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Everyone knows calculus deals with deterministic objects. On the other

hand stochastic calculus deals with random phenomena. The theory was intro-

duced by Kiyosi Ito in the 40’s, and therefore stochastic calculus is also called

Ito calculus. Besides its interest in mathematics, it has been used extensively

in statistical mechanics in physics, the filter and control theory in engineering.

Nowadays it is very popular in the option price and hedging in finance. For

example the well-known Black-Scholes model is

dS(t) = rS(t)dt + σS(t)dB(t)

where S(t) is the stock price, σ is the volatility, and r is the interest rate,

and B(t) is the Brownian motion. The most important notion for us is the

Brownian motion. As is known the botanist R. Brown (1828) discovered certain

zigzag random movement of pollens suspended in liquid. A. Einstein (1915)

argued that the movement is due to bombardment of particle by the molecules

of the fluid. He set up some basic equations of Brownian motion and use them

to study diffusion. It was N. Wiener (1923) who made a rigorous study of the

Brownian motion using the then new theory of Lebesgue measure. Because of

that a Brownian motion is also frequently called a Wiener process.

Just like calculus is based on the fundamental theorem of calculus, the Ito

calculus is based on the Ito Formula: Let f be a twice differentiable function

on R, then

f(B(t))− f(B(0)) =

∫ T

0

f ′(B(t))dB(t) +
1

2

∫ T

0

f ′′(B(t))dt

where B(0) = 0 to denote the motion starts at 0. There are formula for

integration, for example, we have
∫ T

0

B(t)dB(t) =
1

2
B(t)2 − 1

2
T ;

∫ T

0

tdB(t) = TB(T )−
∫ T

0

B(t)dt.

In this course, the prerequisite is real analysis and basic probability theory.

In real analysis, one needs to know σ-fields, measurable functions, measures
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and integration theory, various convergence theorems, Fubini theorem and the

Radon-Nikodym theorem. We will go through some of the probability theory

on conditional expectation, optional r.v. (stopping time), Markov property,

martingales ([1], [2]). Then we will go onto study the Brownian motion ([2],

[3], [5]), the stochastic integration and the Ito calculus ([3], [4], [5]).
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Chapter 1

Basic Probability Theory

1.1 Preliminaries

Let Ω be a set and let F be a family of subsets of Ω, F is called a field if it

satisfies

(i) ∅, Ω ∈ F ;

(ii) for any A ∈ F , Ac ∈ F ;

(iii) for any A, B ∈ F , A ∪B ∈ F (hence A ∩B ∈ F).

It is called a σ-field if (iii) is replaced by

(iii)′ for any {An}∞n=1 ⊂ F , ∪∞n=1An ∈ F (hence ∩∞n=1An ∈ F).

If Ω = R and F is the smallest σ-field generated by the open sets, then we

call it the Borel field and denote by B.

A probability space is a triple (Ω,F , P ) such that F is a σ-field in Ω, and

P : F → [0, 1] satisfies

5
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(i) P (Ω) = 1

(ii) countable additivity : if {An}∞n=1 ⊆ F is a disjoint family, then

P (
∞⋃

n=1

An) =
∞∑

n=1

P (An).

We call Ω a sample space, A ∈ F an event (or measurable set) and P a

probability measure on Ω; an element ω ∈ Ω is called an outcome.

Theorem 1.1.1. (Caratheodory Extension Theorem) Let F0 be a field of

subsets in Ω and let F be the σ− field generated by F0. Let P : F0 → [0, 1]

satisfies (i) and (ii) (on F0). Then P can be extended uniquely to F , and

(Ω,F , P ) is a probability space.

The proof of the theorem is to use the outer measure argument.

Example 1. Let Ω = [0, 1], let F0 be the family of set consisting of finite

disjoint unions of half open intervals (a, b] and [0, b], Let P ([a, b)) = |b − a|.
Then F is the Borel field and P is the Lebesgue measure on [0, 1].

Example 2. Let {(Ωn,Fn, Pn)}n be a sequence of probability spaces. Let

Ω =
∏∞

n=1 Ωn be the product space and let F0 be the family of subsets of the

form E =
∏∞

n=1 En, where En ∈ Fn, En = Ωn except for finitely many n.

Define

P (E) =
∞∏

n=1

P (En)

Let F be the σ-field generated F0, then (Ω,F , P ) is the standard infinite

product measure space.

Example 3. (Kolmogorov Extension Theorem) Let Pn be probability mea-

sures on (
∏n

k=1 Ωk,Fn) satisfying the following consistency condition: for m ≤
n

Pn ◦ πnm
−1 = Pm
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where πnm(x1 · · · xn) = (x1 · · · xm). On Ω =
∏∞

k=1 Ωk, we let F0 be the field of

sets F = E ×∏∞
k=n+1 Ωk, E ∈ Fn and let

P (F ) = Pn(E).

Then this defines a probability spaces (Ω, F , P ), where F is the σ-field gen-

erated by F0.

Remark: The probability space in Example 2 is the underlying space for

a sequence of independent random variables. Example 3 is for more general

sequence of random variables (with the consistency condition).

A random variable (r.v.) X on (Ω,F) is an (extended) real valued function

X : (Ω,F) → R such that for any Borel subset B of R,

X−1(B) = {ω : X(ω) ∈ B} ∈ F .

(i.e. X is F -measurable). We denote this by X ∈ F . It is well known that

− For X ∈ F , X is either a simple function (i.e.,
∑n

k=1 akχAk
(ω) where

Ak ∈ F), or is the pointwise limit of a sequence of simple functions.

− Let X ∈ F and g is a Borel measurable function, then g(X) ∈ F .

− If {Xn} ⊆ F and limn→∞ Xn = X, then X ∈ F .

− Let FX be the σ-field generated by X, i.e., the sub-σ-field {X−1(B) : B ∈
B}. Then for any Y ∈ FX , Y = ϕ(X) for some extended-valued Borel function

ϕ on R.

Sketch of proof ([1, p.299]): First prove this for simple r.v. Y so that

Y = φ(X) for some simple function φ. For a bounded r.v. Y ≥ 0, we can

find a sequence of increasing simple functions {Yn} such that Yn = φn(X) and
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Yn ↗ Y . Let φ(x) = limnφn(x), hence Y = φ(X). Then prove Y for the

general case.

A r.v. X : (Ω,F) → R induces a distribution (function) on R:

F (x) = FX(x) = P (X ≤ x).

It is a non-decreasing, right continuous function with limn→−∞ F (x) = 0,

limn→∞ F (x) = 1. The distribution defines a measure µ

µ((a, b]) = F (b)− F (a)

(use the Caratheodory Extension Theorem here). More directly, we can define

µ by

µ(B) = P (X−1(B)) , B ∈ B.

