In this course we discuss the well-posededness of the evolution equations in Banach spaces.
Such problems arise in PDEs dynamics and functional equations. We develop the linear and
nonlinear theory for the corresponding solution semigroups. The lectures include for example
the Hille-Yosiida theory, Lumer-Philiips theory for linear semigroup and Crandall-Liggett
theory for nonlinear conrtractive semigroup and Crandall-Pazy theory for nonlinear evolution
equations. Especially, (numerical) approximation theory for PDE solutions are discussed
based on Trotter-Kato theory and Takahashi-Oharu theory, Chernoff theory and the operator
splitting method. The theory and its applications are examined and demonstrated using
many motivated PDE examples including linear dynamics (e.g. heat, wave and hyperbolic
equations) and nonlinear dynamics (e.g. nonlinear diffusion, conservation law, Hamilton-
Jacobi and Navier-Stokes equations). A new class of PDE examples are formulated and the
detailed applications of the theory is carried out.

The lecture also covers the basic elliptic theory via Lax-Milgram, Minty-Browder theory
and convex optimization. Functional analytic methods are also introduced for the basic
PDEs theory.

The students are expected to have the basic knowledge in real and functional analysis
and PDEs.

Lecture notes will be provided. Reference book: ”Evolution equations and Approxima-
tion” K. Ito and F. Kappel, World Scientific.

1 Linear Cauchy problem and Cj-semigroup theory

In this section we discuss the Cauchy problem of the form

d
Eu(t) = Au(t) + f(t), u(0)=wuy€ X

in a Banach space X, where ug € X is the initial condition and f € L'(0,7;X). Such
problems arise in PDE dynamics and functional equations.
We construct the mild solution u(t) € C(0,T; X):

u(t) = S(t)ug +/O S(t—s)f(s)ds (1.1)

where a family of bounded linear operator {S(t), t > 0} is Cy-semigroup on X.

Definition (C; semigroup) (1) Let X be a Banach space. A family of bounded linear
operators {S(t), t > 0} on X is called a strongly continuous (Cy) semigroup if

S(t+s)=S5(t)S(s) for t, s >0 with S(0) =1
|S(t)p — ¢l = 0ast — 0" forall p € X.

(2) A linear operator A in X defined by

A¢p = lim

t—0t

—S(t)(f —¢ (1.2)
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with
t —
dom(A) = {¢ € X : the strong limit of 11151+ w in X exists}.
t—

is called the infinitesimal generator of the Cj semigroup S(t).

In this section we present the basic theory of the linear Ciy-semigroup on a Banach space
X. The theory allows to analyze a wide class of the physical and engineering dynamics using
the unified framework. We also present the concrete examples to demonstrate the theory.
There is a necessary and sufficient condition (Hile-Yosida Theorem) for a closed, densely
defined linear A in X to be the infinitesimal generator of the Cy semigroup S(¢). Moreover,
we will show that the mild solution u(t) satisfies

(u(t), ) = (uo, ) + /(<93(S),A*¢> + (f(s),¥) ds (1.3)

for all ¢ € dom (A*).

Examples (1) For A € £(X), define a sequence of linear operators in X

Swlt) = Z (At

Then
1SN ()] < Z |A|t < it
and p
— ASN_1(t
TN (t) = ASy-1(?)
Since
S(t) = e = Jim Sx (), (1.4)
in the operator norm, we have
d

Z5(t) = AS(t) = S(1)A.

(2) Consider the the hyperbolic equation
ur +u, =0, u(0,2) =up(x) in (0, 1). (1.5)
Define the semigroup S(t) of translations on X = L?*(0,1) by
[S(t)uo](z) = oz —t), where wy(z)=0,2 <0, ay=wuyon [0,1]. (1.6)

Then, {S(t), t > 0} is a Cy semigroup on X. If we define u(t,z) = [S(t)uo)(x) with
up € H'(0,1) with uy(0) = 0 satisfies (1.8) a.e.. The generator A is given by

Ap = —¢' with dom(A) = {¢ € H'(0,1) with ¢(0) = 0}.
In fact

S(t)UO — Up . ao(l' - t) - lNLO
t B ¢

= —uy(x), ae. z€(0,1).



if ug € dom(A). Thus, u(t) = S(t)uo satisfies the Cauchy problem %u(t) = Au(t) if
uy € dom(A).
On the other hand if we apply the operator exponential formula (1.4) for this A,

o0

u(t,z) = Z (_]:') uf (2)t* = ug(x —t)

k=0

for uy € C*°(0,1), which coincides with (1.6). That is, the solution semigroup S(¢) is the
extension of the operator exponential formula.
(3) Let X; € R is a Markov process, i.e.

E*[g(Xsn)|Fi] = E**[g(X3)].
for all g € X = L?*(R"™). Define the linear operator S(t) by
(S(t)uo)(w) = E%%[ug(Xy)], t>0, ug€ X.
The semigroup property of S(t) follows from the Markov property, i.e.
S(t+s)uo = E™*uo(Xoys)] = BIE[uo(X{5)|1F] = BIE“X ug(X,)]] = E[(S(t)uo) (X.)] = S(s)(S(t)uo).

The strong continuity follows from that X — z is a.s for all z € R". If X, = B, is a
Brownian motion, then the semigroup S(¢) is defined by

1 _lz=yl?
Stl(r) = e | ) (1.7

and u(t) = S(t)up satisfies the heat equation.

2

Uy = %Au, u(0,2) = up(z) in L*(R™). (1.8)

1.1 Finite difference in time

Let A be closed, densely defined linear operator dom(A) — X. We use the finite difference
method in time to construct the mild solution (1.1). For a stepsize A > 0 consider a sequence
{u"} in X generated by

= Au™ + ", (1.9)
with L
n—1 _ —

n—1)A

Assume that for A > 0 the resolvent operator

Jy = (]— )\A)_l



is bounded. Then, we have the product formula:

n—1

u = Jlug+ Y Ty (1.10)
k=0

In order to u" € X is uniformly bounded in n for all ug € X (with f = 0), it is necessary
that

M
|Jy| < W for dw < 1, (1.11)

for some M > 1 and w € R.

Hille’s Theorem Define a piecewise constant function in X by

U)\(t) = uk_l on [tk—htk)

Then,

max |uy — u(t)|x — 0
te[0,7

as A — 07 to the mild solution (1.1). That is,

t ¢
S(t)r = lim (I — EA)[E}x

n—o0

exists for all x € X and {S(t), t > 0} is the Cj semigoup on X and its generator is A, where
[s] is the largest integer less than s € R.

Proof: First, note that

M
Il <
|’\’_1—)\w

and for z € dom(A)
Jhr —x = A, Az,

and thus

| e — x| = [N Az| < |Az| — 0

1—Aw
as A — 07. Since dom(A) is dense in X it follows that
|Jyz — x| = 0as A — 07 for all z € X.

Define the linear operators T)(¢) and S\ (t) by

t—t
Sx(t) = J§ and Ty(t) = 3"+ (X = A7), on (te. .
Then,
d
ET’\@ = AS\(t), a.e. int € [0,T].
Thus,

d

ds

Ty (t)uo — To(t)uo = /0 (T ()T (t — $)uo) ds — /0 (Sn()T(t = 5) — Th(s)S, (¢ — s)) Aug ds
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Since ;
Th(s)u — Sx(s)u = S

TA(tk_l)(J)\ — I)u on s € (tk:—lytk]'
By the bounded convergence theorem
|T)\(t>U0 — T#(t)U|X — 0

as A\, u — 0% for all u € dom(A?). Thus, the unique limit defines the linear operator S(t)
by
S(t)ug = lim Sy(t)up. (1.12)

A—0t

for all ug € dom(A?). Since

M wt

and dom(A?) is dense, (1.12) holds for all ug € X. Moreover, we have

S(t+s)u= lim Jy™ = JrJ"u = S(t)S(s)u

A—0t

and limy o+ S(t)u = limy_,o+ Jyiu = u for all uw € X. Thus, S(¢) is the Cy semigroup on X.
Moreover, {S(t),t > 0} is in the class G(M,w), i.e.,

|S(t)] < Me*".

