

µ
j − σ) + (hλi )

2

(tλi − t
µ
j−1 − σ)2 = (tλi − t

µ
j − σ)2 + 2hµj (tλi − t

µ
j − σ) + (hµj )2.

Thus,

I2 ≤ 1

hλi + hµj
[hµj ((tλi−1 − t

µ
j − σ)2 + dλ(t

λ
i−1 − s) + dµ(tµj − ŝ))

+hλi ((t
λ
i − t

µ
j−1 − σ)2 + dλ(t

λ
i − s) + dµ(tµj−1 − ŝ))]

= (tλi − t
µ
j − σ)2 + dλ(t

λ
i − s) + dµ(tµj − ŝ) + γi,j (hλi − dλ + hµj − dµ) ≤ c2

i,j(σ)

where we used the fact that hλi ≤ dλ and hµj ≤ dµ. �

Next, we prove the uniform bound of |xλi |, 1 ≤ i ≤ Nλ.

Lemma 2.3 Let xλi , 1 ≤ i ≤ Nλ be the solution to (2.10) and either (C.1) or (C.2) holds.
Then there exists M = M(T, x0, α) such that |xλi | ≤M for 1 ≤ i ≤ Nλ.

Proof: We drop the index λ for simplicity of our expositions in the proof. For ω = ωα from
(2.4) we have

(1− ωhi) |xi − u| ≤ |xi − hiyi − u|+ hi|v|+ hi|f(ti)− f(r)|L(|u|)K(|v|)

for [u, v] ∈ A(r). Since xi − hiyi = xi−1 + hiεi we obtain from (2.6.b)

(1− ωhi) |xi − u| ≤ |xi−1 − u|+ hi(|v|+ |εi|+ |f(ti)− f(r)|L(|u|)K(|v|)

for r ∈ [0, T ] and [u, v] ∈ A(r). Multiplying this by Πi−1
k=1 (1 − ωhi) and then summing up

this in i we have
(2.15)
|xi− u| ≤ Πi

k=1 (1−ωhi)−1[|x0− u|+ (ti− s) |v|+
∑i

k=1hk (|εk|+ |f(tk)− f(r)|L(|u|)K(|v|)]

But since for δ > 0

(1− h)−1 ≤ e(1+δ)h, for 0 ≤ h ≤ δ

1 + δ

assuming ωdλ ≤ 1
2

it follows that for δ = 1

(1− ωhi)−1 ≤ e2ω hi .

Thus we have

|xi − u| ≤ e2ωT [|x0 − u|+ T |v|+
∑i

k=1hk (|εk|+ |f(tk)− f(r)|L(|u|)K(|v|)]

Since f is continuous

∑i
k=1hk |f(tk)− f(r)| →

∫ T

s

|f(t)− f(r)| dt as n→∞
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which completes the proof. �

The following lemma shows the uniform bound of |yλi |, 1 ≤ i ≤ Nλ for the sequence
(tλi , x

λ
i , y

λ
i ) satisfying (2.8).

Lemma 2.4 Suppose the sequence (tλi , x
λ
i , y

λ
i , ε

λ
i ) satisfy (2.10) with

∑Nλ
i=1 ε

λ
i ≤M1 for some

constant M1 independent of λ (especially ελi = 0) and xλ0 = x0 ∈ dom (A(s)). Then there
exists a constant M2 = M2(T, x0, α) independent of λ such that |yλi | ≤M2, 1 ≤ i ≤ Nλ.

Proof: From (2.10) we have

yλi ∈ A(tλi )x
λ
i and yλi =

xλi − xλi−1

hλi
− ελi

and thus from (2.6.b) with x1 = xλi , x2 = xλi−1, y1 = yλi , y2 = yλi−1 and λ = hλi we have

(1− hλi ω) |yλi + ελi | ≤ |ελi |+ |yλi−1|+ |f(tλi )− f(tλi−1)|L(|xλi−1|)(1 + |yλi−1|).

and thus

(2.16) (1− hλi ω) |yλi | ≤ 2|ελi |+ |yλi−1|+ |f(tλi )− f(tλi−1)|L(|xλi−1|)(1 + |yλi−1|).

If we define ai = Πi
k=1(1− hλkω) |yλi | then multiplying (2.16) by Πi−1

k=1(1− hλkω) we have

ai ≤ (1 + bi) ai−1 + bi + 2 εi ≤ ebi ai−1 + bi + 2 εi

where
bi = L(M) |f(tλi )− f(tλi−1)|.

Thus we obtain the estimate

ai ≤ exp (
∑i

k=1 bk) (a0 +
∑i

k=1 (bk + 2 εk))

where yλ0 ∈ A(s)x0. Since f is of bounded variation on [0, T ] this estimate implies that |yλi |
is uniformly bounded. �

We define the the modulus ρ(·) of continuity of f by

ρ(σ) = max {|f(t)− f(s)|; |t− s| ≤ σ and t, s ∈ [0, T ]}

Then ρ : [0, T ]→ R+ is bounded, nondecreasing and lim ρ(σ)→ 0 as σ → 0+. The following
inequality plays an important role in the proof of the main estimate.

(2.17) ρ(r) ≤ c−1ρ(T )|r − r′|+ ρ(δ) for r ∈ [0, T ]

where 0 < c < δ < T and 0 ≤ r′ < δ − c. In fact, if r ≤ δ then ρ(r) ≤ ρ(δ) and thus (2.17)
holds. If r > δ and r′ < δ − c then c < δ − r′ < r − r′ and thus ρ(r) ≤ ρ(T ) ≤ r−r′

c
ρ(T )

which implies (2.17).
Now, we are ready to prove the fundamental estimate due to [KKO] in the following

theorem.
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Theorem 2.5 (Kobayashi-Kobayashi-Oharu) Let s, ŝ ∈ [0, T ], x0 ∈ D∩dom (A(s)) and
x̂0 ∈ D∩dom (A(ŝ)). Assume that for α > 0 the sequences {tλi , xλi , yλi , ελi } and {tµj , x

µ
j , y

µ
j , ε

µ
j }

in R ×Dα ×X ×X satisfy (2.10) and (2.12) and xλ0 = x0, x
µ
0 = x̂0, respectively and that

(C.1) holds or (C.2) holds with ελi = εµj = 0. Then for 0 ≤ |σ| < δ < T, 0 < c < δ − |σ|, if

dλ, dµ < δ − |σ| − c then there exists a constant M̃ = M̃(T, x0, x̂0, α, [u, v]) such that

(2.18)

ωi,j|xλi − x
µ
j | ≤ |x0 − u|+ |x̂0 − u|+ ci,j(s− ŝ) (|v|+ M̃ρ(T ))

+
∑i

k=1 h
λ
k |ελk |+

∑j
l=1 h

µ
l |ε

µ
l |

+M̃(tµj − ŝ) (c−1ρ(T )ci,j(σ) + ρ(δ))

for 1 ≤ i ≤ Nλ and 1 ≤ j ≤ Nµ, where r ∈ [0, T ], [u, v] ∈ A(r), and

(2.19) ωi,j = Πi
k=1 (1− ωhλk) Πj

l=1 (1− ωhµl ).

Proof: From (2.15)

ωi,0 |xλi − x
µ
0 | ≤ ωi,0 (|xλi − u|+ |x

µ
0 − u|) ≤ |xλ0 − u|+ |x

µ
0 − u|+ (tλi − s)|v|

+
∑i

k=1 h
λ
k (|ελk |+ |f(tλk)− f(r)|L(|u|))K(|v|)

Let L(|u|)K(|v|) ≤ M̃ . Since

|f(tλk)− f(r)| ≤ ρ(|tλk − r|) ≤ ρ(T )

it follows that

ωi,0ai,0 ≤ |xλ0 − u|+ |x
µ
0 − u|+ (tλi − s)(|v|+ M̃ρ(T )) +

∑i
k=1h

λ
k |ελk |.

and so (2.18) is satisfied for 1 ≤ i ≤ Nλ and j = 0.
Obviously, the same argument is applied to show that (2.18) holds for the case i = 0 and

1 ≤ j ≤ Nµ. If we prove that suppose (2.18) holds for the pairs (i, j − 1) and (i− 1, j) then
(2.18) holds for the pair (i, j), then by induction (2.18) holds for every pair (i, j). To this
end, we first prove the following relation between ai−1,j, ai,j−1 and ai,j.

(2.20) ωi,j ai,j ≤ αi,j(ωi−1,jai−1,j + hλi |ελi |) + βi,j(ωi,j−1ai,j−1 + hµj |ε
µ
j |) + M̃γi,jdi,j.

where αi,j, βi,j, γi,j are defined in (2.14) and di,j ≤ ρ(|tλi − tµj |). From (2.6.a) with λ =

hλi , x1 = xλi and µ = hµj , x2 = xµj we have

(hλi + hµj − ωhλi h
µ
j ) |xλi − x

µ
j |

≤ hλi |x
µ
j − h

µ
j y

µ
j − xλi |+ hµj |xλi − hλi yλi − x

µ
j |+ M̃ hλi h

µ
j |f(tλi )− f(tµj )|.

where we assumed L(M(T, x̂0, α))K(M2(T, x̂0, α)) ≤ M̃ . Substituting (2.13) into this and
then dividing by hλi + hµj , we obtain

(1− ω γi,j) ai,j ≤ αi,jai−1,j + βi,jai,j−1 + γi,j (|ελi |+ |ε
µ
j |+ M̃ di,j)
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Multiplying the both side of this inequality by ωi,j we have

(1− ω γi,j)ωi,j ai,j ≤ (1− hλi ω)ωi−1,jαi,jai−1,j + (1− hµjω)ωi,j−1βi,jai,j−1

+ωi,jγi,j(|ελi |+ |ε
µ
j |+ M̃di,j).

Since
0 < ωi,j ≤ max {1− hλi ω, 1− h

µ
jω} ≤ 1− ωγi,j

and γi,j = hλi αi,j = hµj βi,j, devision of this by 1 − ωγi,j yields (2.20). Substituting the
estimates of ai−1,j and ai,j−1 by (2.18) and the induction hypothesis, we have

(2.21)

ωi,j ai,j ≤ |xλ0 − u|+ |x
µ
0 − u|+ (αi,jci−1,j(s− ŝ) + βi,jci,j−1(s− ŝ) (|v|+ M̃ρ(T ))

+
∑i

k=1 h
λ
k |ελk |+

∑j
l=1 h

µ
l |ε

µ
l |

+M̃(tµj − ŝ)(c−1ρ(T )αi,jci−1,j(σ) + αi,jρ(δ))

+M̃(tµj−1 − ŝ)(c−1ρ(T )βi,jci,j−1(σ) + βi,jρ(δ)) + M̃γi,jdi,j.