The jump of F at x is F (x)−F (x−) = P (X = x). A r.v. X is called a discrete

if F is a jump function; X is called a continuous r.v. if F is continuous, i.e.,

P (X = x) = 0 for each x ∈ R, and X is said to have a density function f(x) if

F is absolutely continuous with the Lebesgue measure and f(x) = F ′(x) a.e.,

equivalently F (x) =
∫ x

−∞ f(y)dy.

For two random variables X,Y on (Ω,F), the random vector (X,Y ) :

(Ω,F) → R2 induces a distribution F on R2

F (x, y) = P (X ≤ x, Y ≤ y)

and F is called the joint distribution of (X,Y ), the corresponding measure µ

is given by

µ((a, b]× (c, d]) = F (b, d)− F (a, d)− F (b, c) + F (a, c),

Similarly we can define the joint distribution F (x1 · · · xn) and the correspond-

ing measure.
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For a sequence of r.v., {Xn}∞n=1, there are various notions of convergence.

(a) Xn → X a.e. (or a.s.) if limn→∞ Xn(ω) = X(ω) (pointwise) for ω ∈ Ω\E
where P (E) = 0.

(b) Xn → X in probability if for any ε > 0, limn→∞ P (|Xn −X| ≥ ε) = 0.

(c) Xn → X in distribution if Fn(x) → F (x) at every point x of continuity.

It is equivalent to µn → µ vaguely i.e., µn(f) → µ(f) for all f ∈ C0(R), the

space of continuous functions vanish at ∞ (detail in [1]).

The following relationships are basic ([1] or Royden): (a) ⇒ (b) ⇒ (c);

(b) ⇒ (a) on some subsequence. On the other hand we cannot expect (c)

to imply (b) as the distribution does not determine X. For example consider

the interval [0, 1] with the Lebesgue measure, the r.v.’s X1 = χ[0, 1
2
], X2 =

χ[ 1
2
,1], X3 = χ[0, 1

4
] + χ[ 3

4
,1] all have the same distribution.

The expectation of a random variable is defined as

E(X) =

∫

Ω

X(ω)dP (ω) =

∫ ∞

−∞
xdF (x) (=

∫ ∞

−∞
xdµ(x))

and for a Borel measurable h, we have

E(h(X)) =

∫

Ω

h(X(ω))dP (ω) =

∫ ∞

−∞
h(x)dF (x).

The most basic convergence theorems are:

(a) Fatou lemma:

Xn ≥ 0, then E(limn→∞Xn) ≤ limn→∞E(Xn).

(b) Monotone convergence theorem:

Xn ≥ 0, Xn ↗ X, then lim
n→∞

E(Xn) = E(X).
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(c) Dominated convergence theorem:

|Xn| ≤ Y, E(Y ) < ∞ and Xn → X a.e., then lim
n→∞

E(Xn) = E(X).

We say that Xn → X in Lp, p > 0 if E(|X|p) < ∞ and E(|Xn −X|p) → 0

as n →∞. It is known that Lp convergence implies convergence in probability.

The converse also holds if we assume further E(|Xn|p) → E(|X|p) < ∞ ([1],

p.97).

Two events A,B ∈ F are said to be independent if

P (A ∩B) = P (A)P (B).

Similarly we say that the events A1, · · ·An ∈ F are independent if for any

subsets Aj1 , · · · , Ajk
,

P (
k⋂

i=1

Aji
) =

k∏
i=1

P (Aji
).

Two sub-σ-fields F1 and F2 are said to be independent if any choice of sets of

each of these σ-fields are independent. Two r.v.’s X, Y are independent if the

σ-fields FX and FY they generated are independent. Equivalently we have

P (X ≤ x, Y ≤ y) = P (X ≤ x) P (Y ≤ y),

(i.e., the joint distribution equals the product of their marginal distributions).

We say that X1 · · ·Xn are independent if for any Xi1 · · ·Xik , their joint distri-

bution is a product of their marginal distributions.

Proposition 1.1.2. Let X, Y be independent, then f(X) and g(Y ) are inde-

pendent for any Borel measurable functions f and g.
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Exercises

1. Can you identify the interval [0, 1] with the Lebesgue measure to the prob-

ability space for tossing a fair coin repeatedly?

2. Prove Proposition 1.1.2.

3. Suppose that supn |Xn| ≤ Y and E(Y ) < ∞. Show that

E(limn→∞Xn) ≥ limn→∞E(Xn)

4. If p > 0 and E(|X|p) < ∞, then limn→∞ xpP (|X| > x) = 0. Conversely, if

limn→∞ xpP (|X| > x) = 0, then E(|X|p−ε) < ∞ for 0 < ε < p .

5. For any d.f. F and any a ≥ 0, we have
∫ ∞

−∞
(F (x + a)− F (x))dx = a

6. Let X be a positive r.v. with a distribution F , then
∫ ∞

0

(1− F (x)) dx =

∫ ∞

0

x dF (x).

and

E(X) =

∫ ∞

0

P (X > x) dx =

∫ ∞

0

P (X ≥ x) dx

7. Let {Xn} be a sequence of identically distributed r.v. with finite mean,

then

lim
n

1

n
E( max

1≤j≤n
|Xj|) = 0.

(Hint: use Ex.6 to express the mean of the maximum)

8. If X1, X2 are independent r.v.’s each takes values +1 and −1 with prob-

ability 1
2
, then the three r.v.’s {X1, X2, X1X2} are pairwise independent but

not independent.

9. A r.v. is independent of itself if and only if it is constant with probability

one. Can X and f(X) be independent when f ∈ B?



12 CHAPTER 1. BASIC PROBABILITY THEORY

10 . Let {Xj}n
j=1 be independent with distributions {Fj}n

j=1. Find the distri-

bution for maxj Xj and minj Xj.

11. If X and Y are independent and E(|X + Y |p) < ∞ for some p > 0, then

E(|X|p) < ∞ and E(|Y |p) < ∞.

12. If X and Y are independent, E(|X|p) < ∞ for some p ≥ 1, and E(Y ) = 0,

then E(|X + Y |p) ≥ E(|X|p).
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1.2 Conditional Expectation

Let Λ ∈ F with P (Λ) > 0, we define

P (E|Λ) =
P (Λ ∩ E)

P (Λ)
where P (Λ) > 0.

It follow that for a discrete random vector (X, Y ),

P (Y = y|X = x) =





P (Y = y, X = x)

P (X = x)
, if P (X = x) > 0 ,

0 , otherwise.

Moreover if (X, Y ) is a continuous random variable with joint density f(x, y),

the conditional density of Y given X = x is

f(y|x) =





f(x, y)

fX(x)
, if fX(x) > 0 ,

0 , otherwise .

where fX(x) =
∫∞
−∞ f(x, y)dy is the marginal density. The conditional expec-

tation of Y given X = x is

E(Y |X = x) =

∫ ∞

−∞
yf(y|x)dy.

Note that

g(x) := E(Y |X = x) is a function on x ,

and hence

g(X(·)) := E(Y |X(·)) is a r.v. on Ω . (1.2.1)

In the following we have a more general consideration for the conditional

expectation (and also the conditional probability): E(Y |G) where G is a sub-

σ-field of F .

