
In this course we discuss the well-posededness of the evolution equations in Banach spaces.
Such problems arise in PDEs dynamics and functional equations. We develop the linear and
nonlinear theory for the corresponding solution semigroups. The lectures include for example
the Hille-Yosiida theory, Lumer-Philiips theory for linear semigroup and Crandall-Liggett
theory for nonlinear conrtractive semigroup and Crandall-Pazy theory for nonlinear evolution
equations. Especially, (numerical) approximation theory for PDE solutions are discussed
based on Trotter-Kato theory and Takahashi-Oharu theory, Chernoff theory and the operator
splitting method. The theory and its applications are examined and demonstrated using
many motivated PDE examples including linear dynamics (e.g. heat, wave and hyperbolic
equations) and nonlinear dynamics (e.g. nonlinear diffusion, conservation law, Hamilton-
Jacobi and Navier-Stokes equations). A new class of PDE examples are formulated and the
detailed applications of the theory is carried out.

The lecture also covers the basic elliptic theory via Lax-Milgram, Minty-Browder theory
and convex optimization. Functional analytic methods are also introduced for the basic
PDEs theory.

The students are expected to have the basic knowledge in real and functional analysis
and PDEs.

Lecture notes will be provided. Reference book: ”Evolution equations and Approxima-
tion” K. Ito and F. Kappel, World Scientific.

1 Linear Cauchy problem and C0-semigroup theory

In this section we discuss the Cauchy problem of the form

d

dt
u(t) = Au(t) + f(t), u(0) = u0 ∈ X

in a Banach space X, where u0 ∈ X is the initial condition and f ∈ L1(0, T ;X). Such
problems arise in PDE dynamics and functional equations.

We construct the mild solution u(t) ∈ C(0, T ;X):

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s) ds (1.1)

where a family of bounded linear operator {S(t), t ≥ 0} is C0-semigroup on X.

Definition (C0 semigroup) (1) Let X be a Banach space. A family of bounded linear
operators {S(t), t ≥ 0} on X is called a strongly continuous (C0) semigroup if

S(t+ s) = S(t)S(s) for t, s ≥ 0 with S(0) = I

|S(t)φ− φ| → 0 as t→ 0+ for all φ ∈ X.

(2) A linear operator A in X defined by

Aφ = lim
t→0+

S(t)φ− φ
t

(1.2)
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with

dom(A) = {φ ∈ X : the strong limit of lim
t→0+

S(t)φ− φ
t

in X exists}.

is called the infinitesimal generator of the C0 semigroup S(t).

In this section we present the basic theory of the linear C0-semigroup on a Banach space
X. The theory allows to analyze a wide class of the physical and engineering dynamics using
the unified framework. We also present the concrete examples to demonstrate the theory.
There is a necessary and sufficient condition (Hile-Yosida Theorem) for a closed, densely
defined linear A in X to be the infinitesimal generator of the C0 semigroup S(t). Moreover,
we will show that the mild solution u(t) satisfies

〈u(t), ψ〉 = 〈u0, ψ〉+

∫
(〈x(s), A∗ψ〉+ 〈f(s), ψ〉 ds (1.3)

for all ψ ∈ dom (A∗).
Examples (1) For A ∈ L(X), define a sequence of linear operators in X

SN(t) =
∑
k

1

k!
(At)k.

Then

|SN(t)| ≤
∑ 1

k!
(|A|t)k ≤ e|A| t

and
d

dt
SN(t) = ASN−1(t)

Since
S(t) = eAt = lim

N→∞
SN(t), (1.4)

in the operator norm, we have

d

dt
S(t) = AS(t) = S(t)A.

(2) Consider the the hyperbolic equation

ut + ux = 0, u(0, x) = u0(x) in (0, 1). (1.5)

Define the semigroup S(t) of translations on X = L2(0, 1) by

[S(t)u0](x) = ũ0(x− t), where ũ0(x) = 0, x ≤ 0, ũ0 = u0 on [0, 1]. (1.6)

Then, {S(t), t ≥ 0} is a C0 semigroup on X. If we define u(t, x) = [S(t)u0](x) with
u0 ∈ H1(0, 1) with u0(0) = 0 satisfies (1.8) a.e.. The generator A is given by

Aφ = −φ′ with dom(A) = {φ ∈ H1(0, 1) with φ(0) = 0}.

In fact
S(t)u0 − u0

t
=
ũ0(x− t)− ũ0

t
= −u′0(x), a.e. x ∈ (0, 1).
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if u0 ∈ dom(A). Thus, u(t) = S(t)u0 satisfies the Cauchy problem d
dt
u(t) = Au(t) if

u0 ∈ dom(A).
On the other hand if we apply the operator exponential formula (1.4) for this A,

u(t, x) =
∞∑
k=0

(−1)k

k!
uk0(x)tk = u0(x− t)

for u0 ∈ C∞(0, 1), which coincides with (1.6). That is, the solution semigroup S(t) is the
extension of the operator exponential formula.
(3) Let Xt ∈ Rd is a Markov process, i.e.

Ex[g(Xt+h)|Ft] = E0,Xt [g(Xh)].

for all g ∈ X = L2(Rn). Define the linear operator S(t) by

(S(t)u0)(x) = E0,x[u0(Xt)], t ≥ 0, u0 ∈ X.

The semigroup property of S(t) follows from the Markov property, i.e.

S(t+s)u0 = E0,x[u0(Xt+s)] = E[E[u0(X0,x
t+s)|Ft] = E[E0,X0,x

t u0(Xs)]] = E[(S(t)u0)(Xs)] = S(s)(S(t)u0).

The strong continuity follows from that X0,x
t − x is a.s for all x ∈ Rn. If Xt = Bt is a

Brownian motion, then the semigroup S(t) is defined by

[S(t)u0](x) =
1

(
√

2πtσ)n

∫
Rn
e−
|x−y|2

2σ2 t u0(y) dy, (1.7)

and u(t) = S(t)u0 satisfies the heat equation.

ut =
σ2

2
∆u, u(0, x) = u0(x) in L2(Rn). (1.8)

1.1 Finite difference in time

Let A be closed, densely defined linear operator dom(A)→ X. We use the finite difference
method in time to construct the mild solution (1.1). For a stepsize λ > 0 consider a sequence
{un} in X generated by

un − un−1

λ
= Aun + fn−1, (1.9)

with

fn−1 =
1

λ

∫ nλ

(n−1)λ

f(t) dt.

Assume that for λ > 0 the resolvent operator

Jλ = (I − λA)−1
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is bounded. Then, we have the product formula:

un = Jnλu0 +
n−1∑
k=0

Jn−kλ fk λ. (1.10)

In order to un ∈ X is uniformly bounded in n for all u0 ∈ X (with f = 0), it is necessary
that

|Jnλ | ≤
M

(1− λω)n
for λω < 1, (1.11)

for some M ≥ 1 and ω ∈ R.

Hille’s Theorem Define a piecewise constant function in X by

uλ(t) = uk−1 on [tk−1, tk)

Then,
max
t∈[0,T ]

|uλ − u(t)|X → 0

as λ→ 0+ to the mild solution (1.1). That is,

S(t)x = lim
n→∞

(I − t

n
A)[ t

n
]x

exists for all x ∈ X and {S(t), t ≥ 0} is the C0 semigoup on X and its generator is A, where
[s] is the largest integer less than s ∈ R.

Proof: First, note that

|Jλ| ≤
M

1− λω
and for x ∈ dom(A)

Jλx− x = λJλAx,

and thus

|Jλx− x| = |λJλAx| ≤
λ

1− λω
|Ax| → 0

as λ→ 0+. Since dom(A) is dense in X it follows that

|Jλx− x| → 0 as λ→ 0+ for all x ∈ X.

Define the linear operators Tλ(t) and Sλ(t) by

Sλ(t) = Jkλ and Tλ(t) = Jk−1
λ +

t− tk
λ

(Jkλ − Jk−1
λ ), on (tk−1, tk].

Then,
d

dt
Tλ(t) = ASλ(t), a.e. in t ∈ [0, T ].

Thus,

Tλ(t)u0−Tµ(t)u0 =

∫ t

0

d

ds
(Tλ(s)Tµ(t−s)u0) ds =

∫ t

0

(Sλ(s)Tµ(t−s)−Tλ(s)Sµ(t−s))Au0 ds
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Since

Tλ(s)u− Sλ(s)u =
s− tk
λ

Tλ(tk−1)(Jλ − I)u on s ∈ (tk−1, tk].

By the bounded convergence theorem

|Tλ(t)u0 − Tµ(t)u|X → 0

as λ, µ → 0+ for all u ∈ dom(A2). Thus, the unique limit defines the linear operator S(t)
by

S(t)u0 = lim
λ→0+

Sλ(t)u0. (1.12)

for all u0 ∈ dom(A2). Since

|Sλ(t)| ≤
M

(1− λω)[t/n]
≤Meωt

and dom(A2) is dense, (1.12) holds for all u0 ∈ X. Moreover, we have

S(t+ s)u = lim
λ→0+

Jn+m
λ = JnλJ

m
λ u = S(t)S(s)u

and limt→0+ S(t)u = limt→0+ Jtu = u for all u ∈ X. Thus, S(t) is the C0 semigroup on X.
Moreover, {S(t), t ≥ 0} is in the class G(M,ω), i.e.,

|S(t)| ≤Meωt.

Note that

Tλ(t)u0 − u0 = A

∫ t

0

Sλu0 ds.