It thus follows from Lemma 2.2 and (2.21) that

(2.22)

ωi,j ai,j ≤ |xλ0 − u|+ |x
µ
0 − u|+ ci,j(s− ŝ) (|v|+ M̃ρ(T ))

+
∑i

k=1 h
λ
k |ελk |+

∑j
l=1 h

µ
l |ε

µ
l |+ M̃(tµj − ŝ)(c−1ρ(T )ci,j(σ) + ρ(δ))

+M̃ (−hµj βi,j(c−1ρ(T )ci,j−1(σ) + ρ(δ)) + γi,jdi,j)

We show that the last term of (2.22) is less than or equal to zero. In fact, if r = |tλi − t
µ
j |

and r′ = |σ − hµj | then it follows that

r′ ≤ |σ|+ hµj ≤ |σ|+ dµ ≤ δ − c and |r − r′| ≤ |tλi − t
µ
j + hµj − σ| ≤ ci,j−1(σ)

and thus (2.17) implies

γi,jdi,j = hµj βi,jdi,j ≤ hµj βi,jρ(|tλi − t
µ
j |)

≤ hµj βi,j(c
−1ρ(T )ci,j−1(σ) + ρ(δ))

Hence (2.18) holds if (2.18) holds for the pairs (i, j − 1) and (i− 1, j). �

Next, we show the existence of DS–approximation under range condition (R).

Lemma 2.6 Let A(t) be a quasi-dissipative operator satisfying H1 and relaxed range con-
dition

(R)
for for each β ≥ 0 and all x ∈ Dalpha,

lim infλ→0+
1
λ
d((I − λA(t)) (dom (A(t)) ∩D(1−aλ)−1(α+b),

78



where d(S, x) denotes the distance between a set S and a point x in X. and let x0 ∈
D ∩ dom (A(s)) and ε > 0. Then there exist {ti}, {xi} and {yi} which satisfy (1) − (3),
where [xi, yi] ∈ A(ti) with xi ∈ dom (A(ti)) ∩Dψ(ti−s,ϕ(x0)), i ≥ 1:

(1) s = t0 < t1 < · · · < ti < · · · < tN = T

(2) ti − ti−1 ≤ ε

(3) |xi − xi−1 − (ti − ti−1) yi| ≤ ε (ti − ti−1)

Proof: We let α = ψ(T − s, ϕ(x0)), ω = ωα and may assume that 2ωε ≤ 1. For each
x ∈ Dβ ∩ dom (A(s)), from condition (R) we can choose δ ∈ (0, ε] such that there exist
xδ ∈ Dψ(δ,β) ∩ dom (A(t+ δ)) and yδ ∈ A(t+ δ)xδ such that

(2.23) |xδ − x− δ yδ| ≤ ε δ

For each x ∈ Dβ we define δ(x) as the least upper bound of δ > 0 that satisfies (2.23). Note
that ψ(δ, ψ(τ, β)) = ψ(τ + δ, β) for τ, δ ≥ 0.

We can select the sequence {ti, xi, yi} satisfying (1)–(3) as follows. At each ti, from
the definition of δ(xi), we can select xi+1 ∈ Dψ(δ,ϕ(xi)) ∩ domA(ti + δ), yi ∈ A(ti + δ) and

hi+1 = ti+1 − ti > δ(xi)
2

. If we can show that tN ≥ T then the proof is completed. Suppose
limi→∞ ti = a < T . It will be shown at the end of the proof that for all i ≥ j ≥ k
(2.24)

ωi,j |xi − xj| ≤ (ti − tj) (|yk|+ M̃ρ(a− tk))

+ε(ti − tk) + ε(tj − tk) + M̃
i∑

n=k+1

hn |f(tn)− f(tk)|+ M̃

j∑
n=k+1

hn |f(tn)− f(tk)|

where and 0 < c < δ are arbitrary. It thus follows that

lim supi,j→∞ |xi − xj|

≤ e4ω(a−tk)(2ε(a− tk) + 2M̃

∫ a

tk

|f(s)− f(tk)| ds)→ 0 as k →∞.

Hence {xi} is a Cauchy sequence. Let x = limi→∞ xi. Since ϕ is lower semi-continuous we
have

ϕ(x) ≤ lim inf
n→∞

ϕ(xn) ≤ ψ(
∑∞

i=k+1 hi, ϕ(xk))

for all k ≥ 1. From condition (R), there exist µ ∈ (0, ε
2
] and [xµ, yµ] ∈ A(a+ µ)xµ satisfying

(2.25) |xµ − x− µ yµ| ≤
ε

2
µ and ϕ(xµ) ≤ ψ(µ, ϕ(x))

Now, we choose k ≥ 1 so that

hk+1 <
µ
2
,
∑∞

i=k+1 hi ≤
ε
2∑∞

i=k+1 hi |yµ| ≤
ε
4
µ and |xk − x| ≤ ε

4
µ.
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Then from (2.25), we have for µ+
∑∞

i=k+1 hi ≤ ε

|xµ − xk − (µ+
∑∞

i=k+1 hi)yµ| ≤ |xµ − x− µ yµ|+ |xk − x|+
∑∞

i=k+1 hi |yµ|

≤ ε µ ≤ (µ+
∑∞

i=k+1 hi) ε

and
ϕ(xµ) ≤ ψ(µ, ϕ(x)) ≤ ψ(µ, ψ(

∑∞
i=k+1 hi, ϕ(xk)) ≤ ψ(µ+

∑∞
i=k+1 hi, ϕ(xk))

Hence, by the definition of δ(xk)

µ+
∑∞

i=k+1 hi ≤ δ(xk)

However, since δ(xk)
2

< hk+1 <
µ
2

we have δ(xk) < µ and µ +
∑∞

i=k+1 hi ≤ µ. This is a
contradiction and therefore tN = T for some N .

Finally, we prove (2.24) for all i ≥ j ≥ k. The proof is very similar to the one for
Theorem 2.5 and we use the same notation as in the proof of Theorem 2.5. Setting λ = µ,
s = r = tk, u = xk and v = yk, from (2.15) we have

ωi,k |xi − xk| ≤ (ti − tk)(|yk|+ M̃ρ(a− tk)) + (ti − tk) ε+ M̃
i∑

n=k+1

hn |f(tn)− f(tk)|.

Hence (2.24) holds for j = k. Also, it is self-evident that (2.24) holds for i = j. Now, let
i > j > k and assume that ai−1,j = |xi−1 − xj| and ai,j−1 satisfy (2.24). Then, if we show
that ai,j = |xi− xj| satisfies (2.24), then by induction, (2.24) holds for all i ≥ j ≥ k. By the
arguments leading to (2.20) in the proof of Theorem 2.5 we have

ωi,j ai,j ≤ αi,j(ωi−1,jai−1,j + hi ε) + βi,j(ωi,j−1ai,j−1 + hj ε) + M̃γi,j |f(ti)− f(tj)|.

Substituting the estimates of ai−1,j and ai,j−1 by (2.24) into this, we obtain (2.24) for ai,j
since

αi,j(ti−1 − tj) + βi,j(ti − tj−1) = ti − tj
and

|f(ti)− f(tj)| ≤ |f(ti)− f(tk)|+ |f(tj)− f(tk)|.�

Similarly, we can show the existence of DS–approximation under range condition (3.3)
and continuity condition (3.3).

Lemma 2.7 Let A(t) be a quasi-dissipative operator satisfying (3.2) and range condition
(3.3), and let x0 ∈ D ∩ dom (A(s)) and ε > 0. Then there exist {ti}, {xi} and {yi} which
satisfy (1)− (3), where [xi, yi] ∈ A(ti) with xi ∈ dom (A(ti)) ∩Dψ(ti−s,ϕ(x0)), i ≥ 1:

(1) s = t0 < t1 < · · · < ti < · · · < tN = T

(2) ti − ti−1 ≤ ε

(3) xi − xi−1 − (ti − ti−1) yi = 0
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Proof: We can select the sequence {ti, xi, yi} satisfying (1)–(3) as follows. By the range
condition (R.1) at each ti, we can select ti+1 − ti = min {ε, λ(xi)} and [xi+1, yi+1] ∈ A(ti+1)
such that

xi − xi−1 − (ti − ti−1) yi = 0 and ϕ(xi+1)− ϕ(xi) ≤ (ti+1 − ti) g(ϕ(xi+1)).

Suppose limi→∞ ti = a < T . Then it follows from the proof of Lemma 2.6 that {xi} is a
Cauchy sequence. Let x = limi→∞ xi. Then x ∈ D and limi→∞ λ(xi) = 0. But since λ(·) is
lower semicontinuous, it follows that λ(x) = 0, which is a contradiction. Hence tN = T for
some N . �

Now we show the existence of the mild solution to (2.1).

Theorem 2.8 Let A(t), t ∈ [0, T ] satisfy (A.1)− (A.2) and assume that either (R)− (C.1)
or (R.1) − (C.2) hold. For the case of (C.2) we assume that x0 ∈ D ∩ dom (A(s)) and f is
of bounded variation. Then we have
(1) For s ∈ [0, T ] and x0 ∈ D ∩ dom (A(s)) there exists an α > 0 such that there exists
a DS–approximation sequence {tλi , xλi , yλi , ελi } satisfying (2.10) . Under condition (R.1) we
have ελi = 0, 1 ≤ i ≤ Nλ.
(2) Every DS–approximate sequence uλ(t) inDα converges to a continuous function u(t; s, x0) :
[s, T ] → X uniformly on [s, T ], and u(t, ·) ∈ Dα ∩ dom (A(t)). Moreover, if dom (A(t)) is
independent of t ∈ [0, T ], then s→ u(t; s, x0) ∈ X is continuous.
(3) If x0 ∈ dom (A(s)) and f(·) is of bounded variation then t → u(t;x0) ∈ X is Lipschitz
continuous on [s, T ].

Proof: The existence of DS–approximation sequence follows from Lemmas 2.6 and 2.7.
Moreover, it follows from Lemma 2.4 that |yλi | is uniformly bounded in λ and 1 ≤ i ≤ Nλ

for the case of (C.2). We apply Theorem 2.5 with ŝ = s and x̂0 = x0. Let t ∈ (s, T ] and
assume that t ∈ (tλkλ−1, t

λ
kλ

] and t ∈ (tµjµ−1, t
µ
jµ

]. By the definition of ci,j(·) ckλ,jµ(0) → 0 as

λ, µ → 0 since tλkλ → t as λ → 0 and tµjµ → t as µ → 0. As shown in the proof of Lemma

2.3, if dλωα, dµωα ≤ 1
2

then

ω−1
i,j ≤ e4ωα(T−s) = C

Since uλ(t)− uµ(t) = xλkλ − x
µ
jµ

it follows from Theorem 2.5 that

lim
λ, µ→0

|uλ(t)− uµ(t)| ≤ C (2 |x0 − u|+ M̃(T − s)ρ(δ))

for all u ∈ Dα ∩ dom (A(s)) and δ > 0, where we set σ = 0. Since lim ρ(δ) = 0 as
δ → 0+ it follows that limλ, µ→0 |uλ(t) − uµ(t)| = 0 uniformly on [s, T ]. Note that uλ(t) ∈
dom (A(tλkλ−1)) and tλkλ−1 → t− as λ→ 0. Thus, it follows from (A.2) that u(t) ∈ dom (A(t)).
Since ϕ(·) is lower semi-continuous u(t) ∈ Dα, t ∈ [s, T ].