First let us look at a special case where G is generated by a measurable

partition {Λn}n of Ω (each member in G is a union of {Λn}n). Let Y be an
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integrable r.v., then

E(Y |Λn) =

∫

Ω

Y (ω)dPΛn(ω) =
1

P (Λn)

∫

Λn

Y (ω)dP (ω). (1.2.2)

(Here PΛn(·) = P ( · ∩ Λn)
P (Λn)

is a probability measure for P (Λn) > 0). Consider

the random variable (as in (1.2.1))

Z(·) = E(Y |G)(·) :=
∑

n

E(Y |Λn)χΛn(·) ∈ G.

It is easy to see that if ω ∈ Λn, then Z(ω) = E(Y |Λn), and moreover

∫

Ω

E(Y |G)dP =
∑

n

∫

Λn

E(Y |G)dP =
∑

n

E(Y |Λn)P (Λn) =

∫

Ω

Y dP .

We can also replace Ω by Λ ∈ G and obtain

∫

Λ

E(Y |G)dP =

∫

Λ

Y dP ∀ Λ ∈ G.

Recall that for µ, ν two σ-finite measures on (Ω,F) and µ ≥ 0, ν is called

absolutely continuous with respect to µ (ν ¿ µ) if for any Λ ∈ F and

µ(Λ) = 0, then ν(Λ) = 0. The Radon-Nikodym theorem says that there exists

g =
dν

dµ
such that

ν(Λ) =

∫

Λ

gdµ ∀ Λ ∈ F .

Theorem 1.2.1. If E(|Y |) < ∞ and G is a sub-σ-field of F , t hen there

exists a unique G-measurable r.v., denote by E(Y |G) ∈ G, such that

∫

Λ

Y dP =

∫

Λ

E(Y |G) dP ∀ Λ ∈ G.

Proof. Consider the set-valued function

ν(Λ) =

∫

Λ

Y dP Λ ∈ G.
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Then ν is a “signed measure” on G. It satisfies

P (Λ) = 0 =⇒ ν(Λ) = 0.

Hence ν is absolutely continuous with respect to P . By the Radon-Nikodym

theorem, the derivative g = dν
dP
∈ G and

∫

Λ

Y dP = v(Λ) =

∫

Λ

gdP ∀ Λ ∈ G.

This g is unique: for if we have g1 ∈ G satisfies the same identity,

∫

Λ

Y dP = v(Λ) =

∫

Λ

g1dP ∀ Λ ∈ G.

Let Λ = {g > g1} ∈ G, then
∫
Λ
(g − g1)dP = 0 implies that P (Λ) = 0. We can

reverse g and g1 and hence we have P (g 6= g1) = 0. It follows that g = g1 G-a.e.

Definition 1.2.2. Given an integrable r.v. Y and a sub-σ-field G, we say

that E(Y |G) is the conditional expectation of Y with respect to G (also denote

by EG(Y ) ) if it satisfies

(a) E(Y |G) ∈ G;

(b)
∫
Λ

Y dP =
∫
Λ

E(Y |G)dP ∀ Λ ∈ G.

If Y = χ∆ ∈ F , we define P (∆|G) = E(χ∆|G) and call this the conditional

probability with respect to G.

Note that the conditional probability can be put in the following way:

(a)′ P (∆|G) ∈ G;

(b)′ P (∆ ∩ Λ) =
∫

Λ
P (∆|G)dP ∀ Λ ∈ G.

It is a simple exercise to show that the original definition of P (∆|Λ) agrees

with this new definition by taking G = {∅, Λ, Λc, Ω}.
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Note that E(Y |G) is “almost everywhere” defined, and we call one such

function as a “version” of the conditional expectation. For brevity we will not

mention the “a.e.” in the conditional expectation unless necessary. If G is the

sub-σ-field FX generated by a r.v. X, we write E(Y |X) instead of E(Y |FX).

Similarly we can define E(Y |X1, · · · , Xn).

Proposition 1.2.3. For E(Y |X) ∈ FX , there exists an extended-valued Borel

measurable ϕ such that E(Y |X) = ϕ(X), and ϕ is given by

ϕ =
dλ

dµ
,

where λ(B) =
∫

X−1(B)
Y dP, B ∈ B, and µ is the associated probability of the

r.v. X on R.

Proof. Since E(Y |X) ∈ FX , we can write E(Y |X) = ϕ(X) for some Borel

measurable ϕ (see §1). For Λ ∈ F , there exists B ∈ B such that Λ = X−1(B).

Hence

∫

Λ

E(Y |X)dP =

∫

Ω

χB(X)ϕ(X)dP =

∫

R
χB(X)ϕ(X)dµ =

∫

B

ϕ(x)dµ

On the other hand by the definition of conditional probability,

∫

Λ

E(Y |X)dP =

∫

X−1(B)

Y dP = λ(B).

It follows that λ(B) =
∫

B
ϕ(x)dµ for all B ∈ B. Hence ϕ =

dλ

dµ
. ¤

The following are some simple facts of the conditional expectation:

− If G = {φ, Ω}, then E(Y |G) is a constant function and equals E(Y ).

− If G = {φ, Λ, Λc, Ω}, then E(Y |G) is a simple function which equals

E(Y |Λ) on Λ, and equals E(Y |Λc) on Λc,
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− If G = F or Y ∈ G, then E(Y |G) = Y .

− If (X,Y ) has a joint density function, then E(Y |X) coincides with the

expression in (1.2.1).

Using the defining relationship of conditional expectation, we can show

that the linearity, the basic inequalities and the convergence theorems for E(·)
also hold for E(· |G). For example we have

Proposition 1.2.4. (Jensen inequality) If ϕ is a convex function on R, and

Y and ϕ(Y ) are integrable r.v., then for each sub-σ-algebra G,

ϕ
(
E(Y |G)

) ≤ E
(
ϕ(Y )|G)

Proof. If Y is a simple r.v., then Y =
∑n

j=1 yjχΛj
with Λ ∈ F . It follows that

E(Y |G) =
n∑

j=1

yjE(χΛj
|G) =

n∑
j=1

yjP (YΛj
|G)

and

E(ϕ(Y )|G) =
n∑

j=1

ϕ(yj)P (YΛj
|G).

Since
∑n

j=1 P (Λj|G) = 1, the inequality holds by the convexity of ϕ.

In general we can find a sequence of simple r.v. {Ym} with |Ym| ≤ |Y |
and Ym → Y , then apply the above together with the dominated convergence

theorem. ¤

Proposition 1.2.5. Let Y and Y Z be integrable r.v. and Z ∈ G, then we

have

E(Y Z|G) = ZE(Y |G).
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Proof. It suffices to show that for Y, Z ≥ 0

∫

Λ

ZE(Y |G)dP =

∫

Λ

ZY dP ∀ Λ ∈ G.