Note that .
T\(t)up — ug = A/ Shug ds.
0

Since limy_,o+ Th(t)ug = limy_ o+ Sx(t)ug = S(t)up and A is closed, we have

t ¢
S(t)ug — ug = A/ S(s)ugds, / S(s)ugds € dom(A).
0 0
If B is a generator of {S(t), t > 0}, then

Bz = lim
t—0+ t
if © € dom(A). Conversely, if ug € dom(B), then uy € dom(A) since A is closed and
t — S(t)u is continuous at 0 for all v € X and thus

1 t
;A/ S(s)ugds = Aug as t — 0.
0

Hence St
—< )u;) — % = Buyg

That is, A is the generator of {S(t), t > 0}.

A'LLQ =



Similarly, we have

n—1 t t
kZ:OJ;‘kfk _/o S,\(t—s)f(s)ds—>/0 S(t—s)f(s)dsas A\ — 0"

by the Lebesgue dominated convergence theorem. [
The following theorem states the basic properties of Cy semigroups:

Theorem (Semigroup) (1) There exists M > 1, w € R such that S € G(M,w) class, i.e.,

|S(t)] < Me*, t>0. (1.13)

(2) If z(t) = S(t)zo, o € X, then z € C(0,T; X)
(3) If 2o € dom (A), then z € C*(0,T; X) N C(0,T;dom(A)) and

d

ax(t) = Ax(t) = AS(t)x.

(4) The infinitesimal generator A is closed and densely defined. For x € X
t
S(t)x—:r:A/ S(s)x ds. (1.14)
0

(5) A > w the resolvent is given by

(AT — A :/ e S(s) ds (1.15)
0
with estimate M
I A" < — 1.1
0= )77 < (1.16)

Proof: (1) By the uniform boundedness principle there exists M > 1 such that |S(t)] < M
on [0,ty] For arbitrary t = kty+ 7, k € N and 7 € [0,%;) it follows from the semigroup
property we get

[SE)] < 1S(T)]|S(to]* < MeMtorltoll < pret
with w = 3 log [S(to)|.
(2) Tt follows from the semigroup property that for A > 0

2(t+ h) — 2(t) = (S(h) — I)S(t)xo

and fort —h >0
x(t—h)—x(t) =St —h)(I —S(h))xg
Thus, x € C(0,T; X) follows from the strong continuity of S(t) at ¢t = 0.
(3)—(4) Moreover,
z(t+h)—x(t) Sh)—1
h h




and thus S(t)zo € dom(A) and

z(t + h) — x(t)

hlir& = AS(t)xy = Ax(t).
Similarly,
. a(t—h)y—a(t) S(h)p—¢
hlggl*' —h B hligl‘*‘ St —h) h = S(t)Azo.
Hence, for xy € dom(A)
t t t
S(t)xg —xg = / S(s)Azgds = / AS(s)xgds = A/ S(s)xods (1.17)
0 0 0

If 2, € don(A) — x and Az, — y in X, we have

S(t)r —x = /0 S(s)yds

Since

1 t
lim —/ S(s)yds =y
0

t—0t+ T

x € dom(A) and y = Az and hence A is closed. Since A is closed it follows from (1.17) that
forx € X

/t S(s)xds € dom(A)

and (1.14) holds. For z € X let
1 [h
Ty = E/ S(s)xds € dom(A)
0

Since x, — x as h — 0%, dom(A) is dense in X.
(5) For A > w define R; € L(X) by

t
R, :/ e S(s) ds.
0
Since A — A1 is the infinitesimal generator of the semigroup e*S(t), from (1.14)
(AN — AR =2 — e MS(t)x.
Since A is closed and |e™*S(¢)] — 0 as t — 0o, we have R = lim, ., R; satisfies
(N — A)Rp = ¢.

Conversely, for ¢ € dom(A)

RA=AD6= [ e S(6)(A= D0 = fim e 500 -0 =~

t—o00
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Hence oo
R= / e S(s)ds = (N — A)™*
0
Since for ¢ € X

M
A—w

],

|Rx| S/ le™S(s)x| < M/ W3 x| ds =
0 0

we have

M
A—w’

(N — A)7Y < A > w.

Note that

()\I—A)_Qz/ e MS(t) ds/ e**S(s) ds:/ / e MGt + 5) ds dt
0 o Jo

0
:/ / e S(o) dadt:/ oe *S(0) do.
o Ji 0

By induction, we obtain

1 [ee]
QI——AY%::T——ER/ (116G (¢) d. (L18)
n—1!J,
Thus,
e M
AN —A) < —— prlem A=Wt gy — 7 [
(AI=4) ‘—<n—1>!/o ‘ Ao

We then we have the necessary and sufficient condition:

Hile-Yosida Theorem A closed, densely defined linear operator A on a Banach space X
is the infinitesimal generator of a Cy semigroup of class G(M,w) if and only if

M
A=A < o forall A > (1.19)
_wn

Proof: The sufficient part follows from the previous Theorem. In addition, we describe the
Yosida construction. Define the Yosida approximation Ay € £(X) of A by

-1

Ay 3

= AJ,. (1.20)

Define the Yosida approximation:

Since

we have

EXOIES=DY
k=0



Since
S ()83 (1 8) = Sx(6)(Ar — A)S3(¢ — ),

we have

Sxa(t)xr — S5 (t)r = /Ot Sx(s)S5(t — s)(Ax — As)xds
Thus, for z € dom(A)
1Sy(t)x — S5(t)z| < MPte" |(Ay — Az)z] — 0
as A\, A — 0. Since dom(A) is dense in X this implies that

S(t)x = lim Sy(t)z exist for all x € X

A—0t

defines a Cj semigroup of G(M,w) class. The necessary part follows from (1.18) [J
Theorem (Mild solution) (1) If for f € L'(0,T; X) define

x(t) = x(0) —1—/0 S(t—s)f(s)ds,

then x(t) € C'(0,7; X) and it satisfies

0 :A/Otx(s) ds+/0tf(s) ds. (1.21)

(2) If Af € L'(0,T; X) then x € C(0,T; dom(A)) and

ﬂw:um+l@hwnﬁwnw

(3) If f € Wh'(0,T;X), ie. f(t) = f(0) + [ f'(s)ds, Lf = f € L'0,T;X), then
Az € C(0,T; X) and

A/O S(t—s)f(s)ds:S(t)f(O)—f(t)+/0 S(t—s)f'(s)ds. (1.22)

//St—s deT—//ST—S)dT)f()dS

t
A/ S(s)ds = S(t) — I
0
we have x(t) € dom(A) and

A/ x—x+/5(t—s ds—/f

9

Proof: Since

and



and we have (1.21).
(2) Since for h >0

z(t+h) — x(t)
h

:/O S(t—s)%f(s)der%/t S(t+h— s)f(s)ds

if Af € L}(0,T;X)

lim SR =) /t S(t — s)Af(s)ds + f(1)

h—0t h

a.e. t € (0,7"). Similarly,

z(t — fi)h— x(t) /0 B S(t—h— s)%ﬂs) ds + % - S(t—s)f(s)ds

N /OtS(t—s)Af(s)ds+f(t)

a.e. t € (0,7).
(3) Since

Tm(t):%(/o S(t+h—s)f(s)ds—/t+ S(t+h— s)f(s)ds

+/0t5(t—s)f(8+h})z_f(s) ds,

letting h — 07, we obtain(1.22). O

It follows from Theorems the mild solution
t
z(t) = S(t)x(0) +/ S(t—s)f(s)ds
0

satisfies t t
x(t):x(O)+A/0 x(s)—i—/o £(s) ds.