Next, we prove the continuity of u(t; s, ·). Let t, τ ∈ [s, T ] and t ∈ (tλkλ−1, tkλ ] and
t ∈ (tλjλ−1, tjλ ]. Since dλ → 0 it follows that tkλ → t and tjλ → τ and thus ci,j(0) → |t − τ |.
Thus from Theorem 2.5 with λ = µ, s = ŝ, tµj = tλj , x

µ
j = xλj and σ = 0 we obtain

|u(t)− u(τ)| = lim
λ→0
|uλ(t)− uλ(τ)|

≤ C (2 |x0 − u|+ |t− τ |(|v|+ M̃ρ(T )) + M̃(τ − s)(c−1ρ(T ) |t− τ |+ ρ(δ))
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for all [u, v] ∈ A(s) and 0 < c < δ < T . For ε > 0 we take u ∈ Dα ∩ dom (A(s)) such that
2C |x0 − u| ≤ ε

4
and let δ > 0 such that Cρ(δ) ≤ ε

4
. Then if we set c = δ

2
and choose

|t− τ | ≤ min

{
ε

4C (|v|+ M̃ρ(T ))
,

εδ

8C (T − s)ρ(T )

}
then we have |u(t)− u(τ)| ≤ ε and thus u(·) is uniformly continuous on [s, T ]. Similarly, for
fixed t ∈ [0, T ] and x0 ∈ X we have

|u(t; s, x0)−u(t; ŝ, x0)| ≤ C (2|x0−u|+ |s− ŝ|(|v|+M̃ρ(T ))+M̃(t−s)c−1ρ(T ) |s− ŝ|+ρ(δ))

for [u, v] ∈ A(r). Thus, if dom (A(t)) is independent of t ∈ [0, T ], then s→ u(t; s, x0) ∈ X is
continuous.

Assume that x0 ∈ dom (A(s)) and f(·) is of bounded variation. We prove that t→ u(t) ∈
X is Lipschitz continuous. It follows from Lemma 2.5 that |yλi | ≤M1 and yλi ∈ dom (A(tλi ))x

λ
i

for 1 ≤ i ≤ Nλ. Letting s = tλiλ and u = xλiλ and σ = 0 where s0 ∈ (tλiλ−1, t
λ
iλ

], it follows from
Theorem 2.5 that

|u(t)− u(τ)| = lim
λ→0
|uλ(t)− uλ(τ)|

≤ C (|t− τ |(M1 + M̃ρ(T )) + M̃(τ − s0)c−1ρ(T0 − s0) |t− τ |+ ρ(δ))

for all 0 < c < δ < T and s0 ∈ [s, τ) and T0 ∈ (t, T ]. Since there f(·) is of bounded variation
there exists a constant L such that |u(t)− u(τ)| ≤ L |t− τ | for s ≤ τ ≤ t ≤ T . �

Next we prove the uniqueness of the mild solution.

Theorem 2.9 Let A(t), t ∈ [0, T ] satisfy either (3.2)–(3.3). For α > 0 let u : [s, T ]→ X be
a mild solution of (2.1) on [s, T ] confined to Dα. For the case of (C.2) we assume that the
sequence {yλi } defined by (2.10) is bounded in X uniformly in λ and 1 ≤ i ≤ Nλ. Then we
have
(1) The mild solution u is an integral solution of (2.1) on [s, T ].
(2) If v is an integral solution of (2.1) on [s, T ] then there exists ω = ωα such that

|v(t)− u(t)| ≤ eω (t−s)|v(0)− u(0)|

(3) The mild solution is unique.

Proof: First we show that the mild solution is an integral solution. Since

〈y, x〉− − 〈z, x〉+ ≤ 〈y − z, x〉−

it follows from (2.5) that for [x, y] ∈ A(r)

(2.26) 〈yλi , xλi − x〉− − 〈y, xλi − x〉+ ≤ 〈yλi − y, xλi − x〉− ≤ ωα|xλi − x|+ C |f(tλi )− f(r)|

where C = L(|x|)K(|y|). Thus

〈yλi , xλi − x〉− ≤ 〈y, xλi − x〉+ + ωα|xλi − x|+ C |f(tλi )− f(r)|.
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Since hλi y
λ
i = (xλi − x)− (xλi−1 − x)− hλi ελi , the left side of this is estimated by

〈hλi yλi , xλi − x〉− = |xλi − x|+ 〈−(xλi−1 − x)− hλi ελi , xλi − x〉− ≥ |xλi − x| − |xλi−1 − x| − hλi |ελi |
where we used the fact that 〈αx+ y, x〉− = α|x|+ 〈y, x〉−. Hence, we have

|xλi − x| − |xλi−1 − x| ≤ hλi (ωα|xλi − x|+ 〈y, xλi − x〉+ + C |f(tλi )− f(r)|+ |ελi |).
Summing up this in i from i = j + 1 to i = k, we obtain

|xλk − x| − |xλj − x| ≤
∫ tλk

tλj

(ω |uλ(σ)− x|+ 〈y, uλ(σ)− x〉+) dσ

+
∑k

i=j+1 h
λ
i (|f(tλi )− f(r)|+ |ελi |)

Let s ≤ τ ≤ t ≤ T and let tλk → τ and tλj → t as λ → 0. By Theorem 2.8 and the
upper-semicontinuity of 〈·, ·〉+ we obtain (2.11), letting λ→ 0.

Next we show the assertion (2). Since v : [s, T ] → X is an integral solution of (2.1) on
[s, T ], there exist ω = ω(α) and C = L(|x|)K(|y|) such that

|v(t)− x| − |v(τ)− x| ≤
∫ t

τ

ω |v(σ)− x|+ 〈y, v(σ)− x〉+ + C |f(σ)− f(r)| dσ

for s ≤ τ ≤ t ≤ T and [x, y] ∈ A(r), r ∈ [s, T ] with x ∈ Dα. Since [xλi , y
λ
i ] ∈ A(tλi ) and

xλi ∈ Dα, it follows that

|v(t)− xλi | − |v(τ)− xλi | ≤
∫ t

τ

ω |v(σ)− xλi |+ 〈yλi , v(σ)− xλi 〉+ + C |f(σ)− f(tλi )| dσ

where C = supλ L(|xλi |)K(|yλi |). Since hλi y
λ
i = (xλi − v(σ)) − (xλi−1 − v(σ)) − hλi ε

λ
i and

〈αx+ y, x〉+ = α |x|+ 〈y, x〉+
〈hλi yλi , v(σ)− xλi 〉+ = −|v(σ)− xλi |+ 〈−(xλi−1 − v(σ)− hλi ελi , v(σ)− xλi 〉+

≤ −|v(σ)− xλi |+ |v(σ)− xλi−1|+ hλi |ελi |
Thus, we have

(|v(t)− xλi | − |v(τ)− xλi |)hλi

≤
∫ t

τ

(−|v(σ)− xλi |+ |v(σ)− xλi−1|+ hλi (ω |v(σ)− xλi |+ C |f(σ)− f(tλi )|+ |ελi |) dσ.

Summing up the both sides of this in i from i = j + 1 to i = k, we obtain∫ tλk

tλj

(|v(t)− uλ(ξ)| − |v(τ)− uλ(ξ|) dξ

≤
∫ t

τ

(−|v(σ)− uλ(tλk)|+ |v(σ)− uλ(tλj )|+
∫ tλk

tλj

ω |v(σ)− uλ(ξ)|) dξ dσ

+

∫ t

τ

∑k
i=j+1 h

λ
i (C |f(σ)− f(tλi )|+ |ελi |) dσ.
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We now take any pair ρ, η such that s ≤ η ≤ ρ ≤ T and choose the sequences tλj → η and
tλk → ρ as λ→ 0. Letting λ→ 0, we obtain

(2.27)

∫ ρ

η

(|v(t)− u(ξ)| − |v(τ)− u(ξ)|) dξ +

∫ t

τ

(|v(σ)− u(ρ)| − |v(σ)− u(η)|) dσ

≤
∫ t

τ

∫ ρ

η

(ω |v(σ)− u(ξ)|+ C |f(σ)− f(ξ)|) dξ dσ

For h > 0 we define the function Fh : [s, T − h]→ R+ by

Fh(t) = h−2

∫ t+h

t

∫ t+h

t

|v(σ)− u(ξ)| dσ dξ.

Then (2.27) implies that Fh(·) satisfies

d

dt
Fh(t) ≤ ω Fh(t) + Ch−2

∫ t+h

t

∫ t+h

t

|f(σ)− f(ξ)| dσ dξ.

and by Gronwall’s inequality

Fh(t) ≤ ew(t−s)(Fh(s) +

∫ t

s

Ceω(t−τ) (h−2

∫ τ+h

τ

∫ τ+h

τ

|f(σ)− f(ξ)| dσ dξ) dτ.

Letting h→ 0+ and by the continuity of u and v on [s, T ], we obtain the desired estimate.
Finally the uniqueness of the mild solution follows from the assertions (1) and (2). �

Corollary 2.10 Let A(t) satisfy (A.1) − (A.2) and (R.1) − (C.2). For x ∈ D and every
sequence in D ∩ dom (A(s)) such that |xn − x| → 0 as n → ∞, the limit limn→∞ u(t, s, xn)
in X exists and belongs to D ∩ dom (A(t)) and the limit is independent of the choice of
convergent sequences {xn}. With no confusion we denote such a limit function by u(t; s, x).
Then u(t; s, x) is the unique integral solution to (2.1) and satisfies

|u(t; s, x)− u(t; s, x̂)| ≤ eω(t−s) |x− x̂|

for 0 ≤ s ≤ t ≤ T and x, x̂ ∈ D ∩ dom (A(s).

Proof: For x ∈ D ∩ dom (A(s)) we assume that {xn} is a sequence in D ∩ dom (A(s)) such
that |xn − x| → 0 as n→∞. Then it follows from the proof of Theorem 2.8 that u(t; s, xn)
is confined to Dα for some α > 0 and thus from Theorem 2.9 it is the integral solution to
(2.1) where ω can be chosen to be independent of n in (2.11). It follows from Theorem 2.9
that

|u(t; s, xn)− u(t; s, xm)| ≤ eω(t−s) |xn − xm| → 0 as n,m→∞.

for every sequence in D ∩ dom (A(s)) such that |xn − x| → 0 as n→∞. Thus {u(t; s, xn)}
is a Cauchy sequence in C(s, T ;X) and thus has the unique limit. Let {x̂n} be any other
convergent sequence to x. Then

|u(t; s, xn)− u(t; s, x̂m)| ≤ eω(t−s) |xn − x̂m| → 0 as n,m→∞.
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Hence the two sequences u(t; s, xn) and u(t; s, x̂m) converge to the same limit u(t; s, x) in
X. The limit function u(t; s, x) is an integrable solution on [s, T ] since 〈·, ·〉+ is upper-
semicontinuous. �

Define the nonlinear operators U(t, s) : D ∩ dom (A(s))→ D ∩ dom (A(t)) by

(2.28) U(t, s)x = u(t; s, x)

where u(t; s, x) is the integral solution to (2.1) defined in the sense of Theorem 2.8 for case
(R)− (C.1) and of Corollary 2.10 for case (3.2)–(3.3). Then, we have the following theorem.