Obviously, this is true for Z = χ∆, ∆ ∈ G. We can pass it to the simple

r.v. Then use the monotone convergence theorem to show that it hold for all

Z ≥ 0, and then the general integrable r.v. ¤

Proposition 1.2.6. Let G1 and G2 be sub-σ-fields of F and G1 ⊆ G2. Then

for Y integrable r.v.

E(E(Y |G2)|G1) = E(Y |G1) = E(E(Y |G1)|G2). (1.2.3)

Moreover

E(Y |G1) = E(Y |G2) iff E(Y |G2) ∈ G1. (1.2.4)

Proof. Let Λ ∈ G1, then Λ ∈ G2. Hence

∫

Λ

E(E(X|G2)|G1)dP =

∫

Λ

E(Y |G2)dP =

∫

Λ

Y dP =

∫

Λ

E(Y |G1)dP,

and the first identity in (1.2.3) follows. The second identity is by E(Y |G1) ∈ G2

(recall that Z ∈ G implies E(Z|G) = Z).

For the last part, the necessity is trivial, and the sufficiency follows from

the first identity. ¤

As a simple consequence, we have

Corollary 1.2.7. E(E(Y |X1, X2)|X1) = E(Y |X1) = E(E(Y |X1)|X1, X2).



1.2. CONDITIONAL EXPECTATION 19

Exercises

1. (Bayes’ rule) Let {Λn} be a F -measurable partition of Ω and let E ∈ F
with P (E) > 0. Then

P (Λn|E) =
P (Λn) P (E|Λn)∑
n P (Λn)P (E|Λn)

.

2. If the random vector (X, Y ) has probability density p(x, y) and X is inte-

grable, then one version of E(X|X + Y = z) is given by

∫
xp(x, z − x)dx

/ ∫
p(x, z − x)dx .

3. Let X be a r.v. such that P (X > t) = e−t, t > 0. Compute E(X|X ∨ t)

and E(X|X ∧ t) for t > 0. ( Here ∨ and ∧ mean maximum and minimum

respectively.

4. If X is an integrable r.v., Y is a bounded r.v., and G is a sub-σ-field, then

E
(
E(X|G)Y

)
= E

(
XE(Y |G)

)
.

5. Prove that var(E(Y |G)) ≤ var(Y ).

6. Let X,Y be two r.v., and let G be a sub-σ-field. Suppose

E(Y 2|G) = X2, E(Y |G) = X,

then Y = X a.e.

7. Give an example that E(E(Y |X1)|X2) 6= E(E(Y |X2)|X1). (Hint: it suf-

fices to find an example E(X|Y ) 6= E(E(X|Y )|X) for Ω to have three points).
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1.3 Markov Property

Let A be an index set and let {Fα : α ∈ A} be family of sub-σ-fields of F . We

say that the family of Fα’s are conditionally independent relative to G if for

any Λi ∈ Fαi
i = 1, · · · , n,

P (
n⋂

j=1

Λj|G) =
n∏

j=1

P (Λi|G). (1.3.1)

Proposition 1.3.1. For α ∈ A, let F (α) denote the sub-σ-field generated by

Fβ, β ∈ A\{α}. Then the family {Fα}α are conditionally independent relative

to G if and only if

P (Λ| F (α) ∨ G) = P (Λ| G), Λ ∈ Fα

where F (α) ∨ G is the sub-σ-field generated by F (α) and G.

Proof. We only prove the case A = {1, 2}, i.e.,

P (Λ| F2 ∨ G) = P (Λ| G), Λ ∈ F1. (1.3.2)

The general case follows from the same argument. To prove the sufficiency, we

assume (1.3.2). To check (1.3.1), let Λ ∈ F1, then for M ∈ F2,

P (Λ ∩M |G) = E(P (Λ ∩M |F2 ∨ G)|G)

= E(P (Λ| F2 ∨ G)χM |G)

= E(P (Λ| G)χM |G) (by (1.3.2))

= P (Λ| G)P (M | G).

Hence F1 and F2 are G-independent.

To prove the necessity, suppose (1.3.1) holds, we claim that for ∆ ∈ G,

Λ ∈ F1 and M ∈ F2,
∫

M∩∆

P (Λ|G) dP =

∫

M∩∆

P (Λ| F2 ∨ G) dP
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Since the sets of the form M∩∆ generate G∨F2, we have P (Λ|G) = P (Λ| F2∨
G). i.e., (1.3.2) holds.

The claim follows from the following: let Λ ∈ F1, M ∈ F2, then

E(P (Λ|G)χM |G) = P (Λ|G)P (M |G)

= P (Λ ∩M |G) (by (1.3.1))

= E(P (Λ|F2 ∨ G)χM |G) ¤

Corollary 1.3.2. Let {Xα}α∈A be a family of r.v. and let Fα be the sub-σ-

field generated by Xα. Then the Xα’s are independent if and only if for any

Borel set B,

P (Xα ∈ B|F (α)) = P (Xα ∈ B).

Moreover the above condition can be replaced by: for any integrable Y ∈ Fα,

E(Y |F (α)) = E(Y ).

Proof. The first identity follows from Proposition 1.3.1 by taking G as the

trivial σ-field. The second one follows from an approximation by simple func-

tion and use the first identity. ¤

To consider the Markov property, we first consider an important basic case.

Theorem 1.3.3. Let {Xn}∞n=1 be a sequence of independent r.v. and each Xn

has a distribution µn on R. Let Sn =
∑n

j=1 Xj. Then for B ∈ B,

P (Sn ∈ B | S1, · · · , Sn−1) = P (Sn ∈ B | Sn−1) = µn(B − Sn−1)

(Hence Sn is independent of S1, · · · , Sn−2 given Sn−1.)
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Proof. We divide the proof into two steps.

Step 1. We show that

P (X1 + X2 ∈ B | X1) = µ2(B −X1)

First observe that µ2(B −X1) is in FX1 . Let Λ ∈ FX1 , then Λ = X−1
1 (A) for

some A ∈ B, and

∫

Λ

µ2(B −X1) dP =

∫

A

µ2(B − x1) dµ1(x1)

=

∫

A

( ∫

x1+x2∈B

dµ2(x2)
)

dµ1(x1)

=

∫∫

x1∈A, x1+x2∈B

d(µ1 × µ2)(x1, x2)

= P (X1 ∈ A, X1 + X2 ∈ B)

=

∫

Λ

P (X1 + X2 ∈ B | FX1) dP

This implies that µ2(B −X1) = P (X1 + X2 ∈ B | X1) .