Note that the mild solution = € C(0,7; X) depends continuously on x(0) € X and f €
LY(0,T; X) with estimate

j2(t)] < M(e!(0)] + / 9| £(s) ds).

Thus, the mild solution is the limit of a sequence {z,} of strong solutions with z,,(0) €
dom(A) and f, € WH(0,T; X), i.e., since dom(A) is dense in X and W1(0,T; X) is dense
in L'(0,T; X),

|2, (t) — 2(t)|x — 0 uniformly on [0, T
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for
|2,(0) — 2(0)|x = 0 and |f, — floro7:x) = 0 as n — oo.

Moreover, the mild solution z € C'(0,7 : X) is a weak solution to the Cauchy problem

d
Em(t) = Ax(t) + f(t) (1.23)
in the sense of (1.3), i.e., for all ¥ € dom(A*) (x(t),1)xxx+ is absolutely continues and
é%(lit),ﬂﬁ = (x(t),¥) + {f(1),9) a.e. in (0, 7).

If 2(0) € dom(A) and Af € L*(0,T; X), then Az € C(0,T; X), z € WH(0,T; X) and

d .
Ew(t) = Ax(t) + f(t), a.e. in (0,7T)

If (0) € dom(A) and f € WH(0,T; X), then x € C(0,T;dom(A)) NC*0,T; X) and

%x(t) = Az(t) + f(t), everywhere in [0, T.

1.2 Weak-solution and Ball’s result

Let A be a densely defined, closed linear operator on a Banach space X. Consider the
Cauchy equation in X:

%u = Au+ f(t), (1.24)

where u(0) = x € X and f € L'(0,7;X) is a weak solution to of (1.24) if for every
¥ €dom(A*) the function t — (u(t), ) is absolutely continuous on [0, 7] and

%(u(t),z/ﬁ = (u(t), A*) + (f(t),v), a.e. in [0,7]. (1.25)

It has been shown that the mild solution to (1.24) is a weak solution.
Lemma B.1 Let A be a densely defined, closed linear operator on a Banach space X. If

x, y € X satisty (y,v) = (x, A*¢) for all ¢y €dom(A*), then z € dom(A) and y = Ax.

Proof: Let G(A) C X x X denotes the graph of A. Since A is closed G(A) is closed. Suppose
y # Ax. By Hahn-Banach theorem there exist z, z* € X* such that (Az, z)+ (z, 2*) = 0 and
(y,z) + (z,2*) # 0. Thus z €dom(A*) and z* = A*z. By the condition (y, z) + (x, z*) = 0,
which is a contradiction. U

Then we have the following theorem.

Theorem (Ball) There exists for each z € X and f € L'(0, 7; X) a unique weak solution of
(1.24)satisfying u(0) = « if and only if A is the generator of a strongly continuous semigroup
{T'(t)} of bounded linear operator on X, and in this case u(t) is given by

u(t) = T(t)z + /0 Tt — s f(s) ds. (1.26)
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Proof: Let A generate the strongly continuous semigroup {7°(¢)} on X. Then, for some M,
|T(t)] < M ont € [0,7]. Suppose z €dom(A) and f € W1(0,7; X). Then we have

—(u(t), ) = (Au(t) + f(t),¥) = (u(t), A") + (f(1), ).

For (x, f) € X x L*(0,7; X) there exists a sequence (x,, f,) in dom(A) x WH(0, 7; X) such
that |z, — 2|x + [fn — flri0mx) — 0 as n — oo If we define

un(t) =T(t)x, + /Ot T(t —s)fn(s)ds,
then we have .
(unt).0) = (a.0) + [ (Quns), A°6) + {£u5) ) ds
and i .
WAU—M@MSA4Wm—ﬂx+AIh@%—ﬂ@h%)

Passing limit n —]oo, we see that u(t) is a weak solution of (1.24).
Next we prove that u(t) is the only weak solution to (1.24) satisfying u(0) = x. Let @(?)
be another such weak solution and set v = — @. Then we have

www%ﬂﬁv@ﬁﬂw>

for all ¢» €dom(A*) and ¢ € [0,7]. By Lemma B.1 this implies z(t) = fo s)ds €dom(A)
and £ z(t) = Az(t) with z(0) = 0. Thus z = 0 and hence u(t) = @(t) on [0, T]

Suppose that A such that (1.24) has a unique weak solution u(t) satisfying u(0) = x.
For t € [0, 7] we define the linear operator T'(¢t) on X by T'(t)z = u(t) — uo(t), where wuy is
the weak solution of (1.24) satisfying u0) = 0. If for t = nT + s, where n is a nonnegative
integer and s € [0,7) we define T'(t)x = T'(s)T(7)"x, then T'(t) is a semigroup. The map
0 :x — C(0,7;X) defined by §(z) = T(-)x has a closed graph by the uniform bounded
principle and thus T'(¢) is a strongly continuous semigroup. Let B be the generator of
{T'(t)} and z €dom(B). For 1) edom(A*)

d *
AT ()2, 9)i=0 = (Bx,v) = (2, A")).

It follows from Lemma that z €dom(A) and Az = Bz. Thus dom(B) Cdom(A). The
proof of Theorem is completed by showing dom(A) Cdom(B). Let z €dom(A). Since for
2(t) =T )z

t
((0.0) = ([ 2(5)dt.A'0)
0
it follows from Lemma that fo s)x ds and fo s)Ax ds belong to dom(A) and
t
T(t)r =z+ A/ T(s)xds
0
(1.27)
()ASE—AI+A/ s)Az ds
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Consider the function . .
w(t) = / T(s)Azds — A/ T(s)xds.
0 0

It then follows from (1.27) that z € C(0,7; X). Clearly w(0) = 0 and it also follows from

(1.27) that

d :
£<w(t)>¢> = <w(t)aA W (1'28)

for ¢ edom(A*). But it follows from our assumptions that (1.28) has the unique solution
w = 0. Hence from (1.27)

Tt)r —x= A/tT(s)x ds

and thus

which implies x edom(B). O

1.3 Lumer-Phillips Theorem

The condition (1.19) is very difficult to check for a given A in general. For the case M =1
we have a very complete characterization.

Lumer-Phillips Theorem The followings are equivalent:
(a) A is the infinitesimal generator of a Cy semigroup of G(1,w) class.
(b) A —wl is a densely defined linear m-dissipative operator,i.e.