Since limλ→0+ Tλ(t)u0 = limλ→0+ Sλ(t)u0 = S(t)u0 and A is closed, we have

S(t)u0 − u0 = A

∫ t

0

S(s)u0 ds,

∫ t

0

S(s)u0 ds ∈ dom(A).

If B is a generator of {S(t), t ≥ 0}, then

Bx = lim
t→0+

S(t)x− x
t

= Ax

if x ∈ dom(A). Conversely, if u0 ∈ dom(B), then u0 ∈ dom(A) since A is closed and
t→ S(t)u is continuous at 0 for all u ∈ X and thus

1

t
A

∫ t

0

S(s)u0 ds = Au0 as t→ 0+.

Hence

Au0 =
S(t)u0 − u0

t
= Bu0

That is, A is the generator of {S(t), t ≥ 0}.
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Similarly, we have

n−1∑
k=0

Jn−kλ fk =

∫ t

0

Sλ(t− s)f(s) ds→
∫ t

0

S(t− s)f(s) ds as λ→ 0+

by the Lebesgue dominated convergence theorem. �

The following theorem states the basic properties of C0 semigroups:

Theorem (Semigroup) (1) There exists M ≥ 1, ω ∈ R such that S ∈ G(M,ω) class, i.e.,

|S(t)| ≤M eωt, t ≥ 0. (1.13)

(2) If x(t) = S(t)x0, x0 ∈ X, then x ∈ C(0, T ;X)
(3) If x0 ∈ dom (A), then x ∈ C1(0, T ;X) ∩ C(0, T ; dom(A)) and

d

dt
x(t) = Ax(t) = AS(t)x0.

(4) The infinitesimal generator A is closed and densely defined. For x ∈ X

S(t)x− x = A

∫ t

0

S(s)x ds. (1.14)

(5) λ > ω the resolvent is given by

(λ I − A)−1 =

∫ ∞
0

e−λsS(s) ds (1.15)

with estimate

|(λ I − A)−n| ≤ M

(λ− ω)n
. (1.16)

Proof: (1) By the uniform boundedness principle there exists M ≥ 1 such that |S(t)| ≤ M
on [0, t0] For arbitrary t = k t0 + τ , k ∈ N and τ ∈ [0, t0) it follows from the semigroup
property we get

|S(t)| ≤ |S(τ)||S(t0|k ≤Mek log |S(t0)| ≤Meω t

with ω = 1
t0

log |S(t0)|.
(2) It follows from the semigroup property that for h > 0

x(t+ h)− x(t) = (S(h)− I)S(t)x0

and for t− h ≥ 0
x(t− h)− x(t) = S(t− h)(I − S(h))x0

Thus, x ∈ C(0, T ;X) follows from the strong continuity of S(t) at t = 0.
(3)–(4) Moreover,

x(t+ h)− x(t)

h
=
S(h)− I

h
S(t)x0 = S(t)

S(h)x0 − x0

h
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and thus S(t)x0 ∈ dom(A) and

lim
h→0+

x(t+ h)− x(t)

h
= AS(t)x0 = Ax(t).

Similarly,

lim
h→0+

x(t− h)− x(t)

−h
= lim

h→0+
S(t− h)

S(h)φ− φ
h

= S(t)Ax0.

Hence, for x0 ∈ dom(A)

S(t)x0 − x0 =

∫ t

0

S(s)Ax0 ds =

∫ t

0

AS(s)x0 ds = A

∫ t

0

S(s)x0 ds (1.17)

If xn ∈ don(A)→ x and Axn → y in X, we have

S(t)x− x =

∫ t

0

S(s)y ds

Since

lim
t→0+

1

t

∫ t

0

S(s)y ds = y

x ∈ dom(A) and y = Ax and hence A is closed. Since A is closed it follows from (1.17) that
for x ∈ X ∫ t

0

S(s)x ds ∈ dom(A)

and (1.14) holds. For x ∈ X let

xh =
1

h

∫ h

0

S(s)x ds ∈ dom(A)

Since xh → x as h→ 0+, dom(A) is dense in X.
(5) For λ > ω define Rt ∈ L(X) by

Rt =

∫ t

0

e−λsS(s) ds.

Since A− λ I is the infinitesimal generator of the semigroup eλtS(t), from (1.14)

(λ I − A)Rtx = x− e−λtS(t)x.

Since A is closed and |e−λtS(t)| → 0 as t→∞, we have R = limt→∞Rt satisfies

(λ I − A)Rφ = φ.

Conversely, for φ ∈ dom(A)

R(A− λ I)φ =

∫ ∞
0

e−λsS(s)(A− λ I)φ = lim
t→∞

e−λtS(t)φ− φ = −φ
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Hence

R =

∫ ∞
0

e−λsS(s) ds = (λ I − A)−1

Since for φ ∈ X

|Rx| ≤
∫ ∞

0

|e−λsS(s)x| ≤M

∫ ∞
0

e(ω−λ)s|x| ds =
M

λ− ω
|x|,

we have

|(λ I − A)−1| ≤ M

λ− ω
, λ > ω.

Note that

(λ I − A)−2 =

∫ ∞
0

e−λtS(t) ds

∫ ∞
0

eλ sS(s) ds =

∫ ∞
0

∫ ∞
0

e−λ(t+s)S(t+ s) ds dt

=

∫ ∞
0

∫ ∞
t

e−λσS(σ) dσ dt =

∫ ∞
0

σe−λσS(σ) dσ.

By induction, we obtain

(λ I − A)−n =
1

(n− 1)!

∫ ∞
0

tn−1e−λtS(t) dt. (1.18)

Thus,

|(λ I − A)−n| ≤ 1

(n− 1)!

∫ ∞
0

tn−1e−(λ−ω)t dt =
M

(λ− ω)n
.�

We then we have the necessary and sufficient condition:

Hile-Yosida Theorem A closed, densely defined linear operator A on a Banach space X
is the infinitesimal generator of a C0 semigroup of class G(M,ω) if and only if

|(λ I − A)−n| ≤ M

(λ− ω)n
for all λ > ω (1.19)

Proof: The sufficient part follows from the previous Theorem. In addition, we describe the
Yosida construction. Define the Yosida approximation Aλ ∈ L(X) of A by

Aλ =
Jλ − I
λ

= AJλ. (1.20)

Define the Yosida approximation:

Sλ(t) = eAλt = e−
t
λ eJλ

t
λ .

Since

|Jkλ | ≤
M

(1− λω)k

we have

|Sλ(t)| ≤ e−
t
λ

∞∑
k=0

1

k!
|Jkλ |(

t

λ
)k ≤Me

ω
1−λω t.
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Since
d

ds
Sλ(s)Sλ̂(t− s) = Sλ(s)(Aλ − Aλ̂)Sλ̂(t− s),

we have

Sλ(t)x− Sλ̂(t)x =

∫ t

0

Sλ(s)Sλ̂(t− s)(Aλ − Aλ̂)x ds

Thus, for x ∈ dom(A)

|Sλ(t)x− Sλ̂(t)x| ≤M2teωt |(Aλ − Aλ̂)x| → 0

as λ, λ̂→ 0+. Since dom(A) is dense in X this implies that

S(t)x = lim
λ→0+

Sλ(t)x exist for all x ∈ X,

defines a C0 semigroup of G(M,ω) class. The necessary part follows from (1.18) �

Theorem (Mild solution) (1) If for f ∈ L1(0, T ;X) define

x(t) = x(0) +

∫ t

0

S(t− s)f(s) ds,

then x(t) ∈ C(0, T ;X) and it satisfies

x(t) = A

∫ t

0

x(s) ds+

∫ t

0

f(s) ds. (1.21)

(2) If Af ∈ L1(0, T ;X) then x ∈ C(0, T ; dom(A)) and

x(t) = x(0) +

∫ t

0

(Ax(s) + f(s)) ds.

(3) If f ∈ W 1,1(0, T ;X), i.e. f(t) = f(0) +
∫ t

0
f ′(s) ds, d

dt
f = f ′ ∈ L1(0, T ;X), then

Ax ∈ C(0, T ;X) and

A

∫ t

0

S(t− s)f(s) ds = S(t)f(0)− f(t) +

∫ t

0

S(t− s)f ′(s) ds. (1.22)

Proof: Since ∫ t

0

∫ τ

0

S(t− s)f(s) dsdτ =

∫ t

0

(

∫ t

s

S(τ − s)d τ)f(s) ds,

and

A

∫ t

0

S(s) ds = S(t)− I

we have x(t) ∈ dom(A) and

A

∫ t

0

x(s) ds = S(t)x− x+

∫ t

0

S(t− s)f(s) ds−
∫ t

0

f(s) ds.
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and we have (1.21).
(2) Since for h > 0

x(t+ h)− x(t)

h
=

∫ t

0

S(t− s)S(h)− I
h

f(s) ds+
1

h

∫ t+h

t

S(t+ h− s)f(s) ds

if Af ∈ L1(0, T ;X)

lim
h→0+

x(t+ h)− x(t)

h
=

∫ t

0

S(t− s)Af(s) ds+ f(t)

a.e. t ∈ (0, T ). Similarly,

x(t− h)− x(t)

−h
=

∫ t−h

0

S(t− h− s)S(h)− I
h

f(s) ds+
1

h

∫ t

t−h
S(t− s)f(s) ds

→
∫ t

0

S(t− s)Af(s) ds+ f(t)

a.e. t ∈ (0, T ).
(3) Since

S(h)− I
h

x(t) =
1

h
(

∫ h

0

S(t+ h− s)f(s) ds−
∫ t+h

t

S(t+ h− s)f(s) ds

+

∫ t

0

S(t− s)f(s+ h)− f(s)

h
ds,

letting h→ 0+, we obtain(1.22). �

It follows from Theorems the mild solution

x(t) = S(t)x(0) +

∫ t

0

S(t− s)f(s) ds

satisfies

x(t) = x(0) + A

∫ t

0

x(s) +

∫ t

0

f(s) ds.