Step 2. The second equality in the proposition follows from Step 1 by

applying to Sn−1 and Xn. To prove the first identity, we let µn = µ1×· · ·×µn =

µn−1 × µn. Let Bj ∈ B, 1 ≤ j ≤ n − 1, and let Λ =
⋂n−1

j=1 S−1
j (Bj) ∈

F(S1, · · · , Sn−1). We show as in Step 1,

∫

Λ

µn(B − Sn−1) dP =

∫

Λ

P (Sn ∈ B|S1, · · · , Sn−1) dP

and the identity µn(B − Sn−1) = P (Sn ∈ B|S1, · · · , Sn−1) follows. ¤

Definition 1.3.4. We call a sequence of random variables {Xn}∞n=0 a (discrete

time) stochastic process. It is called a Markov process (Markov chain if the

state space is countable or finite) if for any n and B ∈ B,

P (Xn+1 ∈ B|X0, · · · , Xn) = P (Xn+1 ∈ B|Xn).
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Let I ⊆ N0 := N ∪ {0} and let FI denote the sub-σ-field generated by

Fn, n ∈ I. Typically, I = {n}, or [0, n], or (n,∞); F{n} denotes the events

at the present, F[0,n] denotes the events from the past up to the present, and

F(n,∞) denotes the events in the future. The above Markov property means

the future depends on the present and is independent of the past.

One of the most important examples of Markov process is the sequence

{Sn}∞n=0 in Theorem 1.2.3.

Theorem 1.3.5. Let {Xn}∞n=0 be a stochastic process, then the following are

equivalent:

(a) {Xn}∞n=0 has the Markov property;

(b) P (M |F[0,n]) = P (M |Xn) for all n ∈ N and M ∈ F(n,∞);

(c) P (M1 ∩ M2 |Xn) = P (M1|Xn) P (M2|Xn) for all M1 ∈ F[0,n], M2 ∈
F(n,∞) and n ∈ N.

The conditions remain true if F(n,∞) is replaced by F[n,∞) (Exercise). Con-

dition (c) can be interpreted as conditioning on the present, the past and the

future are independent.

Proof. (b) ⇒ (c). Let Yi = χMi
with M1 ∈ F[0,n], M2 ∈ F(n,∞), then

P (M1|Xn) P (M2|Xn) = E(Y1|Xn) E(Y2|Xn) = E(Y1E(Y2|Xn)|Xn)

= E(Y1E(Y2|F[0,n])|Xn) = E(E(Y1Y2|F[0,n])|Xn)

= E(Y1Y2|Xn) = P (M1 ∩M2 |Xn).

(c) ⇒ (b). Let Λ ∈ F[0,n] be the test set, and let Y1 = χΛ, Y2 = χM ∈
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F(0,∞). Then
∫

Λ

P (M |Xn) dP = E
(
Y1E(Y2|Xn)

)
= E

(
E(Y1E(Y2|Xn))|Xn

)

= E
(
E(Y1|Xn)E(Y2|Xn)

)
= E

(
E(Y1Y2|Xn)

)

=

∫

Ω

P (Λ ∩M |Xn) dP = P (Λ ∩M).

This implies P (M |Xn) = P (M |F[0,n]).

(b) ⇒ (a) is trivial.

(a) ⇒ (b). We claim that for each n,

E(Y |F[0,n]) = E(Y | Xn) ∀ Y ∈ F[n+1,n+k], k = 1, 2, · · · . (1.3.3)

This will establish (b) for M ∈ ⋃∞
k=1F(n,n+k); this family of M generates

F(0,∞).

Note that the Markov property implies (1.3.3) is true for k = 1. Suppose

the statement is true for k, we consider Y = Y1Y2 ∈ F[n+1,n+k+1] , where

Y1 ∈ F[n+1,n+k] and Y2 ∈ Fn+k+1. Then

E(Y |F[0,n]) = E( E(Y |F[0,n+k]) | F[0,n])

= E( Y1E(Y2|F[0,n+k]) | F[0,n])

= E( Y1E(Y2|Fn+k) | F[0,n]) (by Markov)

= E( Y1E(Y2|Fn+k) | Fn) (by induction)

= E( Y1E(Y2|F[n,n+k]) | F[0,n]) (by Markov)

= E( E(Y1Y2|F[n,n+k]) | F[0,n])

= E(Y1Y2|Fn)

= E(Y |Fn).

This implies the inductive step for Y = χM1∩M2 = χM1χM2 with M1 ∈
F[n+1,n+k] and M2 ∈ Fn+k+1. But the class of all such Y generates F[n+1,n+k].

This implies the claim and completes the proof of the theorem. ¤



1.3. MARKOV PROPERTY 25

The following random variable plays a central role in stochastic process.

Definition 1.3.6. A r.v. α : Ω → N0 ∪ {∞} is called a stopping time (or

Markov time or optional r.v. ) with respect to {Xn}∞n=0 if

{ω : α(ω) = n} ∈ F[0,n] for each n ∈ N0 ∪ {∞}.

It is easy to see the definition can be replaced by {ω : α(ω) ≤ n} ∈ F[0,n].

In practice, the most important example is: for a given A ∈ B, let

αA(ω) = min{n ≥ 0 : Xn(ω) ∈ A}.

(αA(ω) = ∞ if Xn(ω) 6∈ A for all n.) This is the r.v. of the first time the

process {Xn}∞n=0 enters A. It is clear that

{ω : αA(ω) = n} =
n−1⋂
j=0

{ω : Xj(ω) ∈ Ac, Xn(ω) ∈ A} ∈ F[0,n],

and similarly for n = ∞. Hence αA is a stopping time.

Very often α represents the random time that a specific event happens,

and {Xα+n}∞n=1 is the process after the event has occurred. We will use the

following terminologies:

− The pre-α field Fα is the sets Λ ∈ F[0,∞) of the form

Λ =
⋃

0≤n≤∞
{{α = n} ∩ Λn}, Λn ∈ F[0,n]. (1.3.4)

It follows that Λ ∈ Fα if and only if {α = n} ∩ Λ ∈ Fn for each n.

− The post α-process is {Xα+n}∞n=1 where Xα+n(ω) = Xα(ω)+n(ω). The post-α

field F ′
α is the sub-σ-field generated by the post-α process.
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Proposition 1.3.7. Let {Xn}∞n=0 be a stochastic process and let α be a stopping

time. Then α ∈ Fα and Xα ∈ Fα.

Proof. For α to be Fα-measurable, we need to show that {α = k} ∈ Fα. This

follows from (1.3.4) by taking Λn = ∅ for n 6= k and Λk = Ω.

That Xα ∈ Fα follows from

{ω : Xα(ω) ∈ B} =
⋃
n

{ω : α(ω) = n, Xn(ω) ∈ B} ∈ Fα

for any Borel set B ∈ B. ¤

Theorem 1.3.8. Let {Xn}∞n=0 be a Markov-process and α is an a.e. finite

stopping time, then for each M ∈ F ′
α,

P (M |Fα) = P (M | α, Xα). (1.3.5)

We call this property the strong Markov-property.

Proof. Note that the generating sets of F ′
α are M =

⋂l
j=1 X−1

α+j(Bj), Bj ∈ B.