(AN — A)z| > (A —w)|z| forall z € don(A), A\ >w (1.29)
and for some \g > w
R(NI—A)=X. (1.30)
Proof: It follows from the m-dissipativity
(ol — Ay < !
0 - )\0 — W

Suppose z,, € dom(A) — x and Az, — y in X, the

r=limz, =Nl —A) " lim Nz, — Az,) = NI —A) ' Noz —y).

n—0o0 n—oo

Thus, x € dom(A) and y = Ay and hence A is closed. Since for A > w
A —A=(T+\=x)Nol—A) YN — A),

if K\;—:\g' <1, then (A\T—A)~! € £L(X). Thus by the continuation method we have (A —A)~!
exists and

(A —A)7' <

A—w’
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It follows from the Hile-Yosida theorem that (b) — (a).
(b) — (a) Since for z* € F(x), the dual element of x, i.e. z* € X* satisfying (z, 2*) xxx+ =
|z|* and |27] = ||

(e7S(t)x, ") < |zllz”| = (w,27)

we have for all z € dom(A)

—wt _
0> fim (W=
t—0+ t

%) = ((A—wl)x,z") for all z* € F(x).

which implies A — w I is dissipative. []
Theorem (Dissipative I) (1) A is a w-dissipative

Az — Az| > (A — w)|z| for all x € dom (A).
if and only if (2) for all € dom(A) there exists an z* € F(z) such that
(Az, %) < w|z|?. (1.31)

(2) — (1). Let € dom(A) and choose an z* € F'(0) such that (A4,z*) < 0. Then, for any
A >0,

M2 =Mz, 2*) = Mz — Av + Az, 2*) < 2z — Az, 2%) +w |2)* < | Az — Az||z| + w |z|?,

which implies (1).
(1) — (2). Without loss of the generality one can assume w = 0. From (1) we obtain the
estimate

1
X<|$| — |z —XAzx]|) <0

and

1
(Azz)- = = lim S (o] = |o = AAa]) 0

which implies there exists * € F(x) such that (1.31) holds since (Az,z)_ = (Ax,x*) for
some z* € F(x). O
Thus, Lumer-Phillips theorem says that if m-diisipative, then (1.31) hold for all z* €

Theorem (Dissipative II) Let A be a closed densely defined operator on X. If A and A*
are dissipative, then A is m-dissipative and thus the infinitesimal generator of a Cjy-semigroup
of contractions.

Proof: Let y € R(I — A) be given. Then there exists a sequence z,, € dom(A) such that
y—x, — Ax, = y as n — oo. By the dissipativity of A we obtain

|xn - xm| < |xn — Ty — A(Tn — T)| < |y—ym|

Hence z,, is a Cauchy sequence in X. We set x = lim,,_,oox,. Since A is closed, we see that
x € dom(A) and x — Az = y, i.e.,, y € R(I — A). Thus R(I — A) is closed. Assume that
R(I — A) # X. Then there exists an z* € X* such that

(I — A)z,z") =0 for all z € dom (A).
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By definition of the dual operator this implies z* € dom (A*) and (I — A)*z* = 0. The
dissipativity of A* implies |z*| < |z* — A*z*| = 0, which is a contradiction. [

Example (revisited example 1)

Ap=—¢ in X = L*(0,1)
and for ¢ € H'(0,1)

(A, 6)x /¢ Jodr = (160 - [o(1)P)

Thus, A is dissipative if and only if ¢(0) = 0, the in flow condition. Define the domain of A
by
dom(A) = {6 € H'(0,1) : 6(0) = 0}

The resolvent equation is equivalent to

d
A —Uu =

u+dxu f

and N
u(z) :/ e A9 () ds

0
and R(A\] — A) = X. By the Lumer-Philips theorem A generates the Cy semigroup on
X = L?(0,1).

Example (Conduction equation) Consider the heat conduction equation:

_u = Au = Z a;;(z 8x 0% +b(z) - Vu+ c(z)u, in .

Let X = C(Q) and dom(A) C C*(Q). Assume that o € R*" € C(Q) b€ R™ and c € R

are continuous on () and a is symmetric and
mlI <a(zx)<MIfor0<m< M < .

Then, if 7 is an interior point of 2 at which the maximum of ¢ € C?(f) is attained. Then,

0%*u
Vo(zo) =0, aij(xo)m(xo) <0.
and thus
(Ao — Ag)(x0) < w d(o)

where

w < max c(x).
z€N

Similarly, if x¢ is an interior point of £ at which the minimum of ¢ € C?(f) is attained, then
(A¢ — Ad)(zo) = 0

15



If xo € 00 attains the maximum, then

Consider the domain with the Robin boundary condition:

dom(A) = {u € a(z)u(z) + B(x)%u =0 at 00}

with a, > 0 and inf,con(a(x) + B(x)) > 0. Then,
[Ad — Adlx = (A —w)ldlx. (1.32)
for all ¢ € C*(Q). It follows from the he Lax Milgram theory that
ol — A) € £(LA(Q), HA(9),
assuming that coefficients (a, b, ¢) are sufficiently smooth. Let
dom(A) = {(MI - A)'C(Q)}).
Since C*(92) is dense in dom(A), (1.32) holds for all ¢ € dom(A), which shows A is dissipative.

Example (Advection equation and Mass transport equation) Consider the advection equa-
tion

u + V- (b(x)u) = v Au.
Let X = LY(Q). Assume
be L>(Q)
Let p € C'(R) be a monotonically increasing function satisfying p(0) = 0 and p(z) =
sign(z), |x| > 1 and pc(s) = p(2) for e > 0. For u € C'(Q)

(Au,u) = /F(u 8271” —n-bu, pe(u))ds + (bu — v Vu, %pé(u) Vu) + (cu, pe(u)).

where ) )
(B, ~pl(w) Vu) < v (Vu, —pl(w) V) + 1 meas({u] < e}).

Assume the inflow condition V%u —n-bu =0 on {s € 0Q : n-b < 0} and otherwise

v 2u = 0. Note that for u € L'(R?)
(, pe(u) = [uly and (¢, pe(w)) — (1, signo(u)) for 1 € LY(Q)
as € — 0. If ¢(x) < w, then it follows that
A —w) |u] < [Au— X Au|. (1.33)

Since H'(Q) is dense in L'(Q), (1.33) holds for u € dom(A). For v = 0 case letting v — 0T
(1.33) holds for dom(A) = {u € L'(Q) : (pu), € L' (Q)}.
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Example (X = L?(12)) Let Au = v Au+0b- Vu with homogeneous boundary condition u = 0
on X = LP(2). Since

(Au,u™) = /Q(Au, lulP~2u) = —(p — 1) /Q(Vu, |u|P~2Vu)

and | |2

2v(p—1)

(p—1v
2

(b Vu, [ulP~u) 2 < [(Vu, [ulP~2Vu) 2 + (Jul?, 1) g2

we have
(Au,u*) < wlul®
for some w > 0.

Example (Fractional PDEs I)
In this section we consider the nonlocal diffusion equation of the form

= Au = /Rd J(2)(u(z + 2) —u(x)) dz.

Or, equivalently
Au = / J(2)(u(x + 2) = 2u(z) + u(z — 2)) dz
(R4)

for the symmetric kernel J in R?. It will be shown that
(g = [ [ I+ =) —u@) 60 +2) o) d= e
R J(RI)+

and thus A has a maximum extension.
Also, the nonlocal Fourier law is given by

Au=V - ( ) J(2)Vu(z + z) dz).
Thus,
(Au, @)1z = /Rd » J(2)Vu(z + z) - Vo(x)dz dx

Under the kernel .J is completely monotone, one can prove that A has a maximal monotone
extension.