Note that the mild solution x ∈ C(0, T ;X) depends continuously on x(0) ∈ X and f ∈
L1(0, T ;X) with estimate

|x(t)| ≤M(eωt|x(0)|+
∫ t

0

eω(t−s)|f(s)| ds).

Thus, the mild solution is the limit of a sequence {xn} of strong solutions with xn(0) ∈
dom(A) and fn ∈ W 1,1(0, T ;X), i.e., since dom(A) is dense in X and W 1,1(0, T ;X) is dense
in L1(0, T ;X),

|xn(t)− x(t)|X → 0 uniformly on [0, T ]
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for
|xn(0)− x(0)|X → 0 and |fn − f |L1(0,T ;X) → 0 as n→∞.

Moreover, the mild solution x ∈ C(0, T : X) is a weak solution to the Cauchy problem

d

dt
x(t) = Ax(t) + f(t) (1.23)

in the sense of (1.3), i.e., for all ψ ∈ dom(A∗) 〈x(t), ψ〉X×X∗ is absolutely continues and

d

dt
〈x(t), ψ〉 = 〈x(t), ψ〉+ 〈f(t), ψ〉 a.e. in (0, T ).

If x(0) ∈ dom(A) and Af ∈ L1(0, T ;X), then Ax ∈ C(0, T ;X), x ∈ W 1,1(0, T ;X) and

d

dt
x(t) = Ax(t) + f(t), a.e. in (0, T )

If x(0) ∈ dom(A) and f ∈ W 1,1(0, T ;X), then x ∈ C(0, T ; dom(A)) ∩ C1(0, T ;X) and

d

dt
x(t) = Ax(t) + f(t), everywhere in [0, T ].

1.2 Weak-solution and Ball’s result

Let A be a densely defined, closed linear operator on a Banach space X. Consider the
Cauchy equation in X:

d

dt
u = Au+ f(t), (1.24)

where u(0) = x ∈ X and f ∈ L1(0, τ ;X) is a weak solution to of (1.24) if for every
ψ ∈dom(A∗) the function t→ 〈u(t), ψ〉 is absolutely continuous on [0, τ ] and

d

dt
〈u(t), ψ〉 = 〈u(t), A∗ψ〉+ 〈f(t), ψ〉, a.e. in [0, τ ]. (1.25)

It has been shown that the mild solution to (1.24) is a weak solution.
Lemma B.1 Let A be a densely defined, closed linear operator on a Banach space X. If
x, y ∈ X satisfy 〈y, ψ〉 = 〈x,A∗ψ〉 for all ψ ∈dom(A∗), then x ∈ dom(A) and y = Ax.

Proof: Let G(A) ⊂ X×X denotes the graph of A. Since A is closed G(A) is closed. Suppose
y 6= Ax. By Hahn-Banach theorem there exist z, z∗ ∈ X∗ such that 〈Ax, z〉+〈x, z∗〉 = 0 and
〈y, z〉 + 〈x, z∗〉 6= 0. Thus z ∈dom(A∗) and z∗ = A∗z. By the condition 〈y, z〉 + 〈x, z∗〉 = 0,
which is a contradiction. �

Then we have the following theorem.

Theorem (Ball) There exists for each x ∈ X and f ∈ L1(0, τ ;X) a unique weak solution of
(1.24)satisfying u(0) = x if and only if A is the generator of a strongly continuous semigroup
{T (t)} of bounded linear operator on X, and in this case u(t) is given by

u(t) = T (t)x+

∫ t

0

T (t− s)f(s) ds. (1.26)
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Proof: Let A generate the strongly continuous semigroup {T (t)} on X. Then, for some M ,
|T (t)| ≤M on t ∈ [0, τ ]. Suppose x ∈dom(A) and f ∈ W 1,1(0, τ ;X). Then we have

d

dt
〈u(t), ψ〉 = 〈Au(t) + f(t), ψ〉 = 〈u(t), A∗ψ〉+ 〈f(t), ψ〉.

For (x, f) ∈ X ×L1(0, τ ;X) there exists a sequence (xn, fn) in dom(A)×W 1,1(0, τ ;X) such
that |xn − x|X + |fn − f |L1(0,τ ;X) → 0 as n→∞ If we define

un(t) = T (t)xn +

∫ t

0

T (t− s)fn(s) ds,

then we have

〈un(t), ψ〉 = 〈x, ψ〉+

∫ t

0

(〈un(s), A∗ψ〉+ 〈fn(s), ψ〉) ds

and

|un(t)− u(t)|X ≤M (|xn − x|X +

∫ t

0

|fn(s)− f(s)|X ds).

Passing limit n→]∞, we see that u(t) is a weak solution of (1.24).
Next we prove that u(t) is the only weak solution to (1.24) satisfying u(0) = x. Let ũ(t)

be another such weak solution and set v = u− ũ. Then we have

〈v(t), ψ〉 = 〈
∫ t

0

v(s) dt, A∗ψ〉

for all ψ ∈dom(A∗) and t ∈ [0, τ ]. By Lemma B.1 this implies z(t) =
∫ t

0
v(s) ds ∈dom(A)

and d
dt
z(t) = Az(t) with z(0) = 0. Thus z = 0 and hence u(t) = ũ(t) on [0, τ ].

Suppose that A such that (1.24) has a unique weak solution u(t) satisfying u(0) = x.
For t ∈ [0, τ ] we define the linear operator T (t) on X by T (t)x = u(t) − u0(t), where u0 is
the weak solution of (1.24) satisfying u(0) = 0. If for t = nT + s, where n is a nonnegative
integer and s ∈ [0, τ) we define T (t)x = T (s)T (τ)nx, then T (t) is a semigroup. The map
θ : x → C(0, τ ;X) defined by θ(x) = T (·)x has a closed graph by the uniform bounded
principle and thus T (t) is a strongly continuous semigroup. Let B be the generator of
{T (t)} and x ∈dom(B). For ψ ∈dom(A∗)

d

dt
〈T (t)x, ψ〉|t=0 = 〈Bx, ψ〉 = 〈x,A∗ψ〉.

It follows from Lemma that x ∈dom(A) and Ax = Bx. Thus dom(B) ⊂dom(A). The
proof of Theorem is completed by showing dom(A) ⊂dom(B). Let x ∈dom(A). Since for
z(t) = T (t)x

〈z(t), ψ〉 = 〈
∫ t

0

z(s) dt, A∗ψ〉

it follows from Lemma that
∫ t

0
T (s)x ds and

∫ t
0
T (s)Axds belong to dom(A) and

T (t)x = x+ A

∫ t

0

T (s)x ds

T (t)Ax = Ax+ A

∫ t

0

T (s)Axds

(1.27)
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Consider the function

w(t) =

∫ t

0

T (s)Axds− A
∫ t

0

T (s)x ds.

It then follows from (1.27) that z ∈ C(0, τ ; X). Clearly w(0) = 0 and it also follows from
(1.27) that

d

dt
〈w(t), ψ〉 = 〈w(t), A∗ψ〉. (1.28)

for ψ ∈dom(A∗). But it follows from our assumptions that (1.28) has the unique solution
w = 0. Hence from (1.27)

T (t)x− x = A

∫ t

0

T (s)x ds

and thus

lim
t→0+

T (t)x− x
t

= Ax

which implies x ∈dom(B). �

1.3 Lumer-Phillips Theorem

The condition (1.19) is very difficult to check for a given A in general. For the case M = 1
we have a very complete characterization.

Lumer-Phillips Theorem The followings are equivalent:
(a) A is the infinitesimal generator of a C0 semigroup of G(1, ω) class.
(b) A− ω I is a densely defined linear m-dissipative operator,i.e.

|(λ I − A)x| ≥ (λ− ω)|x| for all x ∈ don(A), λ > ω (1.29)

and for some λ0 > ω
R(λ0 I − A) = X. (1.30)

Proof: It follows from the m-dissipativity

|(λ0 I − A)−1| ≤ 1

λ0 − ω

Suppose xn ∈ dom(A)→ x and Axn → y in X, the

x = lim
n→∞

xn = (λ0 I − A)−1 lim
n→∞

(λ0 xn − Axn) = (λ0 I − A)−1(λ0 x− y).