Let Mn =
⋂l

j=1 X−1
n+j(Bj) ∈ F(n,∞), We claim that

P (M | α, Xα) =
∞∑

n=1

P (Mn|Xn)χ{α=n}. (1.3.6)

Indeed if we consider P (Mn|Xn) = ϕn(Xn), then it is clear
∑∞

n=1 ϕn(Xn)χ{α=n}

is measurable with respect to the σ-field generated by α and Xα. By making

use of Theorem 1.3.5(b), we have

∫

{α=m, Xα∈B}

∞∑
n=1

P (Mn|Xn)χ{α=n} dP =

∫

{α=m, Xm∈B}
P (Mm|Xm) dP

=

∫

{α=m, Xm∈B}
P (Mm|F[0,m]) dP

= P ({α = m, Xm ∈ B} ∩Mm)

= P ({α = m,Xα ∈ B} ∩M).
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(The last equality is due to Mm∩{α = m} = M ∩{α = m}). Hence the claim

follows.

Now to prove the theorem, let Λ ∈ Fα, Λ =
⋃∞

n=0({α = n} ∩ Λn), then

P (Λ ∩M) =
∞∑

n=0

P ({α = n, Λn} ∩Mn)

=
∞∑

n=0

∫

{α=n}∩Λn

P (Mn|F[0,n]) dP

=
∞∑

n=0

∫

Λ

P (Mn|Xn)χ{α=n} dP (by Theorem 1.3.5(b))

=

∫

Λ

P (Mn| α,Xα) dP (by (1.3.6)).

The theorem follows from this. ¤

We remark that when α is the constant n, then we can omit the α in (1.3.5)

and it reduces to the Markov property as in Theorem 1.3.5. Also if the process

is homogeneous (i.e., invariant on the time n), then we can omit the α there.

It is because in (1.3.6), the right side can be represented as
∑∞

n=1 ϕ(Xn)χ{α=n}

(instead of ϕn(Xn)) which is Fα-measurable. In this case we can rewrite (1.3.5)

as

P (Xα+1 ∈ B|Fα) = P (Xα+1 ∈ B|Xα) ∀ B ∈ B,

a direct analog of the definition of Markov property.

There is a constructive way to obtain Markov processes. For a Markov

chain {Xn}∞n=0, we mean a stochastic process that has a state space S =

{a1, a2, · · · , aN} (finite or countable) and a transition matrix

P =




p11 · · · p1N

... · · · ...

pN1 · · · pNN
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where pij ≥ 0 and the row sum is 1; the pij is the probability from i to j.

Suppose the process starts at X0 with initial distribution µ = (µ1, · · · , µN),

let Xn denote the location of the chain at the n-th time according to the

transition matrix P , then {Xn}∞n=0 satisfies the Markov property:

P (Xn+1 = xn+1|X0 = x0, · · · , Xn = xn) = P (Xn+1 = xn+1|Xn = xn) = pij.

Also it follows that

P (X0 = x0, X1 = x1, · · · , Xn = xn)

= P (X0 = x0)P (X1 = x1|X0 = x0) · · ·P (Xn = xn|Xn−1 = xn−1)

= µx0px0x1 · · · pxn−1xn .

More generally, we consider the state space to be R. Let µ : R×B → [0, 1]

satisfies

(a) for each x, µ(x, ·) is a probability measure;

(b) for each B, µ(·, B) is a Borel measurable function.

Let {Xn}∞n=0 be a sequence of r.v. with finite dimensional joint distributions

µ(n) for X0, · · · , Xn given by

P (
n⋂

j=0

{Xj ∈ Bj}) = µ(n)(B0 × · · · ×Bn)

:=

∫
· · ·

∫

B0×···×Bn

µ0(dx0)µ(x0, dx1) · · ·µ(xn−1, dxn).

where µ0 is the distribution function of X0.

It is direct to check from definition that

P (Xn+1 ∈ B|Xn) = µ(Xn, B),
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i.e.,

P (Xn+1 ∈ B|Xn = x) = µ(x,B).

Hence µ(x,B) represents the probability that in the (n + 1)-step the chain is

in B, starting at x in the n-th step. To see that {Xn}∞n=0 satisfies the Markov

property, we let Λ =
⋂n

j=0{Xj ∈ Bj}, then

∫

Λ

P (Xn+1 ∈ B|Xn) dP =

∫
· · ·

∫

B0×···×Bn

µ(xn, B) dµ(n)(x0, · · · , xn)

=

∫
· · ·

∫

B0×···Bn×B

µ0(dx0)
n+1∏
j=1

µ(xj−1, dxj)

= P (Λ ∩ {Xn+1 ∈ B}).

This implies

P (Xn+1 ∈ B|Xn) = P (Xn+1 ∈ B|X1, · · · , Xn)

and the Markov property follows.

We call the above {Xn}∞n=0 a stationary (or homogeneous) Markov process

and µ(x,B) the transition probability.
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Exercises

1. Let {Xn}∞n=0 be a Markov process. Let f be a one-to-one Borel measurable

function on R and let Yn = f(Xn). Show that {Yn}∞n=0 is also a Markov process

(with respect to the fields generated by f(Xn)); but the conclusion does not

hold if we do not assume f is one-to-one.

2. Prove the strong Markov property in the form of Theorem 1.3.5(c).

3. If α1 and α2 are both stopping times, so are α1 ∧ α2, α1 ∨ α2 and α1 + α2.

However α1 − α2 is not necessary a stopping time.

4. Let {Xn}∞n=1 be a sequence of i.i.d.r.v. Let {αk}∞k=1 be a sequence of

strictly increasing finite stopping times. Then {Xαk+1}∞k=1 is also a sequence

of i.i.d.r.v. (This is the gambling-system theorem given by Doob).

5. A sequence {Xn}∞n=0 is a Markov chain of second order if

P (Xn+1 = j|X0 = i0, · · · , Xn = in) = P (Xn+1 = j|Xn−1 = in−1, Xn = in).

Show that nothing really new is involved because the sequence (Xn, Xn+1) is

a Markov chain.

6. Let µ(n)(x,B) be the n-step transition probability in the stationary Markov

process. Prove the Chapman-Kolmogorov equation

µ(m+n)(x,B) =

∫

R
µ(m)(x, dy)µ(n)(y, B) ∀ m,n ∈ N.
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1.4 Martingales

We first consider a simple example in analysis. Let f be an integrable function

on [0, 1], let Pn = {0 = 1
2n ≤ · · · ≤ k

2n · · · ≤ 1} be a partition of [0, 1] and let

In,k = [ k
2n , k+1

2n ). We define the average function fn of f on the partition Pn:

fn(x) =
2n−1∑

k=0

an,k χIn,k
, x ∈ In,k. (1.4.1)

where an,k = 1
|In,k|

∫
In,k

f(x)dx. Then {fn}n converges to f in L1. Moreover

{fn}n has the following consistency property: for m > n

fn(x) =
1

|In,k|
∫

In,k

fm(y)dy x ∈ In,k. (1.4.2)

This property has been reformulated by Doob in the more general probability

setting.