1.4 Jump diffusion Model for American option

In this section we discuss the American option for the jump diffusion model
2 o272

U—)ux + —— U + Bu+A=0, u(T,x)=1,

ut—i-(x—Q 5

(AaU—T/J):O, )\SO, UZlb
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where the generator B for the jump process is given by

Bu = / k(s)(u(zx + s) — u(z) + (€* — 1)uy,) ds.
The CMGY model for the jump kernel % is given by
Ce MBIl Y = k*(s)  s>0
k(s) =
Ce Gl Y = k= (s) s<0
Since

/00 k(s)(u(x + s) —u(x))ds = /000 Et(s)(u(z + s) —u(z))ds + /000 k™ (s)(u(x — s) —u(x))ds

— /Ooo w(u(x +5) — 2u(z) + u(x — s)) ds + /Ooo M(u(m +8) —u(r — s))ds.

Thus, I
/ </ K(s)(u(z + 5) — u(x) ds)(z) da
/ / (@ + ) — u(@) @z + 5) — b(x)) ds dz
[ / uls)(u(z + ) — u(s))o(z) d
where
kT (s) 4+ k= (s) B kt(s) — k™ (s)
ks(s) = 5 N AE) 5
and hence
(Bu, ¢) = / / u(z +s) —u(z))(p(z +s) — ¢(s)) dsdx
[ m ) us)o e+ [ wods
where

w= /_Z(es — 1)k(s) ds.

If we equip V = H(R) by

]u\v—/ / (8)|u(x + s) — u(x )\2dsd:c+—/ |ug|? dz,

then A+ B € L(V,V*) and A + B generates the analytic semigroup on X = L*(R).
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1.5 Numerical approximation of nonlocal operator

In this section we describe our higher order integration method for the convolution;

CEt(s)+ k() Ckt(s) — k™ (s)
/0 f(u(x+s)—2u(x)+u(x—s))ds+/ —_—

i 5 (u(z+s)—u(z—s))ds.

For the symmetric part,

/OO 2 (s) u(r + s) — 2u(z) + u(z — s) s,

2

o s
where we have

u(x + 5) — ZU(l’) + U(x - 5) -~ um(ﬂﬂ) 4 %uﬂmx(z) —+ 0(84)

52
We apply the fourth order approximation of u,, by

u(z+h) —2u(z) +ulz—h) 1 u(@+2h)—4du(zr) +6u(r) — du(r — h) + u(z — 2h)

Uz () ~ e 12 e

and we apply the second order approximation of ... (z) by

u(z + 2h) — 4u(z) + 6u(z) — 4u(z — h) + u(z — 2h)
h4 '

Thus, one can approximate

SIS

/h ha(s) u(z +s) — 21;(2x) + u(z — s) s

by
(Uk+1 —2up +up—r 1 upgo — dugg + Bup — dup—y + kaz)
po B2 12 h?
P Unp — Augpr + Guy — dug1 + U2
12 h? ’
where

[N
[Nl

h

2

1
,00:/ s’k,(s)ds and plzﬁ/ s'k,(s) ds.

SIS

The remaining part of the convolution
(k+3)h
/ W(xpsj + s)ks(s) ds
(k=3)h
can be approximated by three point quadrature rule based on

2

S
W(Tprg +8) o~ ulTpag) + U (@hg)s + S0 (2hsg)
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with
Uk4j4+1 — Uk45-1

2h

Ul(iCkﬂ') ~

" Uktj+1 — 2Upyj + Upgj—1
u (@hts) ~ :

72
That is,
(k+3)h
/ W(Tps; + 5)ks(s) ds
(k—3)h
Upqj—1 — Uktjt1 Ujyhy1 — 2Upyj + Ujyp1
~ P P P SR
where

(k+3)h
plg = f(k—g)h ks(s) ds

where

5 1 /5
= 2sk,(s)ds, p3=— 25°ky () ds.
_h h? b

We may use the forth order difference approximation
u(@+h) —u(r—h) u(@+2h) = 2u(r+h)+2u(r — h) —u(z - 2h)
2h 6h
and the second order difference approximation
uw(x + 2h) — 2u(x + h) + 2u(z — h) — u(z — 2h)
B3

Uz () ~

and obtain

/_2 ko(5) (u(x + 5) — u(z — 5)) ds

h
2

Ug41 — Up—1  Ugy2 — 2Ups1 + 2up_1 — Uk—l) " P3 Uk+2 — g1 + 2Up_1 — Up_1

2h 6h 6 h
Example (Fractional PDEs II) Consider the fractional equation of the form

NP2(

/O g0/ (t +0)do = Au, u(0) = uy,

—t
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where the kernel g satisfies
g>0, g€ L'(—o0,0) and non-decreasing.

For example, the case of the Caputo (fractional) derivative has

1

9(0) = m|9|_a~

Define z(t,0) = u(t +6),60 € (—o0,0]. Then, 4z = 2> Thus, we define the linear operator
Aon Z =C((—o0,0]; X) by

Az = 2/(0) with dom(A) = {z' € X : /O g(0)2'(0)do = Az(0)}

Theorem 1.1 Assume A is m-dissipative in a Banach space X. Then, A is dissipative and
RAI—A) = Z for A > 0. Thus, A generates the Cy-semigroup T(t) on Z = C((—o0,0]; X).

Proof: First we show that A is dissipative. For ¢ € dom (A) suppose |¢(0)| > |¢(8)] for all
0 < 0. Define

For all z* € F(¢(0))

(6(0) — 6(0),2) < (6(0)] — [6(O))|6(0)] <0, 6 <0.
Thus, . )
tim ([ g0 = ([ glo)ds.a7) >0 (1.34)

But, since there exists a * € F'(¢(0)) such that
(Az,2*) <0

which contradicts to (1.34). Thus, there exists 6, such that |¢(6y)| = |¢|z. Since (¢(0), z*) <
|6(0)| for x* € F(¢(0)), @ — (¢(0),x*) attains the maximum at 6y and thus (¢'(6y),z*) =0
Hence,

Ap—¢'|z = (Ap(0o) — & (00),2") = A|d(6o)| = A[d]2. (1.35)
For the range condition A¢p — A¢ = f we note that

3(0) = e¥'6(0) +(0)
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where

Thus,
BT -260) = [ g0)0'6)db)
where o
A(N) = /\/ g(0)e* do >0
Thus,

0

6(0) = (A(N) T — A)~? / ¢/ (6)(6) do.

—0oQ
Since A is dissipative and

M=o =feZ (0)=0,
thus ||, < §|f|Z. Thus ¢ = (A — A)-1f € Z. 0

Example (Renewable system) We discuss the renewable system of the form
Be= = Shipo(t) + X fy mo)pile,t) do

(Pi)e + (Pi)e = —pi(x)p, (0, ) = s po(t)

for (po,pi;, 1 < i < d) € Rx LY (0,T)% Here, po(t) > 0 is the total utility and \; > 0 is
the rate for the energy conversion to the i-th process p;. The first equation is the energy
balance law and s is the source = generation —consumption. The second equation is for the
transport (via pipeline and storage) for the process p; and u; > 0 is the renewal rate and
i > 0 is the natural loos rate. {)\; > 0} represent the distribution of the utility to the i-th
process.

Assume at the time ¢ = 0 we have the available utility py(0) = 1 and p; = 0. Then we
have the following conservation

o(t) —i—/otpi(s) ds = 1

if t <L. Let X = Rx L'(0,L)% Let A(u) defined by
L
Ar= (= Npo+ 3 [ o) do () = )
i i 70

with domain

dom(A) = {(po,pi) € R x W (0, L)* : p;(0) = X\ po}

Let

o |s| > €

sign (s) =

o |»

|s| <€
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Then,
(A(po, p), (signg(po), sign, (p)) < —(32; M) lpo| + | [ paps d|

S (T (pi(0) — Wo(pi(L)) — [ pipisign, de)

where
|| |s| > €

Since
sign, — sign,, Y. — |s]

by the Lebesgue dominated convergence theorem, we have

(A(po, p), (signg(po), signy(p)) < 0.