Thus, x ∈ dom(A) and y = Ay and hence A is closed. Since for λ > ω

λ I − A = (I + (λ− λ0)(λ0 I − A)−1)(λ0 I − A),

if |λ−λ0|
λ0−ω < 1, then (λ I−A)−1 ∈ L(X). Thus by the continuation method we have (λ I−A)−1

exists and

|(λ I − A)−1| ≤ 1

λ− ω
, λ > ω.
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It follows from the Hile-Yosida theorem that (b) → (a).
(b) → (a) Since for x∗ ∈ F (x), the dual element of x, i.e. x∗ ∈ X∗ satisfying 〈x, x∗〉X×X∗ =
|x|2 and |x∗| = |x|

〈e−ωtS(t)x, x∗〉 ≤ |x||x∗| = 〈x, x∗〉
we have for all x ∈ dom(A)

0 ≥ lim
t→0+
〈e
−ωtS(t)x− x

t
, x∗〉 = 〈(A− ω I)x, x∗〉 for all x∗ ∈ F (x).

which implies A− ω I is dissipative. �

Theorem (Dissipative I) (1) A is a ω-dissipative

|λx− Ax| ≥ (λ− ω)|x| for all x ∈ dom (A).

if and only if (2) for all x ∈ dom(A) there exists an x∗ ∈ F (x) such that

〈Ax, x∗〉 ≤ ω |x|2. (1.31)

(2) → (1). Let x ∈ dom(A) and choose an x∗ ∈ F (0) such that 〈A, x∗〉 ≤ 0. Then, for any
λ > 0,

λ |x|2 = λ 〈x, x∗〉 = 〈λx− Ax+ Ax, x∗〉 ≤ 〈λx− Ax, x∗〉+ ω |x|2 ≤ |λx− Ax||x|+ ω |x|2,

which implies (1).
(1) → (2). Without loss of the generality one can assume ω = 0. From (1) we obtain the
estimate

1

λ
(|x| − |x− λAx|) ≤ 0

and

〈Ax, x〉− = − lim
λ→0+

1

λ
(|x| − |x− λAx|) ≤ 0

which implies there exists x∗ ∈ F (x) such that (1.31) holds since 〈Ax, x〉− = 〈Ax, x∗〉 for
some x∗ ∈ F (x). �

Thus, Lumer-Phillips theorem says that if m-diisipative, then (1.31) hold for all x∗ ∈
F (x).

Theorem (Dissipative II) Let A be a closed densely defined operator on X. If A and A∗

are dissipative, then A is m-dissipative and thus the infinitesimal generator of a C0-semigroup
of contractions.

Proof: Let y ∈ R(I − A) be given. Then there exists a sequence xn ∈ dom(A) such that
y=xn − Axn → y as n→∞. By the dissipativity of A we obtain

|xn − xm| ≤ |xn − xm − A(xn − xm)| ≤ |y−ym|

Hence xn is a Cauchy sequence in X. We set x = limn→∞xn. Since A is closed, we see that
x ∈ dom (A) and x − Ax = y, i.e., y ∈ R(I − A). Thus R(I − A) is closed. Assume that
R(I − A) 6= X. Then there exists an x∗ ∈ X∗ such that

〈(I − A)x, x∗) = 0 for all x ∈ dom (A).
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By definition of the dual operator this implies x∗ ∈ dom (A∗) and (I − A)∗x∗ = 0. The
dissipativity of A* implies |x∗| < |x∗ − A∗x∗| = 0, which is a contradiction. �

Example (revisited example 1)

Aφ = −φ′ in X = L2(0, 1)

and for φ ∈ H1(0, 1)

(Aφ, φ)X = −
∫ 1

0

φ′(x)φ dx =
1

2
(|φ(0)|2 − |φ(1)|2)

Thus, A is dissipative if and only if φ(0) = 0, the in flow condition. Define the domain of A
by

dom(A) = {φ ∈ H1(0, 1) : φ(0) = 0}
The resolvent equation is equivalent to

λu+
d

dx
u = f

and

u(x) =

∫ x

0

e−λ (x−s)f(s) ds,

and R(λ I − A) = X. By the Lumer-Philips theorem A generates the C0 semigroup on
X = L2(0, 1).

Example (Conduction equation) Consider the heat conduction equation:

d

dt
u = Au =

∑
i,j

aij(x)
∂2u

∂xi∂xj
+ b(x) · ∇u+ c(x)u, in Ω.

Let X = C(Ω) and dom(A) ⊂ C2(Ω). Assume that a ∈ Rn×n ∈ C(Ω) b ∈ Rn,1 and c ∈ R
are continuous on Ω̄ and a is symmetric and

mI ≤ a(x) ≤M I for 0 < m ≤M <∞.

Then, if x0 is an interior point of Ω at which the maximum of φ ∈ C2(Ω) is attained. Then,

∇φ(x0) = 0,
∑
ij

aij(x0)
∂2u

∂xi∂xj
(x0) ≤ 0.

and thus
(λφ− Aφ)(x0) ≤ ω φ(x0)

where
ω ≤ max

x∈Ω
c(x).

Similarly, if x0 is an interior point of Ω at which the minimum of φ ∈ C2(Ω) is attained, then

(λφ− Aφ)(x0) ≥ 0
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If x0 ∈ ∂Ω attains the maximum, then

∂

∂ν
φ(x0) ≤ 0.

Consider the domain with the Robin boundary condition:

dom(A) = {u ∈ α(x)u(x) + β(x)
∂

∂ν
u = 0 at ∂Ω}

with α, β ≥ 0 and infx∈∂Ω(α(x) + β(x)) > 0. Then,

|λφ− Aφ|X ≥ (λ− ω)|φ|X . (1.32)

for all φ ∈ C2(Ω). It follows from the he Lax Milgram theory that

(λ0 I − A)−1 ∈ L(L2(Ω), H2(Ω)),

assuming that coefficients (a, b, c) are sufficiently smooth. Let

dom(A) = {(λ0 I − A)−1C(Ω)}.

Since C2(Ω) is dense in dom(A), (1.32) holds for all φ ∈ dom(A), which shows A is dissipative.

Example (Advection equation and Mass transport equation) Consider the advection equa-
tion

ut +∇ · (~b(x)u) = ν ∆u.

Let X = L1(Ω). Assume
~b ∈ L∞(Ω)

Let ρ ∈ C1(R) be a monotonically increasing function satisfying ρ(0) = 0 and ρ(x) =
sign(x), |x| ≥ 1 and ρε(s) = ρ( s

ε
) for ε > 0. For u ∈ C1(Ω)

(Au, u) =

∫
Γ

(ν
∂

∂n
u− n ·~b u, ρε(u)) ds+ (~b u− ν∇u, 1

ε
ρ′ε(u)∇u) + (c u, ρε(u)).

where

(~b u,
1

ε
ρ′ε(u)∇u) ≤ ν (∇u, 1

ε
ρ′ε(u)∇u) +

ε

4ν
meas({|u| ≤ ε}).

Assume the inflow condition ν ∂
∂n
u − n · ~b u = 0 on {s ∈ ∂Ω : n · b < 0} and otherwise

ν ∂
∂n
u = 0. Note that for u ∈ L1(Rd)

(u, ρε(u))→ |u|1 and (ψ, ρε(u))→ (ψ, sign0(u)) for ψ ∈ L1(Ω)

as ε→ 0. If c(x) ≤ ω, then it follows that

(λ− ω) |u| ≤ |λu− λAu|. (1.33)

Since H1(Ω) is dense in L1(Ω), (1.33) holds for u ∈ dom(A). For ν = 0 case letting ν → 0+

(1.33) holds for dom(A) = {u ∈ L1(Ω) : (ρ u)x ∈ L1(Ω)}.
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Example (X = Lp(Ω)) Let Au = ν ∆u+ b ·∇u with homogeneous boundary condition u = 0
on X = Lp(Ω). Since

〈∆u, u∗〉 =

∫
Ω

(∆u, |u|p−2u) = −(p− 1)

∫
Ω

(∇u, |u|p−2∇u)

and

(b · ∇u, |u|p−2u)L2 ≤ (p− 1)ν

2
|(∇u, |u|p−2∇u)L2 +

|b|2∞
2ν(p− 1)

(|u|p, 1)L2

we have
〈Au, u∗〉 ≤ ω|u|2

for some ω > 0.

Example (Fractional PDEs I)
In this section we consider the nonlocal diffusion equation of the form

ut = Au =

∫
Rd
J(z)(u(x+ z)− u(x)) dz.

Or, equivalently

Au =

∫
(Rd)+

J(z)(u(x+ z)− 2u(x) + u(x− z)) dz

for the symmetric kernel J in Rd. It will be shown that

(Au, φ)L2 = −
∫
Rd

∫
(Rd)+

J(z)(u(x+ z)− u(x))(φ(x+ z)− φ(x)) dz dx

and thus A has a maximum extension.
Also, the nonlocal Fourier law is given by

Au = ∇ · (
∫
Rd
J(z)∇u(x+ z) dz).

Thus,

(Au, φ)L2 =

∫
Rd×Rd

J(z)∇u(x+ z) · ∇φ(x) dz dx

Under the kernel J is completely monotone, one can prove that A has a maximal monotone
extension.

1.4 Jump diffusion Model for American option

In this section we discuss the American option for the jump diffusion model

ut + (x− σ2

2
)ux +

σ2x2

2
uxx +Bu+ λ = 0, u(T, x) = ψ,

(λ, u− ψ) = 0, λ ≤ 0, u ≥ ψ
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where the generator B for the jump process is given by

Bu =

∫ ∞
−∞

k(s)(u(x+ s)− u(x) + (es − 1)ux) ds.

The CMGY model for the jump kernel k is given by

k(s) =


Ce−M |s||s|1+Y = k+(s) s ≥ 0

Ce−G|s||s|1+Y = k−(s) s ≤ 0

Since∫ ∞
−∞

k(s)(u(x+ s)− u(x)) ds =

∫ ∞
0

k+(s)(u(x+ s)− u(x)) ds+

∫ ∞
0

k−(s)(u(x− s)− u(x)) ds

=

∫ ∞
0

k+(s) + k−(s)

2
(u(x+ s)− 2u(x) + u(x− s)) ds+

∫ ∞
0

k+(s)− k−(s)

2
(u(x+ s)− u(x− s)) ds.