Theorem 2.11 Let A(t), t ∈ [0, T ] satisfy (3.2)–(3.3). Then the family of operators U(t, s)
generated by A(t) via (2.28) defines an evolution operator on D in the sense of Definition
2.4 and there exist a constant ω such that

(2.29) |U(t, s)x− U(t, s)x̂| ≤ eω(t−s) |x− x̂|

for 0 ≤ s ≤ t ≤ T and x, x̂ ∈ D ∩ dom (A(s). Moreover, there exists a constant C̃ such that

(2.30) |U(t+ s, s)x− U(t+ ŝ, ŝ)x̂| ≤ eωt |x− x̂|+
∫ t

0

C̃eω(t−τ) |f(τ + s)− f(τ + ŝ)| dτ

for x ∈ D ∩ dom (A(s), x̂ ∈ D ∩ dom (A(ŝ) in case (C.1) and x ∈ D ∩ dom (A(s), x̂ ∈
D ∩ dom (A(ŝ) in case (C.2), respectively.

Proof: The well-posedness and continuity of U and (2.29) follow from Theorems 2.8–2.9
and Corollary 2.10. For the semigroup property we let tλkλ → t and tµjµ → t and note that

from Lemma 2.5 with s = tλk′λ
→ t− we obtain

|u(t; s, x)− u(t; r, x̃)| = lim
λ→, µ→0

|uλ(t; s, x)− uµ(t, r, x̃)|

≤ C (2|x̃− u|+ M̃(t− r)ρ(δ)),

where x̃ = u(r; s, x), for all u ∈ Dα ∩ dom (A(r)) and 0 < δ < T . This implies u(t; s, x) =
u(t; r, x̃) and hence the semigroup property.

For the estimate (2.30) it follows from (2.27) that

d

dt
Gh(t) ≤ ωGh(t) + C̃h−2

∫ t+h

t

∫ t+h

t

|f(σ + s)− f(ξ + ŝ)| dσ dξ)

where

Gh(t) = h−2

∫ t+h

t

∫ t+h

t

|u(σ + s; s, x)− u(ξ + ŝ; ŝ, x̂)| dσ dξ.

By Gronwall’s inequality

Gh(t) ≤ eωtGh(0) +

∫ t

0

C̃eω(t−τ) h−2

∫ τ+h

τ

∫ τ+h

τ

|f(σ + s)− f(ξ + ŝ)| dσ dξ.

85



Letting h→ 0+ and the continuity of u in t we obtain the estimate (2.30). �.

Suppose the range condition (R.1) is strengthen by (R.1) holding for all 0 < δ ≤ δ0

independent of u0 ∈ D, then from (A.1) (I − λA(t))−1 : D → D × dom (A(t)) is locally
Lipschitz and the squence {xk} defined by

xk = Πk
i=1(I − hiA(ti))

−1x

for any sequence {hi} in (0, δ0] defines a DS-approximation, confinded in Dα. Thus, from
Theorems 2.8–2.9 and Corollary 2.10 we have the product formula

(2.30) U(t, s)x = lim Π
[ t−s
h

]

k=1

(
I − hA(s+ k

t− s
h

)

)−1

x as h→ 0+.

Corollary 2.12 Let C be a closed convex subset of X.
(1) C ⊂ R(I − λA(t)) for 0 < λ ≤ δ and t ≥ 0
(2) (I − λA(t))−1 ⊂ C
(3) there exists a a continuous function f in X which is of bounded variation on any bounded
interval [0, T ] and a monotone increasing function L : R+ → R+ such that for all x1 ∈
dom (A(t)) ∩ C, x2 ∈ dom (A(s)) ∩ C and y1 ∈ A(t)x1, y2 ∈ A(s)x2

(1− λω)|x1 − x2| ≤ |x1 − x2 + λ (y1 − y2)|+ λ |f(t)− f(s)|L(|x2|)K(|y2|).

Then

U(t, s)x = lim Π
[ t−s
h

]

k=1

(
I − hA(s+ k

t− s
h

)

)−1

x as h→ 0+

defines a unique integral solution in C. Here, U(t, s) : dom (A(s)) ∩ C → dom (A(t)) ∩ C is
continuous in t ∈ [s,∞) and satisfy

|U(t, s)x− U(t, s)y| ≤ eω(t−s) |x− y| for x, y ∈ X.

Proof: We let Dα = C for α ≥ 0, ϕ(x) = IC , the indicator function of C and g = 0. Then
condition (R.1)− (C.2) holds and therefore the corollary follows from Theorems 2.8–2.10.

3.2 Applications

We consider the Cauchy problem of the form

(1.1)
d

dt
u(t) = A(t, u(t))u(t) u(s) = u0

where A(t, u), t ∈ [0, T ] is a maximal dissipative linear operator in a Banach space X for
each u belonging to D. Define the nonlinear operator A(t) in X by A(t)u = A(t, u)u. We
assume that dom (A(t, u)) is independent of u ∈ D and for each α ∈ R there exists an ωα ∈ R
such that

(1.2) 〈A(t, u)x1 − A(s, u)x2, x1 − x2〉− ≤ ωα |x1 − x2|+ |f(t)− f(s)|L(|x2|)K(|A(s, u)x2|)
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for u ∈ Dα and x1 ∈ dom (A(t, u)), x2 ∈ dom (A(s, u)). Moreover, A(t) satisfies (3.2), i.e.,

(1.3) (1−λωα) |u1−u2| ≤ |(u1−u2)−λ (A(t)u1−A(s)u2)|+λ |f(t)−f(s)|L(|u2|)K(|A(s)u2|)

for u1 ∈ dom (A(t)) ∩Dα, u2 ∈ dom (A(s)) ∩Dα. We consider the finite difference approxi-
mation of (1.1); for sufficiently small λ > 0 there exists a family {uλi } in D such that

(1.4)

uλi − uλi−1

hλi
= A(tλi , u

λ
i−1)uλi with uλ0 = u0

ϕ(uλi )− ϕ(uλi−1)

hλi
≤ aϕ(uλi ) + b.

Then, it follows from Theorems 2.5–2.7 that if the sequence

(1.5) ελi = A(tλi , u
λ
i )u

λ
i − A(tλi , u

λ
i−1)uλi satisfy

∑Nλ
i=1 h

λ
i |ελi | → 0 as λ→ 0+,

then (1.1) has the unique integrable solution. We have the following theorem.

Theorem 5.0 Assume (1.2) holds and for each α ∈ R there exist a cα ≥ 0 such that

(1.6) |(A(t, u)u− A(t, v)u| ≤ cα |u− v|, for u, v ∈ dom (A(t)) ∩Dα.

Let f be of bounded variation and u0 ∈ dom (A(s)) ∩D. Then (1.3) and (1.5) are satisfied
and thus (1.1) has a unique integrable solution u and limλ→0+ uλ = u uniformly on [s, T ].

Proof: If yλi = (hλi )
−1(uλi − uλi−1), then we have

yλi+1 − yλi = A(tλi+1, u
λ
i )u

λ
i+1 − A(tλi , u

λ
i )u

λ
i

+A(tλi , u
λ
i )u

λ
i − A(tλi , u

λ
i−1)uλi

and thus from (1.2) and (1.6)

(1− λωα) |yλi+1| ≤ (1 + λcα) |yλi |+ |f(tλi+1)− f(tλi )|L(|uλi |)K(|yλi |)

with yλ0 = A(s, u0)u0 = A(s)u0. Thus by the same arguments as in the proof of Lemma 2.4,
we obtain |yλi | ≤M for some constant M and therefore from (1.6)∑Nλ

i=1 |ε
λ
i |λ ≤MT λ→ 0 as λ→ 0+.

We also note that (1.3) follows from (1.2) and (1.6).

3.3 Navier Stokes Equation, Revisited

We consider the incompressible Navier-Stokes equations (5.1). We use exactly the same
notation as in Section.. Define the evolution operator A(t, u) by w = A(t, u)v ∈ H, where

(5.1) (w, φ)H + ν σ(u, φ) + b(u, v, φ)− (f(t), φ)H = 0
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for φ ∈ V , with dom (A(t)) = dom (A0). We let D = V and define the functional as below.

Theorem 5.1 The evolution operator (A(t, u), ϕ,D,H) defined above satisfies the conditions
(1.2)–(1.5) with g(r) = b, a suitably chosen positive constant.

Proof: For u1, u2 ∈ dom (A0).

(A(t, v)u1 − A(s, v)u2, u1 − u2)H + ν |u1 − u2|2V = (f(t)− f(s), u1 − u2)

since b(u, v1−v2, v1−v2) = 0, which implies (1.2). The existence of uδ ∈ V for the equation:
δ−1(uδ − u0) = A(t, u0)uδ for u0 ∈ V , δ > 0 and t ∈ [0, T ] follows from Step 2. of Section NS
and we have

(5.2)
|uδ|2H − |u0|2H

δ
+ ν |uδ|2V ≤

1

ν
|f(t)|2V ∗ .

We also have the estimate of |uδ|V .