The resolvent equation
A(pOap) = (87 f)a (136)

has a solution - m
pi(x) = Nipoe™Jo i 4 [Femom f(s) ds

L, L
(Zz Ai) (1 — elo Hi)po = s+ fo pipi(x) dx
Thus, A generates the contractive Cy semigroup S(t) on X. Moreover, it is cone preserving
S(t)CT C C* since the resolvent is positive cone preserving.

Example (Bi-domain equation)

The electrical behavior of the cardiac tissue is described by a system consisting of PDEs
coupled with ordinary differential equations which model the ionic currents associated with
the reaction terms. The bi-domain model is a mathematical model for the electrical prop-
erties of cardiac muscle that takes into account the anisotropy of both the intracellular and
extracellular spaces. It is formed of the bi-domain equations. The bi-domain model is now
widely used to model defibrillation of the heart. In this paper we consider the feedback
control for bi-domain model.

The weak form of the the bi-domain equation is given by

(%U, ¢) — (B(Vu+ Vu,),Vo)g + (F(u,v),9) =0

(1.37)
(BVu+ (A + B)Vu., Vip)g = (s,1),

for all (¢,v) € HY(Q) x H(Q)/R, where (u,u.) € H' () x H'(Q2)/R is the solution pair

and s is the control current. We consider the boundary current control:

(5.0) = [ stt.op(o) .
r
Here, A and B are elliptic operators of the form

Bp=V-(0:Ve), Ap=V-(0.V9),
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where 7;, 0. are respectively the intracellular and extracellular conductivity tensors. Note
that one can write (1.37) as

%u(t) _ Lu(t) + Flu(t), v())) + Cs(t) = 0, (1.39)

where

L=A"+BNH"!'=BA+B) A

and

Cs = B(A+B)'s.

That is, v = u + u, satisfies

(A+B)v=Au+s
where

(s,¢) = /Fs(t,x)qb(x) dx

with (s,1) = 0. Thus, £ is an self adjoint elliptic operator on L?(f2). The boundary current
control becomes the distributed control of the form Cs(t).

Example (Second order equation) Let V' C H = H* C V* be the Gelfand triple. Let p be a
bounded bilinear form on H x H, 1 and ¢ be bounded bilinear forms on V' x V. Assume p
and o are symmetric and coercive and p(¢, ¢) > 0 for all ¢ € V. Consider the second order
equation

p(ust, @) + plus, @) + o(u, @) = (f(t),¢) for all ¢ € V. (1.39)
Define linear operators M (mass), D (dampping), K and (stiffness) by

(M¢>¢)H:P(¢,w)> ¢7 ¢€H
(Do, ) = (o, 00) &, v eV
<K¢7 QzD>V*><V = U(¢7 w)v ¢7 ’QZ) eV

We assume p is symmetric and H-coercive, o is symmetric and V-coercive and pu(¢, ¢) > 0
for p € V. Let v = u; and define A on X =V x H by

A(u,v) = (v, ~M ™ (Ku + Dv))

with domain
dom (A) = {(u,v) € X :v €V and Ku+ Dv € H}

The state space X is a Hilbert space with inner product

((u1,v1), (uv)) = o (ur, uz) + p(v1, v2)

and

E(t) = |(u(t),v(®) X = o (u(t), u(t)) + p(v(t), v(t))
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defines the energy of the state x(t) = (u(t),v(t)) € X. First, we show that A is dissipative:
(A(u7 U)a (U’7 ’U))X = O'(’U,, U>+p(_M71<KU’+D,U)7 U) = U(“v U)_U(ua 'U)—ILL(U, ’U) = —IU(’U, U) <0
Next, we show that R(A\] — A) = X. That is, for (f,g) € X the exists a solution (u,v) €

dom (A) satisfying
Au—v=f AIMv+Dv+ Ku= Mg,

or equivalently v = Au — f and
NMu+ADu+ Ku=Mg+AMf+ Df (1.40)
Define the bilinear form a on V x V

a(¢,¥) = N p(¢,9) + A (. ) + o (¢,)

Then, a is bounded and V-coercive and if we let

F(¢) = (M(g+Af)o)u + pl(f, o)

then F' € V*. It thus follows from the Lax-Milgram theory there exists a unique solution
u €V to (1.40) and Dv + Ku € H.
For example, consider the wave equation

%utt + k(x)uy = Au

[24] + qu = yu; at T

In this example we let V = HY(Q)/R and H = L*(Q) and define

o(o,¢) = /Q(ng, V) dx—l—/ro@wds

(g, ) = /a r{a)o.da+ / )60 ds

o) = [ s ovde

Example (Maxwell system for electro-magnetic equations)

el =VxH V-E=p
wHy=—-VxFE V-B=0

with boundary condition
Exn=0
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where F is Electric field, Bu H is Magnetic field and D = € E is dielectric with €, pu is electric
and magnetic permittivity, respectively. Let X = L?(Q)¢ x L?(Q)? with the norm defined by

(B ) = [ (elBF + ) da
The dissipativity follows from
/(E.(VXH)_H.(VxE))dx:/v.<ExH)dx:/ n-(Ex H)ds =0

Q Q 00

Let p =0 and thus V - E = 0. The range condition is equivalent to
GE—FVX%(VXE—Q):JC
The weak form is given by
€+ (Y X BV x6) = (£.9) + (9.7 X 6). (1.41)

forpy e V={HY(Q):V-=0, nxey=0at 9N}. Since |V x ¢|> = |Ve|* for V-9 = 0.

the right hand side of (1.41) defines the bounded coercive quadratic form on V' x V', it follows
from the Lax-Milgram equation that (1.41) has a unique solution in V.

1.6 Dual semigroup

Theorem (Dual semigroup) Let X be a reflexive Banach space. The adjoint S*(¢) of the
Cy semigroup S(t) on X forms the Cy semigroup and the infinitesimal generator of S*(t)
is A*. Let X be a Hilbert space and dom(A*) be the Hilbert space with graph norm and
X_1 be the strong dual space of dom(A*), then the extension S(¢) to X_; defines the Cj
semigroup on X .

Proof: (1) Since for ¢, s > 0

S*(t+s) = (S(s)S(t))" = 5*(t)S*(s)
and
(CL’, S*(t)y - y>X><X* = <S<t)$ - x,y>XXx* — 0.

for x € X and y € X* Thus, S*(t) is weakly star continuous at ¢ = 0 and let B is the
generator of S*(t) as

Br = w* — lim w
Since S(t) (1)
T —x y—y
Ry = @, 2,

for all x € dom(A) and y € dom(B) we have
(A7, y) xxx+ = (7, By) x x x~
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and thus B = A*. Thus, A* is the generator of a w*— continuous semigroup on X*.
(2) Since

Sy -y =4 [ 5 s

0

for all y € Y = dom (A*). Thus, S*(¢) is strongly continuous at ¢ = 0 on Y.

(3) If X is reflexive, dom (A*) = X*. If not, there exists a nonzero yo € X such that
(Yo, 2*)xxx+ = 0 for all z* € dom(A*). Thus, for g = (A — A) lyy (Azg — Azg, 2*) =
(g, \o* — A*z*) = 0. Letting z* = (A [ — A*) "'z} for z, € F(x¢), we have zo = 0 and thus
1o = 0, which yields a contradiction.