Thus, ∫ ∞
−∞

(

∫ ∞
−∞

k(s)(u(x+ s)− u(x) ds)φ(x) dx

=

∫ ∞
−∞

∫ ∞
0

ks(s)(u(x+ s)− u(x))(φ(x+ s)− φ(x)) ds dx

+

∫ ∞
−∞

(

∫ ∞
0

ku(s)(u(x+ s)− u(s)))φ(x) dx

where

ks(s) =
k+(s) + k−(s)

2
, ku(s) =

k+(s)− k−(s)

2

and hence

(Bu, φ) = −
∫ ∞
−∞

∫ ∞
−∞

ks(s)(u(x+ s)− u(x))(φ(x+ s)− φ(s)) ds dx

+

∫ ∞
−∞

(

∫ ∞
−∞

ku(s)(u(x+ s)− u(s)))φ(x) dx+ ω

∫ ∞
−∞

uxφ dx.

where

ω =

∫ ∞
−∞

(es − 1)k(s) ds.

If we equip V = H1(R) by

|u|2V =

∫ ∞
−∞

∫ ∞
−∞

ks(s)|u(x+ s)− u(x)|2 ds dx+
σ2

2

∫ ∞
−∞
|ux|2 dx,

then A+B ∈ L(V, V ∗) and A+B generates the analytic semigroup on X = L2(R).
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1.5 Numerical approximation of nonlocal operator

In this section we describe our higher order integration method for the convolution;∫ ∞
0

k+(s) + k−(s)

2
(u(x+s)−2u(x)+u(x−s)) ds+

∫ ∞
0

k+(s)− k−(s)

2
(u(x+s)−u(x−s)) ds.

For the symmetric part,∫ ∞
−∞

s2ks(s)
u(x+ s)− 2u(x) + u(x− s)

s2
ds,

where we have

u(x+ s)− 2u(x) + u(x− s)
s2

∼ uxx(x) +
s2

12
uxxxx(x) +O(s4)

We apply the fourth order approximation of uxx by

uxx(x) ∼ u(x+ h)− 2u(x) + u(x− h)

h2
− 1

12

u(x+ 2h)− 4u(x) + 6u(x)− 4u(x− h) + u(x− 2h)

h2

and we apply the second order approximation of uxxxx(x) by

uxxxx(x) ∼ u(x+ 2h)− 4u(x) + 6u(x)− 4u(x− h) + u(x− 2h)

h4
.

Thus, one can approximate∫ h
2

−h
2

s2ks(s)
u(x+ s)− 2u(x) + u(x− s)

s2
ds

by

ρ0 (
uk+1 − 2uk + uk−1

h2
− 1

12

uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2

h2
)

+
ρ1

12

uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2

h2
,

where

ρ0 =

∫ h
2

−h
2

s2ks(s) ds and ρ1 =
1

h2

∫ h
2

−h
2

s4ks(s) ds.

The remaining part of the convolution∫ (k+ 1
2

)h

(k− 1
2

)h

u(xk+j + s)ks(s) ds

can be approximated by three point quadrature rule based on

u(xk+j + s) ∼ u(xk+j) + u′(xk+j)s+
s2

2
u′′(xk+j)
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with

u′(xk+j) ∼
uk+j+1 − uk+j−1

2h

u′′(xk+j) ∼
uk+j+1 − 2uk+j + uk+j−1

h2
.

That is, ∫ (k+ 1
2

)h

(k− 1
2

)h

u(xk+j + s)ks(s) ds

∼ ρk0uk+j + ρk1
uk+j−1 − uk+j+1

2
+ ρk2

uj+k+1 − 2uk+j + uj+k−1

2
where

ρk0 =
∫ (k+ 1

2
)h

(k− 1
2

)h
ks(s) ds

ρk1 = 1
h

∫ (k+ 1
2

)h

(k− 1
2

)h
(s− xk)ks(s) ds

ρk2 = 1
h2

∫ (k+ 1
2

)h

(k− 1
2

)h
(s− xk)2ks(s) ds.

For the skew-symmetric integral∫ h
2

−h
2

ku(s)(u(x+ s)− u(x− s)) ds ∼ ρ2 ux(x) +
ρ3

6
h2 uxxx(x)

where

ρ2 =

∫ h
2

−h
2

2sku(s) ds, ρ3 =
1

h2

∫ h
2

−h
2

2s3ku(s) ds.

We may use the forth order difference approximation

ux(x) ∼ u(x+ h)− u(x− h)

2h
− u(x+ 2h)− 2u(x+ h) + 2u(x− h)− u(x− 2h)

6h

and the second order difference approximation

uxxx(x) ∼ u(x+ 2h)− 2u(x+ h) + 2u(x− h)− u(x− 2h)

h3

and obtain∫ h
2

−h
2

ku(s)(u(x+ s)− u(x− s)) ds

∼ ρ2 (
uk+1 − uk−1

2h
− uk+2 − 2uk+1 + 2uk−1 − uk−1

6h
) +

ρ3

6

uk+2 − 2uk+1 + 2uk−1 − uk−1

h
.

Example (Fractional PDEs II) Consider the fractional equation of the form∫ 0

−t
g(θ)u′(t+ θ) dθ = Au, u(0) = u0,
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where the kernel g satisfies

g > 0, g ∈ L1(−∞, 0) and non-decreasing.

For example, the case of the Caputo (fractional) derivative has

g(θ) =
1

Γ(1− α)
|θ|−α.

Define z(t, θ) = u(t+ θ), θ ∈ (−∞, 0]. Then, d
dt
z = ∂

∂θ
z. Thus, we define the linear operator

A on Z = C((−∞, 0];X) by

Az = z′(θ) with dom(A) = {z′ ∈ X :

∫ 0

−∞
g(θ)z′(θ) dθ = Az(0)}

Theorem 1.1 Assume A is m-dissipative in a Banach space X. Then, A is dissipative and
R(λ I−A) = Z for λ > 0. Thus, A generates the C0-semigroup T (t) on Z = C((−∞, 0];X).

Proof: First we show that A is dissipative. For φ ∈ dom (A) suppose |φ(0)| > |φ(θ)| for all
θ < 0. Define

gε(θ) =
1

ε

∫ θ

θ−ε
g(θ) dθ.

For all x∗ ∈ F (φ(0))

〈
∫ 0

−∞
gε(θ)(φ

′)dθ, x∗〉

= −〈
∫ 0

−∞

g(θ)− g(θ − ε)
ε

〈φ(θ)− φ(0), x∗〉 dθ > 0

since
〈φ(θ)− φ(0), x∗〉 ≤ (|φ(θ)| − |φ(0)|)|φ(0)| < 0, θ < 0.

Thus,

lim
ε→0+
〈
∫ 0

−∞
gε(θ)(φ

′)dθ, x∗〉 = 〈
∫ 0

−∞
g(θ)φ′dθ, x∗〉 > 0. (1.34)

But, since there exists a x∗ ∈ F (φ(0)) such that

〈Ax, x∗〉 ≤ 0

which contradicts to (1.34). Thus, there exists θ0 such that |φ(θ0)| = |φ|Z . Since 〈φ(θ), x∗〉 ≤
|φ(θ)| for x∗ ∈ F (φ(θ0)), θ → 〈φ(θ), x∗〉 attains the maximum at θ0 and thus 〈φ′(θ0), x∗〉 = 0
Hence,

|λφ− φ′|Z ≥ 〈λφ(θ0)− φ′(θ0), x∗〉 = λ |φ(θ0)| = λ |φ|Z . (1.35)

For the range condition λφ−Aφ = f we note that

φ(θ) = eλθφ(0) + ψ(θ)
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where

ψ(θ) =

∫ 0

θ

eλ(θ−ξ)f(ξ) dξ.

Thus,

(∆(λ) I − A)φ(0) =

∫ 0

−∞
g(θ)ψ′(θ) dθ)

where

∆(λ) = λ

∫ 0

−∞
g(θ)eλθ dθ > 0

Thus,

φ(0) = (∆(λ) I − A)−1

∫ 0

−∞
g′(θ)ψ(θ) dθ.

Since A is dissipative and
λψ − ψ′ = f ∈ Z, ψ(0) = 0,

thus |ψ|Z ≤
1

λ
|f |Z . Thus φ = (λ I −A)−1f ∈ Z. �

Example (Renewable system) We discuss the renewable system of the form

dp0

dt
= −

∑
i λi p0(t) +

∑
i

∫ L
0
µi(x)pi(x, t) dx

(pi)t + (pi)x = −µi(x)p, p(0, t) = λi p0(t)

for (p0, pi, 1 ≤ i ≤ d) ∈ R × L1(0, T )d. Here, p0(t) ≥ 0 is the total utility and λi ≥ 0 is
the rate for the energy conversion to the i-th process pi. The first equation is the energy
balance law and s is the source = generation −consumption. The second equation is for the
transport (via pipeline and storage) for the process pi and µi ≥ 0 is the renewal rate and
µ̄ ≥ 0 is the natural loos rate. {λi ≥ 0} represent the distribution of the utility to the i-th
process.