(5.3)
1

2δ
(|uδ|2V − |u0|2V ) +

ν

2
|A0u

δ|2 ≤ 27M4
1

4ν3
|u0|2H |u0|2V |uδ|2V +

1

ν
|Pf(t)|2H .

for the two dimensional case. Multiplying the both side of (5.2) by |uδ|2H + |u0|2H , we have

|uδ|4H − |u0|4H
δ

+ ν (|uδ|2H + |u0|2H)|uδ|2V ≤
1

ν
(|uδ|2H + |u0|2H) |f(t)|2V ∗

Since s→ log(1 + s) is concave

c0ν
4 log(1 + |uδ|2V )− log(1 + |u0|2V )

δ

≤ c0ν
4δ−1 |uδ|2V − |u0|2V

1 + |u0|2V
≤ 2ν

|u0|2H |u0|2V |uδ|2V + 2ν−1|Pf(t)|2H
1 + |u0|2V

where we set c0 =
4

27M4
1

. Thus, if we define

ϕ(u) = 2 |u|2H + c0ν
4 log(1 + |u|2V )

then for every δ > 0
ϕ(uδ)− ϕ(u0)

δ
≤ b

for some constant b ≥ 0, since |uλi |H is uniformly bounded. For (1.5) if yλi = (hλi )
−1(uλi −uλi−1),

then

(yλi+1 − yλi , yλi+1) + νhλi+1 |yλi+1|2 + hλi b(y
λ
i , u

λ
i , y

λ
i+1) + (f(tλi+1) = f(tλi ), y

λ
i+1)

Note that

(5.4)

|b(yλi , uλi , yλi+1)| ≤M1|uλi |V |yλi |
1
2
H |yλi |

1
2
V |yλi+1|

1
2
H |yλi+1|

1
2
V

≤ ν

2
|yλi+1|2V +

ν

2
|yλi+1|2V +

M2
1 |uλi |2V
8ν

|yλi+1|2V +
M2

1 |uλi |2V
8ν

|yλi+1|2V .
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For simplicity of our discussions we assume hλi = h Then we have

(5.5) (1−hωα) |yλi+1|2H+hν |yλi+1|2V + ≤ (1+hωα) |yλi+1|2H+ν |yλi+1|2V +|f(tλi+1−f(tλi )|H |yλi+1|H

which implies that |yλi |H ≤M for some constant independent of h > 0.
Note that

|A(t, u)u− A(t, v)u|H = sup
|phi|H≤1

|b(u, u, φ)− b(v, u, φ)| ≤ |u− v|
1
2
V |u− v|

1
2
H |u|

1
2
V |A0u|

1
2
H

and from (5.3)

ν

2

N∑
i=1

hλi |A0u
λ
i |2H ≤ C

for some constant C independent of N and hλi . Since |yλi |H ≤M , |uλi − uλi−1| ≤M hλi . Thus
(1.5) holds and (1.1) has a unique integrable solution u and limλ→0+ uλ = u uniformly on
[s, T ].

Next, we consider the three dimensional problem (d = 3). We show that there exists a
locally defined solution and a global solution exists when the data (u0, f(·)) are small.

We have the corresponding estimate of (5.3):

(5.6)
1

2δ
(|uδ|2V − |u0|2V ) +

ν

2
|A0u

δ|2 ≤ 27M4
2

4ν3
|u0|4V |uδ|2V +

1

ν
|Pf(t)|2H .

We define the functional ϕ by

ϕ(u) = 1− (1 + |u|2V )−1

Since s→ 1− (1 + s)−1 is concave and |uλi |H is uniformly bounded, it follows from (5.2) and
(5.6) that for every δ > 0

(5.6)
ϕ(uδ)− ϕ(u0)

δ
≤ (

27M4
2

4ν3
|u0|4V |uδ|2V +

1

ν
|Pf(t)|2H)(1 + |u0|2)−2.

Thus
ϕ(uλi )− ϕ(uλi−1)

hλi
≤ (

27M4
2

4ν3
|u0|4V |uδ|2V +

1

ν
|Pf(t)|2H)(1 + |u0|2)−2 ≤ bi

where bi = (
27M4

2

4ν3 |uλi |2V + c1
ν

and from (5.3)

N∑
i=1

hλi |uλi |2V ≤
1

ν
(|u0|2H +

c1T

ν
).

The estimate (5.4) is replaced by

|b(yλi , uλi , yλi+1)| ≤M1|uλi |V |yλi |
1
4
H |yλi |

3
4
V |yλi+1|

1
4
H |yλi+1|

3
4
V

≤ ν

2
|yλi+1|2V +

ν

2
|yλi+1|2V +

3M2
1 |uλi |2V
32ν

|yλi+1|2V +
3M2

1 |uλi |2V
32ν

|yλi+1|2V .

Thus, if hλi = h then we obtain (5.5) and thus |yλi |H ≤M for some constant independent of
h > 0 and (1.5) holds. �
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3.4 Approximation theory

In this section we discuss the approximation theory of the mild solution to (3.1). Consider
an evolution equation in Xn:

(3.1)
d

dt
un(t) ∈ An(t)un(t) t > s; un(s) = x

whereXn is a linear closed subspace ofX. We consider the family of approximating sequences
(An(t), dom (An(t)), ϕ,D) on Xn satisfying the uniform dissipativity: there exist constant
ω = ωα continous functions f : [0, T ] → X and L : R+ → R+ independent of t, s ∈ [0, T ]
and n such that

(3.2) (1− λωα) |x1 − x2| ≤ |x1 − x2 − λ (y1 − y2)|+ λ |f(t)− f(s)|L(x2)|K(|y2|)

for all x1 ∈ Dα ∩ dom (An(t)) x2 ∈ Dα ∩ dom (An(s))and y1 ∈ An(t)x1, y2 ∈ An(s)x2, and
the consistency:

(3.3)

for β > 0, t ∈ [0, T ], and [x, y] ∈ A(t) with x ∈ Dβ,

there exists [xn, yn] ∈ An(t) with xn ∈ Dα(β) such that

lim |xn − x|+ |yn − y| = 0 as n→∞.

where α(β) ≥ β and α : R+ → R+ is an increasing function.

Lemma 3.1 Let (A(t), X) satisfy (3.2)–(3.3) on [0, T ]. For each λ > 0, we assume that
(tλi , x

λ
i , y

λ
i , ε

λ
i ) satisfies

yλj =
xλi − xλi−1

tλi − tλi−1

− ελi ∈ A(tλi )x
λ
i

with tλ0 = s and xλ0 = x and xλ ∈ Dα for 0 ≤ i ≤ Nλ. We assume that x ∈ D × dom (A(s)),
f is of bounded variation, and |yλi | is uniformly bounded in 1 ≤ i ≤ Nλ and λ > 0. Then
the step function uλ(t; s, x) defined by uλ(t, s, x) = xλi on (tλi−1, t

λ
i ], satisfies

|uλ(t; s, x)− u(t; s, x)| ≤ e2ω(2t+dλ) (2|x− u|+ dλ (|v|+ M̃ρ(T ))

+M̃(T − s)(c−1ρ(T )dλ + ρ(δ) + δλ).

Proof: It follows from Lemms 2.6–2.7 that there exists a DS-approximation sequence
(tµj , x

µ
j , y

µ
j , ε

µ
j ) as defined in (2.12). For the case of (C.2) − (R.1), from Lemma 2.4 we have

|yµj | ≤ K̃ for 1 ≤ j ≤ Nµ uniformly in µ. It thus follows from Theorem 2.5 that there exists

a constant M̃ such that

|uλ(t; s, x)− uµ(t; s, x)| ≤ e2ω(2t+dλ) (2|x− u|+ dλ (|v|+ M̃ρ(T ))

+M̃(T − s)(c−1ρ(T )dλ + ρ(δ) + δλ − δµ).

90



Theorem 3.2 Let (An(t), dom (An(t)), ϕ,D) be approximating sequences satisfying (R) or
(R.1) (resp.) and (3.2)–(3.3) and we assume (A(t), dom (A(t)), D, ϕ) satisfies (A.1)–(A.2)
and (R) or (R.1) (resp.). Then for every x ∈ D ∩ dom (A(s)) and xn ∈ D ∩ Xn such that
limxn = x as n→∞ we have

lim |un(t; s, xn)− u(t; s, x)| = 0, as n→∞

uniformly on [s, T ], where u(t; s, x) and un(t; s, x) is the unique mild solution to (2.1) and
(3.1), respectively.

Proof: Let [xi, yi] ∈ A(ti) and xi ∈ Dα for i = 1, 2. From (3.3) we can choose [xni , y
n
i ] ∈

An(ti), i = 1, 2 with xi ∈ Dα′ such that |xni −xi|+ |yni −yi| → 0 as n→∞ for i = 1, 2. Thus,
letting n → ∞ in (3.2), we obtain (C.1) or (C.2). Let (tλi , x

λ
i , y

λ
i ) be a DS–approximation

sequence of (2.1). We assume that there exits a β > 0 such that xλi ∈ Dβ for all λ and
1 ≤ i ≤ Nλ. By the consistency (3.3) for any ε > 0 there exists an integer n = n(ε) such
that for n ≥ n(ε)

(3.4) |xλ,ni − xλi | ≤ ε, |yλ,ni − yλi | ≤ ε

and xλ,ni ∈ Dα for 1 ≤ i ≤ Nλ.

(3.5)

∑Nλ
i=1 |x

λ,n
i − x

λ,n
i−1 − hλi y

λ,n
i |

≤
∑Nλ

i=1 |xλi − xλi−1 − hλi yλi |+ (Nλ + T ) ε+ |xn − x| = δn,λ,ε

By Theorems 2.5 and 2.8 that

(3.6)
|uλ,n(t, xn)− un(t;xn)| ≤ e2ω(2t+dλ) (2|xn − un|+ dλ (|vn|+ M̃ρ(T ))

+M̃(T − s)(c−1ρ(T )dλ + ρ(δ) + δλ,n,ε)

for all 0 < c < δ < T and [un, vn] ∈ An(s) with un ∈ Dα. From the definition of function
uλ, uλ,n and (3.4)

|uλ(t; s, x)− uλ,n(t; s, xn)| ≤ ε, t ∈ (s, T ], n ≥ n(ε)

Thus, we have

|un(t; s, xn)− u(t; , s, x)| ≤ e2ω(2t+dλ) (2|xn − un|+ 2|x− u|+ dλ (|vn|+ |v|+ 2M̃ρ(T ))

+2M̃(T − s)(c−1ρ(T )dλ + ρ(δ)) + δλ,n,ε) + ε

for t ∈ (s, T ], n ≥ n(ε), where [u, v] ∈ A(s) with u ∈ Dβ. From the consistency (3.3) we
can take [un, vn] ∈ An(s) such that un → u and vn → v as n→∞. It thus follows that

limn→∞ |un(t; s, xn)− u(t; s, x)| = e2ω(2t+dλ) (4|x− u|+ 2dλ (|v|+ M̃ρ(T ))

+2M̃(T − s)(c−1ρ(T )dλ + ρ(δ)) + δλ,ε) + ε
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for t ∈ [s, T ], where δλ,ε = (Nλ + T )ε. Now, letting ε→ 0+ and then λ→ 0+, we obtain

lim
n→∞

|un(t; s, xn)− u(t; s, x)| = e4ωt (4|x− u|+ ρ(δ)).

Since u ∈ Dβ ∩ dom (A(s)) and δ > 0 are arbitrary it follows that limn→∞ |un(t; s, xn) −
u(t; s, x)| = 0 uniformly on [s, T ]. �

The following theorems give the equivalent characterization of the consistency condition
(3.3).
Theorem 3.2 Let (An, Xn), n ≥ 1 and (A,X) be dissipative operators satisfying the
condition

dom (An) ⊂ R(I − λAn) and dom (A) ⊂ R(I − λA)

and set Jnλ = (I − λAn)−1 and Jλ = (I − λA)−1 for λ > 0. Also, let B be the operator

that has {[Jλx, λ−1(Jλx− x)] : x ∈ dom (A), 0 < λ < ω−1} as its graph. Then the following
statements (i) and (ii) are equivalent.