Definition 1.4.1. Let {(Xn,Fn)}∞n=1 be a sequence of r.v. such that Xn ∈ Fn.

It is called a martingale if

(a) Fn ⊂ Fn+1;

(b) E(|Xn|) < ∞;

(c) Xn = E(Xn+1|F).

It is called a supermartingale (or submartingale) if ≥ (or ≤ respectively) in

(c) holds. We will call {Xn}n a s-martingale if it is any one of the three cases.

Condition (c) can be strengthened as Xn = E(Xm|Fn) for m > n. It

follows from

E(Xm|Fn) = E(E(Xm|Fm−1)|Fn) = E(Xm−1|Fn) = · · · = E(Xn|Fn) = Xn .

Martingale has its intuitive background in gambling. If Xn is interpreted

as the gambler’s capital at time n, then the defining property says that his
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expected capital after next game, played with the knowledge of the entire

past and present, is exactly equal to his current capital. In other words, his

expected gain is zero, and is in this sense the game is said to be “fair”. The

supermartingale and submartingale can be interpreted similarly.

Example 1. As a direct analog of the above function case, we let X be an

integrable r.v. and let {Fn}∞n=1 be an increasing sequence of sub-σ-fields (e.g.,

take Fn to be a partition). Let Xn = E(X|Fn). Then {Xn}∞n=1 is a martingale.

Indeed we see that

E(|Xn|) = E(|E(X|Fn)|) ≤ E(E(|X||Fn)) = E(|X|) < ∞

and (b) follows. For (c), we observe that

E(Xn+1|Fn) = E(E(X|Fn+1)|Fn) = E(X|Fn) = Xn.

Example 2. Let {Xn}∞n=1 be a sequence of independent integrable r.v. with

mean zero. Let Sn =
∑n

j=1 Xn and Fn = F(X1, · · · , Xn). Then

E(Sn+1|Fn) = E(Sn + Xn+1|Fn)

= Sn + E(Xn+1|Fn)

= Sn + E(Xn+1)

= Sn.

Hence {(Sn,Fn)} is a martingale.

Proposition 1.4.2. If {(Xn,Fn)}∞n=1 is a submartingale, and ϕ is increas-

ing and convex in R. If {ϕ(Xn)} is integrable, then {(ϕ(Xn),Fn)} is also a

submartingale.

Proof. Since Xn ≤ E(Xn+1|Fn), by the property of ϕ, we have

ϕ(Xn) ≤ ϕ(E(Xn+1|Fn)) ≤ E(ϕ(Xn+1)|Fn) ¤



1.4. MARTINGALES 33

It follows that if {Xn}∞n=0 is a martingale (or submartingale), then {|Xn|p}∞n=0, p ≥
1 (provided that Xn ∈ Lp) and {X+

n }∞n=0 are submartingales. Also if {Xn} is

a supermartingale, so does {Xn ∧ a}n for any a ∈ R.

Theorem 1.4.3. (Doob’s decomposition Theorem) For any submartingale

{(Xn,Fn)}∞n=1, Xn can be decomposed as

Xn = Yn + Zn

where {(Yn,Fn)}∞n=1 is a martingale and {Zn} is a non-negative increasing

process.

Proof. We define the difference r.v.

D1 = X1, Dj = Xj −Xj−1, j ≥ 2.

Then Xn =
∑n

j=1 Dj, and the defining relation of submartingale yields

E(Dj|Fj−1) ≥ 0, j ≥ 2. (1.4.3)

We consider yet another difference

S1 = D1, Sj = Dj − E(Dj|Fj−1),

and let

Yn =
n∑

j=1

Sj, Zn =
n∑

j=1

E(Dj|Fj−1).

It is clear that Xn = Yn + Zn, X1 = Y1, Z1 = 0 and {Zn}∞n=1 is a non-negative

increasing process (by (1.4.3)). On the other hand, note that E(Sj|Fj−1) = 0,

it follows that

E(Yn|Fn−1) =
n−1∑
j=1

Sj = Yn−1

and hence a martingale. ¤
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For an increasing family of sub-σ-fields {Fn}∞n=1, let F∞ =
⋃∞

n=1Fn and

let α be a stoping time with respect to {Fn}∞n=1, i.e.,

α : Ω → N ∪ {∞} such that {α = n} ∈ Fn

As in last section, the pre-α field Fα is the family of sets

Λ =
⋃
n

({α = n} ∩ Λn), Λn ∈ Fn.

The following theorems aim at replacing the constant time of a martingale by

a stoping time.

Theorem 1.4.4. Let Y be integrable r.v. and let Xn = E(Y |Fn) where Fn is

an increasing family of sub-σ-fields (it is a martingale). Then for any stopping

time α, we have Xα = E(Y |Fα).

Moreover if β is also a stopping time and α ≤ β, then {(Xα,Fα), (Xβ,Fβ)}
is a two term martingale (i.e., Xα = E(Xβ|Fα)).

Proof. Note that Xα ∈ Fα. We claim that it is also integrable. Indeed as

|Xn| = |E(Y |Fn)| ≤ E(|Y ||Fn),

we have
∫

Ω

|Xα|dP =
∑

n

∫

{α=n}
|Xn|dP ≤

∑
n

∫

{α=n}
|Y |dP =

∫

Ω

|Y |dP < ∞.

Now if Λ ∈ Fα, let Λn = Λ ∩ {α = n}, then
∫

Λ

XαdP =
∑

n

∫

Λn

XndP =
∑

n

∫

Λn

Y dP =

∫

Λ

Y dP .

Hence Xα = E(Y |Fα) .

For the last statement, note that Fα ⊂ Fβ, hence

E(Xβ|Fα) = E(E(Y |Fβ)|Fα) = Xα. ¤
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Corollary 1.4.5. Under the above assumption and suppose {αi}∞i=1 is an in-

creasing sequence of stopping times. If {(Xn,Fn)}n is an s-martingale, then

{(Xαi
,Fαi

)}i is an s-martingale.

Unlike Theorem 1.4.4, in the following theorem, we do not assume that the

{Xn} is the conditional expectation of an integrable Y .

Theorem 1.4.6. Let {(Xn,Fn)}n be a s-martingale. Let α ≤ β be two bounded

stopping times, then {(Xα,Fα), (Xβ,Fβ)} is also an s-martingale (of the same

type).

Proof. We prove the theorem for supermartingale. For submartigale, we

consider {−Xn} instead.