Assume at the time t = 0 we have the available utility p0(0) = 1 and pi = 0. Then we
have the following conservation

p0(t) +

∫ t

0

pi(s) ds = 1

if t ≤ L. Let X = R× L1(0, L)d. Let A(µ) defined by

Ax = (−
∑
i

λi p0 +
∑
i

∫ L

0

µi(x) dx,−(pi)x − µi(x)pi)

with domain
dom(A) = {(p0, pi) ∈ R×W 11(0, L)d : pi(0) = λi p0}

Let

signε(s) =


s
|s| |s| > ε

s
ε

|s| ≤ ε
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Then,

(A(p0, p), (sign0(p0), signε(p)) ≤ −(
∑

i λi)|p0|+ |
∫ L

0
µipi dx|∑

i(Ψε(pi(0))−Ψε(pi(L))−
∫ L

0
µipisignε dx)

where

Ψε(s) =


|s| |s| > ε

s2

2ε
+ ε

2
|s| ≤ ε

Since
signε → signε, Ψε → |s|

by the Lebesgue dominated convergence theorem, we have

(A(p0, p), (sign0(p0), sign0(p)) ≤ 0.

The resolvent equation
A(p0, p) = (s, f), (1.36)

has a solution
pi(x) = λip0e

−
∫ x
0 µi +

∫ x
0
e−

∫ x
s µif(s) ds

(
∑

i λi)(1− e
∫ L
0 µi) p0 = s+

∫ L
0
µipi(x) dx

Thus, A generates the contractive C0 semigroup S(t) on X. Moreover, it is cone preserving
S(t)C+ ⊂ C+ since the resolvent is positive cone preserving.

Example (Bi-domain equation)
The electrical behavior of the cardiac tissue is described by a system consisting of PDEs

coupled with ordinary differential equations which model the ionic currents associated with
the reaction terms. The bi-domain model is a mathematical model for the electrical prop-
erties of cardiac muscle that takes into account the anisotropy of both the intracellular and
extracellular spaces. It is formed of the bi-domain equations. The bi-domain model is now
widely used to model defibrillation of the heart. In this paper we consider the feedback
control for bi-domain model.

The weak form of the the bi-domain equation is given by

(
d

dt
u, φ)− (B(∇u+∇ue),∇φ)Ω + (F (u, v), φ) = 0

(B∇u+ (A+ B)∇ue,∇ψ)Ω = 〈s, ψ〉,
(1.37)

for all (φ, ψ) ∈ H1(Ω) × H1(Ω)/R, where (u, ue) ∈ H1(Ω) × H1(Ω)/R is the solution pair
and s is the control current. We consider the boundary current control:

〈s, ψ〉 =

∫
Γ

s(t, x)ψ(x) dx.

Here, A and B are elliptic operators of the form

Bφ = ∇ · (σ̄i∇φ), Aφ = ∇ · (σ̄e∇φ),
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where σ̄i, σ̄e are respectively the intracellular and extracellular conductivity tensors. Note
that one can write (1.37) as

d

dt
u(t)− Lu(t) + F (u(t), v(t))) + Cs(t) = 0, (1.38)

where
L = (A−1 + B−1)−1 = B(A+ B)−1A.

and
Cs = B(A+ B)−1s.

That is, v = u+ ue satisfies
(A+ B)v = Au+ s

where

〈s, φ〉 =

∫
Γ

s(t, x)φ(x) dx

with 〈s, 1〉 = 0. Thus, L is an self adjoint elliptic operator on L2(Ω). The boundary current
control becomes the distributed control of the form Cs(t).
Example (Second order equation) Let V ⊂ H = H∗ ⊂ V ∗ be the Gelfand triple. Let ρ be a
bounded bilinear form on H ×H, µ and σ be bounded bilinear forms on V × V . Assume ρ
and σ are symmetric and coercive and µ(φ, φ) ≥ 0 for all φ ∈ V . Consider the second order
equation

ρ(utt, φ) + µ(ut, φ) + σ(u, φ) = 〈f(t), φ〉 for all φ ∈ V. (1.39)

Define linear operators M (mass), D (dampping), K and (stiffness) by

(Mφ,ψ)H = ρ(φ, ψ), φ, ψ ∈ H

〈Dφ,ψ〉 = µ(φ, ψ) φ, ψ ∈ V

〈Kφ,ψ〉V ∗×V = σ(φ, ψ), φ, ψ ∈ V

We assume ρ is symmetric and H-coercive, σ is symmetric and V -coercive and µ(φ, φ) ≥ 0
for φ ∈ V . Let v = ut and define A on X = V ×H by

A(u, v) = (v,−M−1(Ku+Dv))

with domain
dom (A) = {(u, v) ∈ X : v ∈ V and Ku+Dv ∈ H}

The state space X is a Hilbert space with inner product

((u1, v1), (u,v2)) = σ(u1, u2) + ρ(v1, v2)

and
E(t) = |(u(t), v(t))|2X = σ(u(t), u(t)) + ρ(v(t), v(t))
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defines the energy of the state x(t) = (u(t), v(t)) ∈ X. First, we show that A is dissipative:

(A(u, v), (u, v))X = σ(u, v)+ρ(−M−1(Ku+Dv), v) = σ(u, v)−σ(u, v)−µ(v, v) = −µ(v, v) ≤ 0

Next, we show that R(λ I − A) = X. That is, for (f, g) ∈ X the exists a solution (u, v) ∈
dom (A) satisfying

λu− v = f, λMv +Dv +Ku = Mg,

or equivalently v = λu− f and

λ2Mu+ λDu+Ku = Mg + λMf +Df (1.40)

Define the bilinear form a on V × V

a(φ, ψ) = λ2 ρ(φ, ψ) + λµ(φ, ψ) + σ(φ, ψ)

Then, a is bounded and V -coercive and if we let

F (φ) = (M(g + λ f)φ)H + µ(f, φ)

then F ∈ V ∗. It thus follows from the Lax-Milgram theory there exists a unique solution
u ∈ V to (1.40) and Dv +Ku ∈ H.

For example, consider the wave equation

1
c2(x)

utt + κ(x)ut = ∆u

[∂u
∂n

] + αu = γ ut at Γ

In this example we let V = H1(Ω)/R and H = L2(Ω) and define

σ(φ, ψ) =

∫
Ω

(∇φ,∇ψ) dx+

∫
Γ

αφψ ds

µ(φ, ψ) =

∫
∂Ω

κ(x)φ, ψ dx+

∫
Γ

γ)φ, ψ ds

ρ(φ, ψ) =

∫
Ω

1

c2(x)
φψ dx.

Example (Maxwell system for electro-magnetic equations)

εEt = ∇×H, ∇ · E = ρ

µHt = −∇× E, ∇ ·B = 0

with boundary condition
E × n = 0

25



where E is Electric field, BµH is Magnetic field and D = εE is dielectric with ε, µ is electric
and magnetic permittivity, respectively. Let X = L2(Ω)d×L2(Ω)d with the norm defined by

|(E,H)|2X =

∫
Ω

(ε |E|2 + µ |H|2) dx.

The dissipativity follows from∫
Ω

(E · (∇×H)−H · (∇× E)) dx =

∫
Ω

∇ · (E ×H) dx =

∫
∂Ω

n · (E ×H) ds = 0

Let ρ = 0 and thus ∇ · E = 0. The range condition is equivalent to

εE +∇× 1

µ
(∇× E − g) = f

The weak form is given by

(εE, ψ) + (
1

µ
∇× E,∇× ψ) = (f, ψ) + (g,

1

µ
∇× ψ). (1.41)

for ψ ∈ V = {H1(Ω) : ∇ · ψ = 0, n× ψ = 0 at ∂Ω}. Since |∇ × ψ|2 = |∇ψ|2 for ∇ · ψ = 0.
the right hand side of (1.41) defines the bounded coercive quadratic form on V ×V , it follows
from the Lax-Milgram equation that (1.41) has a unique solution in V .

1.6 Dual semigroup

Theorem (Dual semigroup) Let X be a reflexive Banach space. The adjoint S∗(t) of the
C0 semigroup S(t) on X forms the C0 semigroup and the infinitesimal generator of S∗(t)
is A∗. Let X be a Hilbert space and dom(A∗) be the Hilbert space with graph norm and
X−1 be the strong dual space of dom(A∗), then the extension S(t) to X−1 defines the C0

semigroup on X−1.

Proof: (1) Since for t, s ≥ 0

S∗(t+ s) = (S(s)S(t))∗ = S∗(t)S∗(s)

and
〈x, S∗(t)y − y〉X×X∗ = 〈S(t)x− x, y〉X×X∗ → 0.

for x ∈ X and y ∈ X∗ Thus, S∗(t) is weakly star continuous at t = 0 and let B is the
generator of S∗(t) as

Bx = w∗ − lim
S∗(t)x− x

t
.

