Quiz I, Friday 19, 9:30-12:AM

Come to the class and discuss the problems
write your own report

<u>Problem 1</u> Let X = C[0, 1] be the space of continuous functions with sup norm. Then show that $X^* = BV(0, 1) =$ the space of (right continuous) bounded variation functions on [0, 1], i.e. for every $f \in X^*$ there exists $\nu \in BV(0, 1)$ such that $f(x) = \int_0^1 x(t) d\nu(t)$ (Riemann Stieltjes integral) for all $x \in X$. $\delta_{t_0} \in X^*$ (i.e. $\delta_{x_0}(\phi) = \phi(t_0)$ for $\phi \in X$). and $\delta_{t_0} \in F(x)$ for $t_0 \in [0, 1]$ satisfying $x(t_0) = \max_{t \in [0, 1]} |x(t)|$.

<u>Problem 2</u> Let A be a closed linear operator on a Banach space. D(A) = dom(A) is a Banach space with the graph norm

$$|x|_{D(A)} = |x|_X + |Ax|_X.$$

<u>Problem</u> Let $c \in L^{\infty}(0,1)$. Define the linear operators $A_1 u = -(c(x)u)_x$ in $X = L^1(0,1)$. and $A_2 u = c(x)u_x$ in $X = L^p(0,1)$.

(a) Find $dom(A_2)$ so that A_2 is ω -dissipative. — Hint: $c' \leq M$ (bounded above) if $p > \infty$. If $p = \infty$, then no condition is necessary. Inflow c(0) > 0 and Outflow $c(0) \leq 0$.

Find $dom(A_1)$ so that A_1 is ω -dissipative. — Hint Assume c > 0 (WLOG). Since $cu \in C[0, 1]$ one can decompose [0, 1] the sub intervals (t_i, t_{i+1}) on which cu > 0 or cu < 0 and $cu(t_i) = 0$ and let $u^* = sign_0(cu) = sign_0(u)$. Thus, we have

$$(A_1u, u^*) = \int_0^1 (-(cu)_x u^*(x)) \, dx = c(0)|u(0)| - c(1)|u(1)|.$$

(c) In general show that $dom(A_1)$ and $dom(A_2)$ are different (Hint: piecewise constant). <u>**Remark**</u> Also, please study the Appendix.