(4) X; = dom (A*) is a closed subspace of X* and is a invariant set of S*(¢). Since A* is
closed, S*(t) is the Cy semigroup on X; equipped with its graph norm. Thus,

(S*(t))* is the Cp semigroup on X _; = X
and defines the extension of S(¢) to X_;. Since for x € X C X_; and z* € X*
(S(t)z, ") = (, S™(t)x"),

S(t) is the restriction of (S*(¢))* onto X. O

1.7 Stability

Theorem (Datko 1970, Pazy 1972). A strongly continuous semigroup S(t), ¢ > 0 on a
Banach space X is uniformly exponentially stable if and only if for p € [1,00) one has

/ |S(t)x|P dt < oo for all x € X.
0

Theorem. (Gearhart 1978, Pruss 1984, Greiner 1985) A strongly continuous semi-
group on S(t), t > 0 on a Hilbert space X is uniformly exponentially stable if and only if
the half-plane {\ € C': ReX > 0} is contained in the resolvent set p(A) of the generator A
with the resolvent satisfying

(M — A) VYo < 0

1.8 Sectorial operator and Analytic semigroup

In this section we have the representation of the semigroup S(t) in terms of the inverse
Laplace transform. Taking the Laplace transform of

d

Salt) = A(t) + £ (1

we have

~

== A" 2(0)+ f)
where for A > w

i’:/ e M (t) dt
0
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is the Laplace transform of z(¢). We have the following the representation theory (inverse
formula).

Theorem (Resolvent Calculus) For x € dom(A?) and v > w

1 Y+100 N
=— I— A zd 1.42
S(t)x omi ) e (A ) xdA (1.42)
Proof: Let A, be the Yosida approximation of A. Since Reo(4,) < ] il NS v, we have
— Ko
1 Y+i0co N .
u,(t) = Su(t)r = 57 - eM( AN —A,) xd).
Note that
M - AP =T+ (N - A)A (1.43)
Since .
1 y+ioco At
— —d\=
270 oo A
and ,
Y+100
/ A —w|2d\ < oo,
y—1t00
we have

uniformly in g > 0. Since

_ -1, R D L -1l AV=1 42
AN —-A) z—AN—-A)"z 1+/\M(VI AT (AT — A Az,

A

14+ A
obtain (1.42). O

where v = , {uu(t)} is Cauchy in C(0,T; X) if z € dom(A?). Letting u — 0T, we
Next we consider the sectorial operator. For § > 0 let

i
2

be the sector in the complex plane C. A closed, densely defined, linear operator A on a
Banach space X is a sectorial operator if

Y ={AeC argl\—w) < = +0d}

(A — A7 < for all A € 320

A

For 0 <0 <0 let I' =T, 9 be the integration path defined by
IE={zeC:|z|>6 arg(z —w) =+(5 +0)},
Lo={2€C:|z| =6, |arg(z —w)| < § +0}.
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For 0 < 6§ < ¢ define a family {S(t), ¢ > 0} of bounded linear operators on X by

1

Stz = — / T — A) Lz d), (1.44)
2T Jr

Theorem (Analytic semigroup) If A is a sectorial operator on a Banach space X, then A

generates an analytic (Cp) semigroup on X, i.e., for z € X t — S(¢)z is an analytic function

on (0,00). We have the representation (1.44) for z € X and

M,
|AS(t)z|x < T"|x|x (w=0).

Proof: Since

AS(t)z = —— / AN — AV — ) dA.

Comi

we have

M
sinft

The elliptic operator A defined by the Lax-Milgram theorem defines a sectorial operator
on Hilbert space X.

|AS(t)z| < M/ e M0tz o || = |z|.00
0

Theorem (Sectorial operator) Let V, H are Hilbert spaces and assume H C V*. Let
p(u,v) is bounded bilinear form on H x H and

plu,u) > |ul3 for all u € H
Let a(u,v) to be a bounded bilinear form on V' x V' with
o(u,u) >0 |ul3 for all u € V.
Define the linear operator A by
p(Au, ¢) = a(u, ¢) for all ¢ € V.

Then, for Re A > Owe have

Proof: Let a(u,v) to be a bounded bilinear form on V' x V. Define M € L(H, H) by
(Mu,v) = p(u,v) for all u, v € H

and Ay € L(V,V*) by
(Agu,v) = o(u,v) forv eV
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Then, A= M~1Aj and for f € V* and Re X > 0, (A ] — A)u = M~ f is equivalent to

Ap(u, @) + a(u, @) = (f, @), for all p € V. (1.45)

It follows from the Lax-Milgram theorem that (1.45) has a unique solution, given f € V*
and

Re Ap(u,u) + a(u,u) < |flv|ulv.
Thus,
AT = A) M egeny < =
Also,
M ulz < |flveluly + M fuly, = My | f[7-

for My =1+ 5M2 and thus

E

(AT = A) e <

A2
For fe HCV*®
5 [uf? < Re X p(u,u) + alu,w) < |flulul, (1.46)
and
(Mp(u,w) < | flalula + Mluli, < M| f|ululm
Thus,

ML = A) ey < Bk
Al
Also, from (1.46)
0 fuly < |flalulm < My |fI”.
which implies v
(AL = A) ey < W—12/2

1.9 Approximation Theory

In this section we discuss the approximation theory for the linear Cyy-semigroup. Equivalence
Theorem (Lax-Richtmyer) states that for consistent numerical approximations, stability and
convergence are equivalent. In terms of the linear semigroup theory we have

Theorem (Trotter-Kato theorem) Let X and X,, be Banach spaces and A and A, be
the infinitesimal generator of Cy semigroups S(t) on X and S, (t) on X,, of G(M,w) class.
Assume a family of uniformly bounded linear operators P, € £L(X, X,,) and E,, € L(X,, X)
satisfy

P.E,=1 |E,Pyx—z|x —»0forallze X (1.47)

Then, the followings are equivalent.
(1) there exist a A\g > w such that for all x € X

|E,(MNo I — A,) PPur — (VNI — A)7lz|x =0 asn — oo, (1.48)
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(2) For every x € X and T' > 0
|E,Sn(t) Py — S(t)z|x —  asn — oc.

uniformly on ¢ € [0, 7].

Proof: Since for A > w
By — A) ' Pyz — (AT — A) Lz = / EoS, () Poz — S(t)a dt
0

(1) follows from (2). Conversely, from the representation theory

y+ioco
EoS,(t)Por — St — —— (En(M — A P — (M — A)'ar) dA

2T )y

where

A=A = AT —A) = (A= XA)N — A) " (Ao — A

Thus, from the proof of Theorem (Resolvent Calculus) (1) holds for z € dom(A?). But since
dom(A?) is dense in X, (2) implies (1). O

Remark (Stability) If A, is uniformly dissipative:

Ay, — Aptiy]| > (A — w) |uy
for all u,, € dom(A,,) and some w > 0, then A,, generates w contractive semigroup S, (t) on
X,

Remark (Consistency)
(M — Ap)u, = P, f

Py — A)u = P, f

we have

(AN —A,)(Pou—uy,)+ P,Au— A, Pyu =0

Thus
|Pou — uy,| < M |P,Au — A, Pyu|

The consistency(1.48) follows from
|P,Au— A, P,ul — 0

for all w in a dense subset of dom(A).