Since

(
S(t)x− x

t
, y) = (x,

S∗(t)y − y
t

),

for all x ∈ dom(A) and y ∈ dom(B) we have

〈Ax, y〉X×X∗ = 〈x,By〉X×X∗
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and thus B = A∗. Thus, A∗ is the generator of a w∗− continuous semigroup on X∗.
(2) Since

S∗(t)y − y = A∗
∫ t

0

S∗(s)y ds

for all y ∈ Y = dom (A∗). Thus, S∗(t) is strongly continuous at t = 0 on Y .
(3) If X is reflexive, dom (A∗) = X∗. If not, there exists a nonzero y0 ∈ X such that
〈y0, x

∗〉X×X∗ = 0 for all x∗ ∈ dom(A∗). Thus, for x0 = (λ I − A)−1y0 〈λx0 − Ax0, x
∗〉 =

〈x0, λ x
∗ −A∗x∗〉 = 0. Letting x∗ = (λ I −A∗)−1x∗0 for x∗0 ∈ F (x0), we have x0 = 0 and thus

y0 = 0, which yields a contradiction.
(4) X1 = dom (A∗) is a closed subspace of X∗ and is a invariant set of S∗(t). Since A∗ is
closed, S∗(t) is the C0 semigroup on X1 equipped with its graph norm. Thus,

(S∗(t))∗ is the C0 semigroup on X−1 = X∗1

and defines the extension of S(t) to X−1. Since for x ∈ X ⊂ X−1 and x∗ ∈ X∗

〈S(t)x, x∗〉 = 〈x, S∗(t)x∗〉,

S(t) is the restriction of (S∗(t))∗ onto X. �

1.7 Stability

Theorem (Datko 1970, Pazy 1972). A strongly continuous semigroup S(t), t ≥ 0 on a
Banach space X is uniformly exponentially stable if and only if for p ∈ [1,∞) one has∫ ∞

0

|S(t)x|p dt <∞ for all x ∈ X.

Theorem. (Gearhart 1978, Pruss 1984, Greiner 1985) A strongly continuous semi-
group on S(t), t ≥ 0 on a Hilbert space X is uniformly exponentially stable if and only if
the half-plane {λ ∈ C : Reλ > 0} is contained in the resolvent set ρ(A) of the generator A
with the resolvent satisfying

|(λ I − A)−1|∞ <∞

1.8 Sectorial operator and Analytic semigroup

In this section we have the representation of the semigroup S(t) in terms of the inverse
Laplace transform. Taking the Laplace transform of

d

dt
x(t) = Ax(t) + f(t)

we have
x̂ = (λ I − A)−1(x(0) + f̂)

where for λ > ω

x̂ =

∫ ∞
0

e−λtx(t) dt
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is the Laplace transform of x(t). We have the following the representation theory (inverse
formula).

Theorem (Resolvent Calculus) For x ∈ dom(A2) and γ > ω

S(t)x =
1

2πi

∫ γ+i∞

γ−i∞
eλt(λ I − A)−1x dλ. (1.42)

Proof: Let Aµ be the Yosida approximation of A. Since Re σ(Aµ) ≤ ω0

1− µω0

< γ, we have

uµ(t) = Sµ(t)x =
1

2πi

∫ γ+i∞

γ−i∞
eλt(λ I − Aµ)−1x dλ.

Note that
λ(λ I − A)−1 = I + (λ I − A)−1A. (1.43)

Since
1

2πi

∫ γ+i∞

γ−i∞

eλt

λ
dλ = 1

and ∫ γ+i∞

γ−i∞
|λ− ω|−2 dλ <∞,

we have
|Sµ(t)x| ≤M |A2x|,

uniformly in µ > 0. Since

(λ I − Aµ)−1x− (λ I − A)−1x =
µ

1 + λµ
(ν I − A)−1(λ I − A)−1A2x,

where ν =
λ

1 + λµ
, {uµ(t)} is Cauchy in C(0, T ;X) if x ∈ dom(A2). Letting µ → 0+, we

obtain (1.42). �

Next we consider the sectorial operator. For δ > 0 let

Σδ
ω = {λ ∈ C : arg(λ− ω) <

π

2
+ δ}

be the sector in the complex plane C. A closed, densely defined, linear operator A on a
Banach space X is a sectorial operator if

|(λ I − A)−1| ≤ M

|λ− ω|
for all λ ∈ Σδ

ω.

For 0 < θ < δ let Γ = Γω,θ be the integration path defined by

Γ± = {z ∈ C : |z| ≥ δ, arg(z − ω) = ±(π
2

+ θ)},

Γ0 = {z ∈ C : |z| = δ, |arg(z − ω)| ≤ π
2

+ θ}.
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For 0 < θ < δ define a family {S(t), t ≥ 0} of bounded linear operators on X by

S(t)x =
1

2πi

∫
Γ

eλt(λ I − A)−1x dλ. (1.44)

Theorem (Analytic semigroup) If A is a sectorial operator on a Banach space X, then A
generates an analytic (C0) semigroup on X, i.e., for x ∈ X t→ S(t)x is an analytic function
on (0,∞). We have the representation (1.44) for x ∈ X and

|AS(t)x|X ≤
Mθ

t
|x|X (ω = 0).

Proof: Since

AS(t)x =
1

2πi

∫
Γ

eλt(λ(λ I − A)−1x− x) dλ.

we have

|AS(t)x| ≤M

∫ ∞
0

e−sinθ tz dz|x| = M

sin θ t
|x|.�

The elliptic operator A defined by the Lax-Milgram theorem defines a sectorial operator
on Hilbert space X.

Theorem (Sectorial operator) Let V, H are Hilbert spaces and assume H ⊂ V ∗. Let
ρ(u, v) is bounded bilinear form on H ×H and

ρ(u, u) ≥ |u|2H for all u ∈ H

Let a(u, v) to be a bounded bilinear form on V × V with

σ(u, u) ≥ δ |u|2V for all u ∈ V.

Define the linear operator A by

ρ(Au, φ) = a(u, φ) for all φ ∈ V.

Then, for Reλ > 0we have
|(λ I − A)−1|L(V,V ∗) ≤ 1

δ

|(λ I − A)−1|L(H) ≤ M
|λ|

|(λ I − A)−1|L(V ∗,H) ≤ M√
|λ|

|(λ I − A)−1|L(H,V ) ≤ M√
|λ|

Proof: Let a(u, v) to be a bounded bilinear form on V × V . Define M ∈ L(H,H) by

(Mu, v) = ρ(u, v) for all u, v ∈ H

and A0 ∈ L(V, V ∗) by
〈A0u, v〉 = σ(u, v) for v ∈ V
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Then, A = M−1A0 and for f ∈ V ∗ and Reλ > 0, (λ I − A)u = M−1f is equivalent to

λρ(u, φ) + a(u, φ) = 〈f, φ〉, for all φ ∈ V. (1.45)

It follows from the Lax-Milgram theorem that (1.45) has a unique solution, given f ∈ V ∗
and

Reλρ(u, u) + a(u, u) ≤ |f |V ∗|u|V .

Thus,

|(λ I − A)−1|L(V ∗,V ) ≤
1

δ
.

Also,
|λ| |u|2H ≤ |f |V ∗|u|V +M |u|2V = M1 |f |2V ∗

for M1 = 1 + M
δ2 and thus

|(λ I − A)−1|L(V ∗,H) ≤
√
M1

|λ|1/2
.

For f ∈ H ⊂ V ∗

δ |u|2V ≤ Reλ ρ(u, u) + a(u, u) ≤ |f |H |u|H , (1.46)

and
|λ|ρ(u, u) ≤ |f |H |u|H +M |u|2V ≤M1|f |H |u|H

Thus,

|(λ I − A)−1|L(H) ≤
M1

|λ|
.

Also, from (1.46)
δ |u|2V ≤ |f |H |u|H ≤M1 |f |2.

which implies

|(λ I − A)−1|L(H,V ) ≤
M2

|λ|1/2
.

1.9 Approximation Theory

In this section we discuss the approximation theory for the linear C0-semigroup. Equivalence
Theorem (Lax-Richtmyer) states that for consistent numerical approximations, stability and
convergence are equivalent. In terms of the linear semigroup theory we have

Theorem (Trotter-Kato theorem) Let X and Xn be Banach spaces and A and An be
the infinitesimal generator of C0 semigroups S(t) on X and Sn(t) on Xn of G(M,ω) class.
Assume a family of uniformly bounded linear operators Pn ∈ L(X,Xn) and En ∈ L(Xn, X)
satisfy

PnEn = I |EnPnx− x|X → 0 for all x ∈ X (1.47)

Then, the followings are equivalent.
(1) there exist a λ0 > ω such that for all x ∈ X

|En(λ0 I − An)−1Pnx− (λ0 I − A)−1x|X → 0 as n→∞, (1.48)
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(2) For every x ∈ X and T ≥ 0

|EnSn(t)Pnx− S(t)x|X → as n→∞.

uniformly on t ∈ [0, T ].

Proof: Since for λ > ω

En(λ I − A)−1Pnx− (λ I − A)−1x =

∫ ∞
0

EnSn(t)Pnx− S(t)x dt

(1) follows from (2). Conversely, from the representation theory

EnSn(t)Pnx− S(t)x =
1

2πi

∫ γ+i∞

γ−i∞
(En(λ I − A)−1Pnx− (λ I − A)−1x) dλ

where
(λ I − A)−1 − (λ0 I − A)−1 = (λ− λ0)(λ I − A)−1(λ0 I − A)−1.

Thus, from the proof of Theorem (Resolvent Calculus) (1) holds for x ∈ dom(A2). But since
dom(A2) is dense in X, (2) implies (1). �

Remark (Stability) If An is uniformly dissipative:

|λun − Anun| ≥ (λ− ω) |un|

for all un ∈ dom(An) and some ω ≥ 0, then An generates ω contractive semigroup Sn(t) on
Xn.

Remark (Consistency)
(λI − An)un = Pnf

Pn(λI − A)u = Pnf

we have
(λ I − An)(Pnu− un) + PnAu− AnPnu = 0

Thus
|Pnu− un| ≤M |PnAu− AnPnu|

The consistency(1.48) follows from

|PnAu− AnPnu| → 0

for all u in a dense subset of dom(A).

Corollary Let the assumptions of Theorem hold. The statement (1) of Theorem is equivalent
to (1.47) and the followings:

(C.1) there exists a subset D of dom(A) such that D = X and (λ0 I − A)D = X.