(i) B ⊂ limn→∞ An (i.e., for all [x, y] ∈ B there exists a sequence {(xn, yn)}| such that
[xn, yn] ∈ An and lim |xn − x|+ |yn − y| → 0 as n→∞.)

(ii) dom (A) ⊂ limn→∞ dom (An) (equivalently, for all x ∈ dom (A) there exists a se-
quence {xn} such that xn ∈ dom (An) and lim |xn − x| → 0 as n → ∞.) and for all
xn ∈ dom (An) and x ∈ dom (A) with x = limn→∞ xn, we have limn→∞ Jnλxn → Jλx for
each 0 < λ < ω−1.
In particular, if dom (A) ⊂ dom (An) for all n, then the above are equivalent to

(iii) limn→∞ Jnλx→ Jλx for all 0 < λ < ω−1 and x ∈ dom (A).

Proof: (i)→ (ii). Assume (i) holds. Then it is easy to prove that dom (B) ⊂ limn→∞ dom (An).
Since Jλx → x as lambda → 0+ for all x ∈ dom (A), it follows that dom (B) = dom (A).
Thus, the first assertion of (ii) holds. Next, we let xn ∈ dom (An), x ∈ dom (A) and
limn→∞ xn = x. From (i), we have I − λB ⊂ limn→∞ I − λAn. Thus, R(I − λB) ⊂
limn→∞ R(I − λAn). Since x = Jλx − λ{λ−1(Jλx − x)} ∈ (I − λB)Jλx for x ∈ dom (A),
we have dom (A) ⊂ R(I − λB). From (i) we can choose [un, vn] ∈ An such that lim |un −
Jλx)| + |vn − λ−1(Jλx − x)| → 0 as n → ∞. If zn = Jnλxn, then there exists a [zn, yn] ∈ An
such that xn = zn − λyn. It thus follows from the dissipativity of An that

|un − zn| ≤ |un − zn − λ(vn − yn)| = |un − λvn − xn| → |Jλx− (Jλx− x)− x| = 0

as n→∞. Hence, we obtain

lim Jλxn = lim zn = lim un = Jλx as n→∞.

(ii)→ (i). If [u, v] ∈ B, then from the definition of B, there exist x ∈ dom (A) and 0 <
λ < ω−1 such that u = Jλx and v = λ−1(Jλx− x). Since x ∈ dom (A) ⊂ limn→∞ dom (An)
we can choose xn ∈ dom (An) such that lim xn = x. Thus from the assumption, we have
lim Jnλxn = jλx = u and lim λ−1(Jnλxn − xn) = λ−1(Jλx − x) = v as n → ∞. Hence we
obtain [u, v] ∈ limn→∞ An and thus B ⊂ limn→∞ An.

Finally, if dom (A) ⊂ dom (An), then (ii) → (iii) is obvious. Conversely, if (iii) holds,
then

|Jnλxn − Jλx| ≤ |xn − x|+ |Jnλx− Jλx| → 0 as n→∞
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when lim xn = x, and thus (ii) holds. �

Theorem 3.3 Let (An, Xn), n ≥ 1 and (A,X) be m-dissipative operators, i.e.,

Xn = R(I − λAn) and X = R(I − λA)

and set Jnλ = (I − λAn)−1 and Jλ = (I − λA)−1 for 0 < λ < ω−1. Then the following
statements are equivalent.

(i) A = limn→∞ An
(ii) A ⊂ limn→∞ An
(iii) For all xn, x ∈ X such that limn→∞ xn = x, we have limn→∞ Jnλxn → Jλx for each

0 < λ < ω−1.
(iv) For all x ∈ X and 0 < λ < ω−1 limn→∞ Jnλx→ Jλx.
(v) For some 0 < λ0 < ω−1, limn→∞ Jnλx→ Jλx for all x ∈ X.

Proof: (i)→ (ii) and (iv)→ (v) are obvious. (ii)→ (iii) follows from the proof of (i)→ (ii)
in Theorem 3.2.

(v) → (ii). If [x, y] ∈ A, then from (v), lim Jnλ0
(x − λ0 y) = Jλ0(x − λ0 y) = x and

lim λ−1
0 (Jnλ0

(x− λ0 y)− (x− λ0 y)) = y as n → ∞. Since λ−1
0 (Jnλ0

(x− λ0 y)− (x− λ0 y)) ∈
AnJ

n
λ0

(x− λ0 y), [x, y] ∈ limn→∞ An and thus (ii) holds.
(ii) → (i). It suffices to show that limn→∞ An ⊂ A. If [x, y] ∈ limn→∞ An then there

exists a [xn, yn] ∈ An such that lim |xn−x|+|yn−y| = 0 as n→∞. Since xn−λ yn → x−λ y
and n→∞, it follows from (iii) that xn = Jnλ (xn−λ yn)→ Jλ(x−λ y) as n→∞ and hence
x = Jλ(x− λ y) ∈ dom (A). But, since

λ−1(x− (x− λ y)) = λ−1(Jλ(x− λ y)− (x− λ y)) ∈ AJλ(x− λ y) = Ax

we have [x, y] ∈ A and thus (i) holds. �

The following corollary is an immediate consequence of Theorems 3.1 and 3.3.

Corollary 3.4 Let (An(t), Xn) and (A(t), X) be m-dissipative operators for t ∈ [0, T ], (i.e.,

Xn = R(I − λAn(t)) and X = R(I − λA(t))

and (C.2) is satisfied), and let Un(t, s), U(t, s) be the nonlinear semigroups generated by
An(t), A(t), respectively. We set Jnλ (t) = (I − λAn(t))−1 and Jλ(t) = (I − λA(t))−1 for
0 < λ < ω−1. Then, if

Jnλ0
xn → Jλ0x as n→∞

for all sequence {xn} satisfying xn → x as n→∞, then

|Un(t, s)xn − U(t, s)x| → 0 as n→∞

where the convergence is uniform on arbitrary bounded subintervals.

The next corollary is an extension of the Trotter-Kato theorem on the convergence of
linear semigroups to the nonlinear evolution operators.

Corollary 3.5 Let (An(t), X) be m-dissipative operators and {Un(t, s), t ≥ s ≥ 0} be the
semigroups generated by An(t). We set Jnλ (t) = (I − λAn(t))−1. For some )λ0 < ω−1, we
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assume that there exists lim Jnλ0
(t)x exits as n→∞ for all x ∈ X and t ≥ 0 and denote the

limit by Jλ0x. Then we have
(i) The operator A(t) defined by the graph {[Jλ0(t)x, λ−1

0 (Jλ0(t)x − x)] : x ∈ X} is an
m-dissipative operator. Hence (A(t), X) generates a nonlinear semigroup U(t, s) on X.

(ii) For every x ∈ R(Jλ0(s)) (= dom (A(s))), there exist a xn ∈ dom (An(s)) such that
lim xn = x and lim U(t, s)xn = U(t, s)x for t ≥ s ≥ 0 as n→∞. Moreover, the above con-
vergence holds for every xn ∈ dom (An(s)) = X satisfying lim xn = x, and the convergence
is uniform on arbitrary bounded intervals.

Proof: (i) Let [ui, vi] ∈ A(ti), i = 1, 2. Then from the definition of A(t) we have

ui = Jλ0(ti)xi and vi = λ−1
0 (Jλ0(ti)xi − xi)

for xi, i = 1, 2. By the assumption

lim Jnλ0
(ti)xi = Jλ0(ti)xi lim λ−1

0 (Jnλ0
(ti)xi − xi) = λ−1

0 (Jλ0(ti)xi − xi)

as n→∞ for i = 1, 2. Since λ−1
0 (Jnλ0

(ti)xi − xi) ∈ An(ti)J
n(Jnλ0

(ti)xi), it follows from (C.2)
that

(1− λω) |Jnλ0
(t1)x1 − Jnλ0

(t2)x2|

≤ |Jnλ0
(t1)x1 − Jnλ0

(t2)x2 − λ (λ−1
0 (Jnλ0

(t1)x1 − x1)− λ−1
0 (Jnλ0

(t2)x2 − x2)|

+λ |f(t)− f(s)|L(|Jnλ0
(t2)x2|)(1 + |λ−1

0 (Jnλ0
(t2)xs − x2)|).

Letting n→∞, we obtain

(1− λω) |u1 − u2| ≤ |u1 − u2 − λ (v1 − v2)|+ λ |f(t)− f(s)|L(|u2|)(1 + |v2|).

Hence, (A(t), X) is dissipative. Next, from the definition of A(t), for every x|inX we have x =
Jλ0(t)x− λ0(λ−1

0 (Jλ0(t)x− x)) ∈ (I − λ0A(t))Jλ0x, which implies Jλ0(t)x = (I − λA(t))−1x.
Hence, we obtain R(I − λ0A(t)) = X and thus A(t) is m-dissipative.

(ii) Since A(t) is an m-dissipative operator and Jλ0x = (I −λ0A(t))−1 and dom (A(t)) =
R((Jλ0(t)), it follows from Corollary 3.4 that Un(t, s)xn → U(t, s)x as n → ∞ if x ∈
dom (A(s)) and xn → x as n→∞. �

3.5 Chernoff Theorem

In this section we discuss the Chernoff theorem for the evolution equation (2.1).

Lemma 2.12 Let {Tρ(t)}, t ∈ [0, T ] for ρ > 0 be a family of mapping from D into itself
satisfying

Tρ(t) : Dβ → Dψ(ρ,β),

for t ∈ [0, T ] and β ≥ 0,

|Tρ(t)x− Tρ(t)y| ≤ (1 + ωαρ) |x− y|
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for x, y ∈ Dα, and

|Aρ(t)x− Aρ(s)x| ≤ L(|x|)(1 + |Aρ(s)x|) |f(t)− f(s)|

for x ∈ D and t, s ∈ [0, T ], where

Aρ(t)x =
1

ρ
(Tρ(t)x− x), x ∈ D

Then, the evolution operator Aρ(t), t ∈ [0, T ] satisfies (C.2).

Proof: For x1, x2 ∈ Dα

|x1 − x2 − λ (Aρ(t)x1 − Aρ(s)x2)|

≥ (1 +
λ

ρ
) |x1 − x2| −

λ

ρ
(|Tρ(t)x1 − Tρ(t)x2|) + |Tρ(t)x2 − Tρ(s)x2|

≥ (1− λωα) |x1 − x2| − λL(|x2|)(1 + |Aρ(s)x2|) |f(t)− f(s)|.�

Lemma 2.14 Let X0 be a closed convex subset of a Banach space X and α ≥ 1. Suppose
C(t) : X0 → X0, t ∈ [0, T ] be a family of evolution operators satisfying

(2.30) |C(t)x− C(t)y| ≤ α |x− y|

for x, y ∈ X0, and

(2.31) |C(t)x− C(s)x| ≤ L(|x|)(δ + |(C(s)− I)x|) |g(t)− g(s)|.

where δ > 0 and g : [0, T ] → X is continuous. Then, there exists a unique function
u = u(t;x) ∈ C1(0, T ;X0) satisfying

(2.32)
d

dt
u(t) = (C(t)− I)u(t), u(0) = x,

and we have

(2.33) |u(t;x)− u(t; y)| ≤ e(α−1)t |x− y|.