Corollary Let the assumptions of Theorem hold. The statement (1) of Theorem is equivalent
to (1.47) and the followings:

(C.1) there exists a subset D of dom(A) such that D = X and (\gI — A)D = X.

(C.2) for all u € D there exists a sequence 4, € dom(A,) such that lim E, 4, = u and
lim E, A, u, = Au.
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Proof: Without loss of generality we can assume Ay = 0. First we assume that condition (1)
hold. We set D = dom(A) and thus AD = X. For u € dom(A) we set @, = A,'P,Au and
u= A"1'z. Then,

By, —u=E,A'Px — A'r =0

and
E, A, — Au= E,A, A Py — AA ‘e = E,Pyx — 1 — 0

as n — oco. Hence conditions (C.1)—(C.2) hold.
Conversely, we assume conditions (C.1)—(C.2) hold. For z € AD we choose u € D such
that u = A~'z and set u,, = A, 'P,x = A ' P, Au. We then for u we choose u, according to

(C.2). Thus, we obtain
|tn, — Pou| = | Py (Eyty, —u)| < M |Eyt, —u|l — 0
as n — oo and
|ty — upn| < |A (AT, — PyAu)| < AP E, Ay, — Aul — 0
as noo. It thus follows that |u, — P,u| — 0 as n — co. Since
E,A'P, — A7 = E,(A,'P,A— P)A™ + (B, P, — )A™Y,
we have
|E A Pur — A7 2| < |Ey(u, — Pou)| + | EnPyu — u| < M |u, — Pyu| + | EpPou —u| — 0

asn —ooforallx € AD. [J
Example 1 (Trotter-Kato theoarem) Consider the heat equation on 2 = (0,1) x (0,1):

d
) = Au, u(0,2) = uo(x)

with boundary condition u = 0 at the boundary 0€2. We use the central difference approxi-
mation on uniform grid points: (ih, j h) € Q with mesh size h = &:

iui’j(t) = Apu = l(uwl’j A uiil’j) l(uivjﬂ — Uiy Uij — Ui,jfl)

dt h h h h h B h

for 1 <4, j < ny, where u;9 = u;, = ul,j = u,; = 0 at the boundary node. First, let
X =C(Q) and X,, = R™=D? with sup norm. Let E,u;; = the piecewise linear interpolation
and (P,u);; = u(ih,jh) is the point-wise evaluation. We will prove that A, is dissipative
on X,. Suppose u;; = |up|o. Then, since

Aui,j - (Ahu)i,j = fij
and ]
—(Ahu)m‘ = _(4ui,j — Uit1,j — Uij4+1 — Ui—1,5 — ui,jfl) >0

h2
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we have

i

0<w,;<

Thus, A, is dissipative on X, with sup norm. Next X = L?(Q) and X,, with 2 norm. Then,

Wi 7 — WUj—1 45 Ui+ — Ui i
(—Ahun,un) = § | 1,] - % LJ|2_{_| 2,] - @, 1|2 2 0
,J

and thus Ay is dissipative on X,, with ¢2 norm.

Example 2 (Galerkin method) Let V' C H = H* C V* is the Gelfand triple. Consider the
parabolic equation

p(%un, ¢) = aun, @) (1.49)

for all ¢ € V', where the p is a symmetric mass form

p(6,0) > c|oly

and a is a bounded coercive bilinear form on V' x V such that

a(e, ¢) > 8|9l

Define A by
p(Au, @) = a(u, ¢) for all ¢ € V.

By the Lax-Milgram theorem
M—-—Au=feH

has a unique solution satisfying
)‘p(uu d)) - (I(U, ¢) = (f7 ¢)H
for all ¢ € V. Let dom(A) = (I — A)"'H. Assume

Vo ={u= Z apPr, ¢p € V}isdensein V

Consider the Galerkin method, i.e. u,(t) € V,, satisfies

d

pgun(t). 6) = alun, 0).

Since for u = (AT — A)~'f and u, €V,
Ap(tn, @) + a(un, @) = (f, ) for ¢ € V,,

Ap(tin, @) + altin, ¢) = Ap(tin — u, ¢) + a(tn — u, ¢) + (f, ¢) for ¢ € V,,

Ap(Up, — Uy @) + AUy — Up, @) = Ap(Uy, — u, @) + aty, — u, @).
Thus,

M
[tun, — Up| < — |t — uly.

)
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Example 2 (Discontinuous Galerkin method) Consider the parabolic system for v = 4 €
LQ(Q)d

9,
U= V- (a(z)Vu) + c(z)u

where a € R? x d is symmetric and

alg)? < (& a(x),pa <alé)?, € R’

for 0 < a < @ < 0o. The region €2 is dived into n non-overlapping sub-domains €2; with
boundaries 9€); such that € = UQ;. At the interface I';; = 0€); N 0€); define

[u]] = ulag, — ulag,
<<u>>= ;(ulog, +ula, ).
The approximate solution wuy(t) in
Vi = {up € L*(Q) : uy, is linear on €;}.

Define the bilinear for on Vj, x V},

>

n(u,v) Z/ x)Vu, Vv) dz— Z/ << n-(aVu) >> [[v]]+ << n-(aVv) >> [[u]]+=

1>7

([u]][[v]] ds),

whee h is the meshsize and S > 0 is sufficiently large. If + on the third term ay, is symmetric
and for the case — then a; enjoys the coercivity

(u,u >Z/ z)Vu,Vu)dz, € u € V,

regardless of § > 0.
Example 3 (Population dynaims) The transport equation

&+ g+ ma)p(r,t) =0

— [ Bla)p(a,t) de

Define the difference approximation

A = (EE = magp, 1T <) 0= 3 Ao

Then,
(Anp, 519”0 Z m; — Bz |pz| < 0

Thus, A, on L'(0,1) is dissipative.
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Example 4 (Yee’s scheme)
Consider the two dimensional Maxwell’s equation. Consider the staggered grid; i.e. F =
is defined at the center of the

(EZ1 s E?j 1) is defined at the the sides and H = H, 1 i1
—3> WJ—3 272
cell Q;; = ((i — 1)h,ih) x ((j — 1)h, jh).
H 1. 1-H 1.
L oag P ey
i=g.d At i—4,j h
—H. 1 . 1
d 2 _ Tgats i+
€i7]+§ th@h]J,-% - h (150)
p E? B El | —E! L
— Y73 *7J73 ‘79 T2
Hi 151 EHl*@J*l - R - h )
where E! | :O,j—O,]:NandE?jilj 0,i=0,j=N
27 I 27
Since
N N _ 2
Yy CHiygy — A 2Tl Hivygry = Hioyjiih
h 1_17.7 E s 01
i=1 j=1 Lits
Ei2j—l _Ez 1j-1 El—lj _Ezl—lg—1
I3 2 2 2 H =0
1. 1 =
+( A h ) i—5.0—3%

(1.50) is uniformly dissipative. The range condition A\ I — A, = (f, g) € X}, is equivalent to
the minimization for E

. 1 2 ij—% i—1,j—3% o i—%.j i—%.4—1 9
min §<Ez—§,jE L + ez,j+%E@'7j+%) + §,uij (| i | + | n | )
g 191 1—H. 1
(£l 1 Timg.a+ i—5.J—3 1 . 2 1 i+35.0+35 i—5.0—+35 2
(f1*§J Hi,j h ’E %7] (fl'JJr% Hi,j h ) iijr%.

Example 5 Legende-Tau method

2 Dissipative Operators and Semigroup of Nonlinear
Contractions

3 Evolution equations
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