(C.2) for all u ∈ D there exists a sequence ūn ∈ dom(An) such that limEnūn = u and
limEnAnūn = Au.
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Proof: Without loss of generality we can assume λ0 = 0. First we assume that condition (1)
hold. We set D = dom(A) and thus AD = X. For u ∈ dom(A) we set ūn = A−1

n PnAu and
u = A−1x. Then,

Enūn − u = EnA
−1
n Pnx− A−1x→ 0

and
EnAnūn − Au = EnAnA

−1
n Pnx− AA−1x = EnPnx− x→ 0

as n→∞. Hence conditions (C.1)–(C.2) hold.
Conversely, we assume conditions (C.1)–(C.2) hold. For x ∈ AD we choose u ∈ D such

that u = A−1x and set un = A−1
n Pnx = A−1

n PnAu. We then for u we choose ūn according to
(C.2). Thus, we obtain

|ūn − Pnu| = |Pn(Enūn − u)| ≤M |Enūn − u| → 0

as n→∞ and

|ūn − un| ≤ |A−1
n (Anūn − PnAu)| ≤ |A−1

n Pn||EnAnūn − Au| → 0

as n∞. It thus follows that |un − Pnu| → 0 as n→∞. Since

EnA
−1
n Pn − A−1 = En(A−1

n PnA− Pn)A−1 + (EnPn − I)A−1,

we have

|EnA−1
n Pnx− A−1x| ≤ |En(un − Pnu)|+ |EnPnu− u| ≤M |un − Pnu|+ |EnPnu− u| → 0

as n→∞ for all x ∈ AD. �

Example 1 (Trotter-Kato theoarem) Consider the heat equation on Ω = (0, 1)× (0, 1):

d

dt
u(t) = ∆u, u(0, x) = u0(x)

with boundary condition u = 0 at the boundary ∂Ω. We use the central difference approxi-
mation on uniform grid points: (i h, j h) ∈ Ω with mesh size h = 1

n
:

d

dt
ui,j(t) = ∆hu =

1

h
(
ui+1,j − ui,j

h
− ui,j − ui−1,j

h
) +

1

h
(
ui,j+1 − ui,j

h
− ui,j − ui,j−1

h
)

for 1 ≤ i, j ≤ n1, where ui,0 = ui,n = u1, j = un,j = 0 at the boundary node. First, let
X = C(Ω) and Xn = R(n−1)2

with sup norm. Let Enui,j = the piecewise linear interpolation
and (Pnu)i,j = u(i h, j h) is the point-wise evaluation. We will prove that ∆h is dissipative
on Xn. Suppose uij = |un|∞. Then, since

λui,j − (∆hu)i,j = fij

and

−(∆hu)i,j =
1

h2
(4ui,j − ui+1,j − ui,j+1 − ui−1,j − ui,j−1) ≥ 0
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we have

0 ≤ ui,j ≤
fi,j
λ
.

Thus, ∆h is dissipative on Xn with sup norm. Next X = L2(Ω) and Xn with `2 norm. Then,

(−∆hun, un) =
∑
i,j

|ui,j − ui−1,j

h
|2 + |ui,j − ui,j−1

h
|2 ≥ 0

and thus ∆h is dissipative on Xn with `2 norm.

Example 2 (Galerkin method) Let V ⊂ H = H∗ ⊂ V ∗ is the Gelfand triple. Consider the
parabolic equation

ρ(
d

dt
un, φ) = a(un, φ) (1.49)

for all φ ∈ V , where the ρ is a symmetric mass form

ρ(φ, φ) ≥ c |φ|2H

and a is a bounded coercive bilinear form on V × V such that

a(φ, φ) ≥ δ |φ|2V .

Define A by
ρ(Au, φ) = a(u, φ) for all φ ∈ V.

By the Lax-Milgram theorem
(λI − A)u = f ∈ H

has a unique solution satisfying

λρ(u, φ)− a(u, φ) = (f, φ)H

for all φ ∈ V . Let dom(A) = (I − A)−1H. Assume

Vn = {u =
∑

akφ
n
k , φnk ∈ V } is dense in V

Consider the Galerkin method, i.e. un(t) ∈ Vn satisfies

ρ(
d

dt
un(t), φ) = a(un, φ).

Since for u = (λ I − A)−1f and ūn ∈ Vn

λρ(un, φ) + a(un, φ) = (f, φ) for φ ∈ Vn

λρ(ūn, φ) + a(ūn, φ) = λρ(ūn − u, φ) + a(ūn − u, φ) + (f, φ) for φ ∈ Vn

λρ(un − ūn, φ) + a(un − ūn, φ) = λρ(ūn − u, φ) + a(ūn − u, φ).

Thus,

|un − ūn| ≤
M

δ
|ūn − u|V .
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Example 2 (Discontinuous Galerkin method) Consider the parabolic system for u = ~u ∈
L2(Ω)d

∂

∂t
u = ∇ · (a(x)∇u) + c(x)u

where a ∈ Rd × d is symmetric and

a|ξ|2 ≤ (ξ, a(x), ξ)Rd ≤ a|ξ|2, ξ ∈ Rd

for 0 < a ≤ a < ∞. The region Ω is dived into n non-overlapping sub-domains Ωi with
boundaries ∂Ωi such that Ω = ∪Ωi. At the interface Γij = ∂Ωi ∩ ∂Ωj define

[[u]] = u|∂Ωi
− u|∂Ωj

<< u >>= 1
2
(u|∂Ωi

+ u|∂Ωj
).

The approximate solution uh(t) in

Vh = {uh ∈ L2(Ω) : uh is linear on Ωi}.

Define the bilinear for on Vh × Vh

ah(u, v) =
∑
i

∫
Ωi

(a(x)∇u,∇v) dx−
∑
i>j

∫
Γij

(<< n·(a∇u) >> [[v]]± << n·(a∇v) >> [[u]]+
β

h
[[u]][[v]] ds),

whee h is the meshsize and β > 0 is sufficiently large. If + on the third term ah is symmetric
and for the case − then ah enjoys the coercivity

ah(u, u) ≥
∑
i

∫
Ωi

(a(x)∇u,∇u) dx,∈ u ∈ Vh,

regardless of β > 0.
Example 3 (Population dynaims) The transport equation

∂p
∂t

+ ∂p
∂x

+m(x)p(x, t) = 0

p(0, t) =
∫
β(x)p(x, t) dx

Define the difference approximation

Anp = (−pi − pi−1

h
−m(xi)pi, 1 ≤ i ≤ n), p0 =

∑
i

βi pi

Then,

(Anp, sign0(p)) ≤ (
∑

mi − βi)|pi| ≤ 0

Thus, An on L1(0, 1) is dissipative.

(A,Enφ)− (PnAn, φ).
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Example 4 (Yee’s scheme)
Consider the two dimensional Maxwell’s equation. Consider the staggered grid; i.e. E =

(E1
i− 1

2
,j
, E2

i,j− 1
2

) is defined at the the sides and H = Hi− 1
2
,j− 1

2
is defined at the center of the

cell Ωi,j = ((i− 1)h, ih)× ((j − 1)h, jh).

εi− 1
2
,j

d
dt
E1
i− 1

2
,j

= −
H
i− 1

2 ,j+
1
2
−H

i− 1
2 ,j−

1
2

h

εi,j+ 1
2

d
dt
E2
i,j+ 1

2

=
H
i+ 1

2 ,j+
1
2
−H

i− 1
2 ,j−+ 1

2

h

µi− 1
2
,j− 1

2

d
dt
Hi− 1

2
,j− 1

2
=

E2

i,j− 1
2

−E2

i−1,j− 1
2

h
−

E1

i− 1
2 ,j
−E1

i− 1
2 ,j−1

h
,

(1.50)

where E1
i− 1

2
,j

= 0, j = 0, j = N and E2
i,j− 1

2
,j

= 0, i = 0, j = N .

Since

N∑
i=1

N∑
j=1

−
Hi− 1

2
,j+ 1

2
−Hi− 1

2
,j− 1

2

h
E1
i− 1

2
,j

+
Hi+ 1

2
,j+ 1

2
−Hi− 1

2
,j−+ 1

2
h

E

2

i,j+ 1
2

+(
E2
i,j− 1

2

− E2
i−1,j− 1

2

h
−
E1
i− 1

2
,j
− E1

i− 1
2
,j−1

h
)Hi− 1

2
,j− 1

2
= 0

(1.50) is uniformly dissipative. The range condition λ I − Ah = (f, g) ∈ Xh is equivalent to
the minimization for E

min
1

2
(εi− 1

2
,jE

1
i− 1

2
,j

+ εi,j+ 1
2
E2
i,j+ 1

2
) +

1

2

1

µi,j
(|
E2
i,j− 1

2

− E2
i−1,j− 1

2

h
|2 + |

E1
i− 1

2
,j
− E1

i− 1
2
,j−1

h
|2)

−(f 1
i− 1

2
,j
− 1

µi,j

g
i− 1

2 ,j+
1
2
−g

i− 1
2 ,j−

1
2

h
, E1

i− 1
2
,j
− (f 2

i,j+ 1
2

+ 1
µi,j

H
i+ 1

2 ,j+
1
2
−H

i− 1
2 ,j−+ 1

2

h
)E2

i,j+ 1
2

.

Example 5 Legende-Tau method

2 Dissipative Operators and Semigroup of Nonlinear

Contractions

3 Evolution equations
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