Proof: It suffices to prove that there exists a unique function u ∈ C(0, T ;X0) satisfying

(2.34) u(t) = e−tx+

∫ t

0

e−(t−s)C(s)u(s) ds, t ∈ [0, T ].

First, note that if v(t) : [0, T ]→ X0 is continuous, then for t ∈ [0, T ]

e−tx+
∫ t

0
e−(t−s)C(s)v(s) ds

= (1− λ)x+ λ

(∫ t
0
e−(t−s)C(s)v(s) ds∫ t

0
e−(t−s) ds

)
∈ X0
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where

λ =

∫ t

0

e−(t−s) ds,

since X0 is closed and convex. Define a sequence of functions un ∈ C(0, T ;X0) by

un(t) = e−tx+

∫ t

0

e−(t−s)C(s)un−1(s) ds

with u0(t) = x ∈ X0. By induction we can show that

|un+1(t)− un(t)| ≤ (αt)n

n!

∫ t

0

|C(s)x− x| ds

and thus {un} is a Cauchy sequence in C(0, T ;X0). It follows that un converges to a unique
limit u ∈ C(0, T ;X0) and u satisfies (2.34). Also, it is easy to show that there exists a unique
continuous function that satisfies (2.34). Moreover since for x, y ∈ X0

et |u(t;x)− u(t; y)| ≤
∫ t

0

α es|u(s;x)− u(s; y)| ds,

by Gronwall’s inequality we have (2.33). Since s → C(s)u(s) ∈ X0 is continuous, u ∈
C1(0, T ;X0) satisfies (2.32). �

Theorem 2.15 Let α ≥ 1 and let C(t) : Dβ → Dβ, t ∈ [0, T ] be a family of evolution
operators satisfying (2.30)–(2.31). Assume that Xβ is a closed convex subset of X and g
is Lipschitz continuous with Lipschitz constant Lg. Then, if we let u(t) = u(t;x) be the
solution to

d

dt
u(t;x) = (C(t)− I)u(t;x), u(0;x) = x,

then there exist some constants Mτ such that for t ∈ [0, τ ]
(2.35)

|u(t;x)− Πn
i=1Cix| ≤ αne(α−1)t [(n− αt)2 + αt]

1
2 (Cn,τ + |C(0)x− x|)

+LgL(Mτ )

∫ t

0

e(α−1)(t−s) [(n− s)− α(t− s)2 + α(t− s)]
1
2 K(|C(s)u(s)− u(s)|) ds

where Ci = C(i), i ≥ 0 and Cn,τ = L(|x|)Lg(δ + |C(0)x− x|) max(n, τ).

Proof: Note that

(2.36) u(t;x)− x =

∫ t

0

es−t(C(s)u(s;x)− x) ds

Thus, from (2.30)–(2.31)

|u(t;x)− x| ≤
∫ t

0

es−t(|C(s)u(s;x)− C(0)u(s, x)|+ |C(0)u(s;x)− C(0)x|+ |C(0)x− x|) ds

≤
∫ t

0

es−t(L(|u(s, x)|)|g(s)− g(0)|K(|C(0)x− x|) + |C(0)x− x|+ α |u(s;x)− x|) ds
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where K(s) = δ + s. Or, equivalently

et |u(t;x)− x| ≤
∫ t

0

es(L(M)|g(s)− g(0)|K(|C(0)x− x|) + |C(0)x− x|+α es|u(s;x)− x|) ds

since |u(t, x)| ≤M on [0, τ ] for some M = Mτ . Hence by Gronwall’s inequality

(2.37) |u(t;x)− x| ≤
∫ t

0

e(α−1)(t−s)(L(M)|g(s)− g(0)|K(|C(0)x− x|) + |C(0)x− x|) ds.

It follows from (2.36) that

u(t;x)− Πn
i=1Cix = e−t(x− Πn

i=1Cix) +

∫ t

0

es−t(C(s)u(s;x)− Πn
i=1Cix) ds.

Thus, by assumption

|u(t)− Πn
i=1Cix| ≤ e−t|x− Πn

i=1Cix|+
∫ t

0

es−t(|C(s)u(s)− Cnu(s)|+ |Cnu(s)− CnΠn−1
i=1 Cix|) ds

≤ e−tαnδn +

∫ t

0

es−t(L(M)|g(s)− g(n)| |C(s)x− x|+ α |u(s)− Πn−1
i=1 Cix| ds

where δn =
∑n

i=1 |Cix− x|. If we define

ϕn(t) = α−net|u(t, x)− Πn
i=1Cix|

then

ϕn(t) ≤ δn +

∫ t

0

(Mesα−n|g(s)− g(n)|+ ϕn−1(s)) ds

By induction in n we obtain from (2.36)–(2.37)
(2.38)

ϕn(t) ≤
n−1∑
k=0

δn−kt
k

k!
+

1

(n− 1)!

∫ t

0

(t− s)n−1αseαs ds (L(|x|)LgτK(|C(0)x− x|) + |C(0)x− x|)

+L(M)α−n
n∑
k=0

∫ t

0

esαk
(t− s)k

k!
|C(s)u(s)− u(s)| |g(s)− g(n− k)| ds

on t ∈ [0, τ ], where we used ∫ t

0

e(α−1)s ds ≤ αte−teαt.

Since ∫ t

0

(t− s)n−1sk+1 ds = tk+n+1 (k + 1)!(n− 1)!

(k + n+ 1)!
.
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we have ∫ t

0

(t− s)n−1seαs ds =
∞∑
k=0

αk

k!

∫ t

0

(t− s)n−1sk+1 ds

= (n− 1)!
∞∑
k=0

(k + 1)αktk+n+1

(k + n+ 1)!
= (n− 1)!

∞∑
k=n+1

(k − n)αk−1tk

k!
.

Note that from (2.31)

|C(k)x− x| ≤ L(|x|)LgkK(|C(0)x− x|) for 0 ≤ k ≤ n.

Let Cn,τ = L(|x|)LgK(|C(0)x− x|)max(n, τ). Then we have
(2.39)
n−1∑
k=0

δn−kt
k

k!
+

1

(n− 1)!

∫ t

0

(t− s)n−1αseαs ds (L(|x|)LgτK(|C(0)x− x|) + |C(0)x− x|)

≤

(
∞∑
k=0

|k − n|αktk

k!

)
(Cn,τ + |C(0)x− x|) ≤ Ceαt [(n− αt)2 + αt]

1
2 (Cn,τ + |C(0)x− x|),

where we used

∞∑
k=0

|k − n|αktk

k!
≤ αt

2

(
∞∑
k=0

|k − n|2αktk

k!

) 1
2

≤ eαt[(n− αt)2 + αt]
1
2

Moreover, we have

(2.40)

n∑
k=0

esαk
(t− s)k

k!
|g(s)− g(n− k)|

≤ Lge
s

n∑
k=0

αk(t− s)k

k!
|s− (n− k)|

≤ Lge
se

α(t−s)
2

(
∞∑
k=0

|s− (n− k)|2αk(t− s)k

k!

) 1
2

≤ Lge
seα(t−s) [(n− s)− α(t− s)2 + α(t− s)]

1
2

Hence (2.35) follows from (2.36)–(2.40). �

Theorem 2.16 Let {Tρ(t)}, t ∈ [0, T ] for ρ > 0 be a family of mapping from D into itself
satisfying

(2.41) Tρ(t) : Dβ → Dψ(ρ,β),
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for t ∈ [0, T ] and β ≥ 0,

(2.42) |Tρ(t)x− Tρ(t)y| ≤ (1 + ωαρ) |x− y|

for x, y ∈ Dα, and

(2.43) |Aρ(t)x− Aρ(s)x| ≤ L(|x|)(1 + |Aρ(s)x|) |f(t)− f(s)|

for x ∈ D and t, s ∈ [0, T ], where

Aρ(t)x =
1

ρ
(Tρ(t)x− x), x ∈ D

Assume that Dβ is a closed convex subset in X for each β ≥ 0 and f is Lipschitz continuous
on [0, T ] with Lipschitz constant Lf . Then, if we let uρ(t) = u(t;x) be the solution to

(2.44)
d

dt
u(t;x) = Aρ(t)u(t;x), u(0;x) = x ∈ Dα,

then there exist constant M and ω = ωα such that

|uρ(t)− Π
[ t
ρ

]

k=1Tρ(kρ)x| ≤≤ eωt [(1 + ωt)2ρ+ ωtρ+ t]
1
2 (eωt (L(|x|Lf t(1 + |Aρ(0)x|) + |Aρ(0)x|)

+LfL(M)

∫ t

0

eω(t−σ)(1 + |Aρ(σ)uρ(σ)|) dσ)
√
ρ.

for x ∈ dom (A(0)) and t ∈ [0, T ].

Proof: Let α = 1 + ωρ and we let C(t) = Tρ(ρ t), g(t) = f(ρt) and δ = ρ. Then, C(t)
satisfies (2.30)–(2.31). Next, note that |uρ(t)| ≤ M . It thus follows from Lemma 2.14 and
Theorem 2.15 that

|uρ(t)− Π
[ t
ρ

]

k=1Tρ(kρ)x| ≤ e2ωt [(1 + ωt)2ρ+ ωtρ+ t]
1
2
√
ρ ((|Aρ(0)x|+ L(|x|)Lf t(1 + |Aρ(0)x|))

+LfL(M)eωt
∫ t

0

eω(t−σ)[(1 + ω(t− σ))2ρ+ ω(t− σ)ρ+ (t− σ)]
1
2
√
ρ(1 + |Aρ(σ)uρ(σ)|) dσ.

where we set s = σ
ρ
, since Lg = Lfρ. �

Theorem 2.17 Assume that (A(t), dom (A(t)), D, ϕ) satisfies (A.1)−(A.2) and either (R)−
(C.1) or (2.3) − (C.2) and that Dβ is a closed convex subset in X for each β ≥ 0 and f is
Lipschitz continuous on [0, T ]. Let {Tρ(t)}, t ∈ [0, T ] for ρ > 0 be a family of mapping from
D into itself satisfying (2.41)–(2.43) and assume the consistency

for β ≥ 0, t ∈ [0, T ], and [x, y] ∈ A(t) with x ∈ Dβ

there exists xρ ∈ Dα(β) such that lim |xρ − x|+ |Aρ(t)xρ − y| = 0 as ρ→ 0.

Then, for 0 ≤ s ≤ t ≥ T and x ∈ D ∩ dom (A(s))

(2.45) |Π
[ t−s
ρ

]

k=1 Tρ(kρ+ s)x− u(t; s, x)| → 0 as ρ→ 0+

99



uniformly on [0, T ], where u(t; s, x) is the mild solution to (2.1), defined in Theorem 2.10.

Proof: Without loss of generality we can assume that s = 0. It follows from Lemma 2.4
and Lemma 2.12 that

(2.46) |Aρ(t)u(t)| ≤ e(α−1) t+L(M) |f |BV (0,T ) (|Aρ(0)x|+ L(M) |f |BV (0,T ))

on [0, T ]. Note that uρ(t) satisfies

uρ(iλ)− uρ((i− 1)λ)

λ
= Aρ(iλ)uρ(iλ) + ελi

where

ελi =
1

λ

∫ iλ

(i−1)λ

(Aρ(s)uρ(s)− Aρ(iλ)uρ(iλ)) ds.

Since Aρ(t) : [0, T ]×X → X and t→ uρ(t) ∈ X are Lipschitz continuous, it follows that∑Nλ
i=1 λ |ε

λ
i | → 0 as λ→ 0+.

Hence uρ(t) is the integral solution to (2.44). It thus follows from Theorem 3.2 that

lim |uρ(t)− u(t; s, x)|X → 0 as ρ→ 0

for x ∈ D ∩ dom (A(s)). Now, from Theorem 2.16 and (2.46)

|Π
[ t−s
ρ

]

k=1 Tρ(kρ+ s)x− uρ(t)| ≤M
√
ρ

for x ∈ Dβ ∩ dom (A(s)). Thus, (2.45) holds for all for x ∈ Dβ ∩ dom (A(s)). By the
continuity of the right-hand side of (2.45) with respect to the initial condition x ∈ X (2.45)
holds for all x ∈ Dβ ∩ dom (A(s)). �

The next corollary follows from Theorem 2.17 and is an extension of the Chernoff theorem
of the autonomous nonlinear semigroups to the evolution case.
Corollary 2.18 (Chernoff Theorem Let C be a closed convex subset of X. We assume
that the evolution operator (A(t), X) satisfies (A.1) with Lipschtz continuous f and

C ⊂ R(I − λA(t)) and (I − λA(t))−1 ∈ C

for 0 < λ ≤ δ and t ≥ 0. Let {Tρ(t)}, t ≥ 0 for ρ > 0 be a family of mapping from C into
itself satisfying

|Tρ(t)x− Tρ(t)y| ≤ (1 + ωρ) |x− y|

and
|Aρ(t)x− Aρ(s)x| ≤ L(|x|)(1 + |Aρ(s)x|) |f(t)− f(s)|

for x, y ∈ C. If A(t) ⊂ limρ→0+ Aρ(t), or equivalently

(I − λ Tρ(t)− I
ρ

)−1x→ (I − λA(t))−1x
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for all x ∈ C and 0 < λ ≤ δ, then for x ∈ C and 0 ≤ s ≤ t

|Π
[ t−s
ρ

]

k=1 Tρ(s+ kρ)x− U(t, s)x| → 0 as ρ→ 0+,

where U(t, s) is the nonlinear semigroup generated by A(t) and the convergence is uniform
on arbitrary bounded intervals.

Corollary 2.19 (Chernoff Theorem) Assume that (A(t), X) is m-dissipative and satisfy
(A.1) with Lipschitz continuous f , and that dom (A(t)) are independent of t ∈ [0, T ] and
convex. Let {Tρ(t)}, t ≥ 0 for ρ > 0 be a family of mapping from X into itself satisfying

|Tρ(t)x− Tρ(t)y| ≤ (1 + ωρ) |x− y|

for x, y ∈ X, and

|Aρ(t)x− Aρ(s)x| ≤ L(|x|)(1 + |Aρ(s)x|) |f(t)− f(s)|

If A(t) ⊂ limρ→0+ Aρ(t), or equivalently

(I − λ0
Tρ(t)− I

ρ
)−1x→ (I − λ0A(t))−1x

for all x ∈ X, t ≥ 0 and some 0 < λ0 < ω−1, then for x ∈ X and t ≥ s ≥ 0

|Π
[ t−s
ρ

]

k=1 Tρ(s+ kρ)x− U(t, s)x| → 0 as ρ→ 0+,

where U(t, s) is the nonlinear semigroup generated by A(t) and the convergence is uniform
on arbitrary bounded intervals.

Theorem 2.20 Let (A(t), X) be m-dissipative subsets of X × X and satisfy (A.1) with
Lipschitz continuous f and assume that dom (A(t)) are independent of t ∈ [0, T ] and convex.
Let Aλ(t) = λ−1(Jλ(t) − I) for λ > 0 and t ∈ [0, T ] and u(t; s, x) = U(t, s;Aλ)x be the
solution to

d

dt
u(t) = Aλ(t)u(t), u(s) = x ∈ dom (A(s))

Then, we have

U(t, s)x = lim
λ→0+

Π
[ t
λ

]

k=1Jλ(s+ k λ) = lim
λ→0+

U(t, s;Aλ)x.

3.6 Operator Splitting

Theorem 3.1 Let X and X∗ be uniformly convex and let An, n ≥ 1 and A be m-dissipative
subsets of X×X. If for all [x, y] ∈ A0 there exists [xn, yn] ∈ An such that |xn−x|+|yn−y| → 0
as n→∞, then

Sn(t)xn → S(t)x as n→∞

for every sequence xn ∈ dom (An) satisfying xn → x ∈ dom (A), where the convergence is
uniform on arbitrary bounded intevals.
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Proof: It follows from Theorem 1.4.2–1.4.3 that for x ∈ dom (A), S(t)x ∈ dom (A0),
d+

dt
S(t)x = A0S(t)x, and t → A0S(t)x ∈ X is continuous except a countable number of

values t ≥ 0. Hence if we define xλi = S(tλi )x, t
λ
i = i λ, then

xλi − xλi−1

λ
− A0xλi = ελi = λ−1

∫ tλi

tλi−1

(A0(t)x(t)− A(tλi )x(tλi )) dt

where ∑Nλ
i=1 λ |ε

λ
i | ≤

∫ T

0

|A0S(t)x− A0S(([
t

λ
] + 1)λ| dt.

Since |A0S(t)x − A0S(([ t
λ
] + 1)λ)x| → 0 a.e. t ∈ [0, T ] as λ → 0+, by Lebesgue dominated

convergence theorem
∑Nλ

i=1 λ |ελi | → 0 as λ→ 0. Hence it follows from the proof of Theorem
2.3.2 that |Sn(t)xn−S(t)x| → 0 as λ→ 0 for all xn ∈ dom (A) satisfying xn → x ∈ dom (A).
The theorem follows from the fact that S(t) and Sn(t) are of cotractions. �

Theorem 3.2 Let X and X∗ be uniformly convex and let A and B be two m-dissipative
subests of X × X. Assume that A + B is m-dissipative and let S(t) be the semigroup
generated by A+B. Then we have

S(t)x = lim
ρ→0+

(
(I − ρA)−1(I − ρB)−1

)[ t
ρ

]
x

for x ∈ dom (A) ∩ dom (B), uniformly in any t-bounded intervals. �

Proof: Define Tρ = JAρ J
B
ρ and let xρ = x− ρ b where b ∈ Bx. Then, since JBρ (x− ρ b) = x

Tρxρ − xρ
ρ

=
JAρ x− x

ρ
+ b.

Hence ρ−1(Tρxρ − xρ) → A0x + b as ρ → 0+. If we choose b ∈ Bx such that A0x + b =
(A + B)0x, then ρ−1(Tρxρ − xρ) → (A + B)0x as ρ → 0+. Thus, the theorem follows from
Theorem 3.1 and Corollay 2.3.6. �

Theorem 3.3 Let X and X∗ be uniformly convex and let A and B be two m-dissipative
subests of X × X. Assume that A + B is m-dissipative and let S(t) be the semigroup
generated by A+B. Then we have

S(t)x = lim
ρ→0+

(
(2(I − ρ

2
A)−1 − I)(2(I − ρ

2
B)−1 − I)

)[ t
ρ

]

x

for x ∈ dom (A) ∩ dom (B), uniformly in any t-bounded intervals.
Proof: Define T2ρ = (2JAρ − I)(2JBρ − I) and let xρ = x − ρ b where b ∈ Bx. Then, since
JBρ (x− ρ b) = x, it follows that 2JBρ (xρ)− xρ = x+ ρ b and

T2ρxρ − xρ
2ρ

=
2JAρ (x+ ρ b)− (x+ ρ b)− (x− ρ b)

2ρ
=
JAρ (x+ ρ b)− x

ρ
.

If we define the subset E of X×X by Ex = Ax+b, then E is m-dissipative and JAρ (x+ρ b) =
JEρ x. Thus, it follows from Theorem 1.6 that ρ−1(Tρxρ − xρ) → (A + B)0x as ρ → 0+ and
hence the theorem follows from Theorem 3.1 and Corollary 2.3.6. �
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Theorem 3.4 Let X and X∗ be uniformly convex and let A and B be two m-dissipative
subests of X × X. Assume that A, B are single-valued and A + B is m-dissipative. Let
SA(t), SB(t) and S(t) be the semigroups generated by A, B and A+B, respectively. Then
we have

S(t)x = lim
ρ→0+

(SA(ρ)SB(ρ))[ t
ρ

] x

for x ∈ dom (A) ∩ dom (B), uniformly in any t-bounded intervals.

Proof: Clearly Tρ = SA(ρ)SB(ρ) is nonexpansive on C = dom (A) ∩ dom (B). We show
that limρ→0+ h−1(Tρx− x) = Ax+B0x for every dom (A) ∩ dom (B). Note that

Tρx− x
ρ

=
SA(ρ)x− x

ρ
+
SA(ρ)SB(ρ)x− SA(ρ)x

ρ
.

Since A is single-valued, it follows from Theorem 1.4.3 that limρ→0+ h−1(SA(ρ)x− x) = Ax.
Thus, it suffices to show that

yρ =
SA(ρ)SB(ρ)x− SA(ρ)x

ρ
→ B0x as ρ→ 0+.

Since SA(ρ) is nonexpansive and B is dissipative, it follows from Theorem 1.4.3 that

(3.1) |yρ| ≤ |
SB(ρ)x− x

ρ
| ≤ |B0x| for all ρ > 0.

On the other hand,

(3.2) 〈SA(ρ)u− u
ρ

+
SB(ρ)x− x

ρ
− SA(ρ)x− x

ρ
− yρ, F (u− SB(ρ)x)〉 ≥ 0

since SA(ρ)− I is dissipative and F is singled-valued. We choose a subsequence {yρn} that
converges weakly to y in X. It thus follows from (3.2) that since A is single-valued

〈Au+B0x− Ax− y, F (u− x)〉 ≥ 0.

Since A is maximal dissipstive, this implies that y = B0x and thus yρn converges weakly
to B0x. Since X is uniformly convex, (3.2) implies that yρn converges strongly to B0x as
ρn → 0+. Now, since C = A+B is m-dissipative and C0x = Ax+B0x, the theorem follows
from Corollary 2.3.6. �
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