Let Λ ∈ Fα, and let Λj = Λ ∩ {α = j} (∈ Fj). Then for k ≥ j, Λj ∩ {β >

k} ∈ Fk, hence

∫

Λj∩{β≥k}
XkdP =

∫

Λj∩{β>k}
XkdP +

∫

Λj∩{β=k}
XkdP

≥
∫

Λj∩{β>k}
Xk+1dP +

∫

Λj∩{β=k}
XkdP

i.e., ∫

Λj∩{β≥k}
XkdP −

∫

Λj∩{β≥k+1}
Xk+1dP ≥

∫

Λj∩{β=k}
XβdP

Summing over k, j ≤ k ≤ m, where m is the upper bound of β, then

∫

Λj∩{β≥j}
XαdP −

∫

Λj∩{β≥m+1}
Xm+1dP ≥

∫

Λj∩{j≤β≤m}
XβdP

Hence ∫

Λj

XαdP ≥
∫

Λj

XβdP

Summing over 1 ≤ j ≤ m,we have

∫

Λ

XαdP ≥
∫

Λ

XβdP ∀ Λ ∈ Fα. ¤
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Corollary 1.4.7. If {(Xn,Fn)} is a martingale or a supermartingale, then

the same is for {(Xα∧n,Fα∧n)} for any stopping time α.

The theorem still holds if α, β are unbounded. For this we need to associate

a random variable X∞ at ∞.

Theorem 1.4.8. Assume limn→∞ Xn = X∞ exists and is integrable. Let α, β

be two arbitrary stopping times. Then Theorem 1.4.6 still hold if {(Xn,Fn)}n∈N∞

is a supermartingale.

Proof. We first assume that Xn ≥ 0 and X∞ = 0. Then Xα ≤ lim infn→∞ Xα∧n,

and hence Xα is integrable by Fatou’s lemma. The same is for Xβ.

From the proof of Theorem 1.4.6, we can conclude that for any m

∫

Λ∩{α=j}
XαdP ≥

∫

Λ∩{α=j}∩{β≤m}
XβdP .

By letting m →∞ and summing over all j, we have

∫

Λ∩{α<∞}
XαdP ≥

∫

Λ∩{β<∞}
XβdP .

In addition we have Xα = X∞ = 0 on {α = ∞}, and Xβ = X∞ = 0 on

{β = ∞}, We conclude that

∫

Λ

XαdP =

∫

Λ

XβdP

and hence {(Xα,Fα), (Xβ,Fβ)} is a supermartingale.

For the general case we let

X ′
n = E(X∞|Fn), X ′′

n = Xn −X ′
n.

Then {X ′
n} is a martingale, and Xn ≥ X ′

n by the defining property of super-

martingale apply to Xn and X∞. We can apply the above proved case to X ′′
n,

and conclude that {Xn} is a supermartingale. ¤



1.4. MARTINGALES 37

The above theorems are referred as Doob’s optional sampling theorems. In

terms of gambling, one would hope to devise a strategy to gain advantage of

the outcome, but the theorems say that such a strategy does not exist, at least

mathematically. The reader can refer to [1, p.327](and the exercises there) for

a discussion of the gambler’s ruin problem.

We use the above stopping time consideration to prove a useful inequality

for sub-martingales.

Theorem 1.4.9. If {(Xj,Fj)}n
j=1 is a submartingale, then for any real λ, we

have

λ P ( max
1≤j≤n

Xj > λ) ≤
∫

{max1≤j≤n Xj>λ}
XndP ≤ E(X+

n ).

Proof. Let α be the first j such that Xj ≥ λ if such 1 ≤ j ≤ n exists,

otherwise let α = n. It is clear that α is a stopping time, and hence {Xα, Xn}
is a submartingale (Theorem 1.4.6). If we write

M = {max
1≤j≤n

Xj ≥ λ},

then M ∈ Fα and Xα ≥ λ on M , hence the first inequality follows from

λP (M) ≤
∫

M

XαdP ≤
∫

M

XndP.

The second inequality is clear. ¤.

Corollary 1.4.10. If {(Xn,Fn)}∞n=1 is a martingale, then for any λ > 0, we

have

P ( max
1≤j≤n

|Xj| > λ) ≤
∫

{max1≤j≤n |Xj |>λ}
|Xn|dP ≤ 1

λ
E(|Xn|) .

In addition if E(|Xn|2) < ∞, then we also have

P ( max
1≤j≤n

|Xj| > λ) ≤ 1

λ2
E(|Xn|2) .
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For a sequence of independent r.v. {Xn}∞n=0 with zero mean and finite

variance, we let Sn =
∑n

j=1 Xj. It is well known (Kolmogorov’s inequality [1,

p. 116]) that for any λ > 0,

P ( max
1≤j≤n

|Sj| > λ) ≤ 1

λ2
E(|Sn|2).

We see that the inequality follows directly from the above corollary.

To conclude this section, we prove a deep theorem on the convergence of

the {Xn}n, which is also due to Doob. It involves an ingenious method in the

proof.

Theorem 1.4.11. If {(Xn,Fn)}∞n=0 is an L1-bounded submartingale, then

{Xn}∞n=0 converges a.e. to a finite limit.

Proof. First we define, for any pair of rationals a, b, let

Λ[a,b] = {ω : lim inf
n→∞

Xn(ω) < a < b < lim sup
n→∞

Xn(ω)} (1.4.4)

We show that Λ[a,b] is a zero set for any a, b ∈ Q. It follows that

{ω : lim inf
n→∞

Xn(ω) < lim sup
n→∞

Xn(ω)} =
⋃

a,b∈Q, a<b

Λ[a,b]

is a zero set. Note that lim infn→∞ Xn is finite almost everywhere (by Fatou

lemma and the L1-boundedness assumption, E(lim inf |Xn|) ≤ lim inf E(|Xn|) <

∞), hence the theorem follows.

It remains to prove (1.4.4). We first introduce some notations. Let {x1, · · · , xn}
be a numerical sequence, for a < b, let

α1 = min{j : 1 ≤ j ≤ n, xj ≤ a},

α2 = min{j : α1 < j ≤ n, xj ≥ b}.
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Inductively we define

α2k−1 = min{j : α2k−2 < j ≤ n, xj ≤ a},

α2k = min{j : α2k−1 < j ≤ n, xj ≥ b}.

Let αl be the last one defined. We can think of connecting the consecutive xi

by line segments, Let ν be the number of times the line segments comes from

≤ a to ≥ b, i.e., the number of upcrossing through the interval [a, b], it is seen

that ν = [l/2].

Lemma 1.4.12. Let {(Xj,Fj)}n
j=1 be a submartingale and assume that Xj ≥

0. Let ν
(n)
[0,b] be the r.v. of the number of upcrossing of [0, b] by the sample

sequence {Xj(ω) : 1 ≤ j ≤ n}. Then

E(ν
(n)
[0,b]) ≤ E(Xn −X1)

b
.

Proof. For convenience, we let α0 = 1 and αl+1 = αl+2 = · · · = αn = n. Then

we have a sequence of stopping times with

1 = α0 ≤ α1 < · · · < αl ≤ αl+1 · · · ≤ αn = n.

We write

Xn −X1 = Xαn −Xα0 =
n−1∑
j=1

(Xαj+1
−Xαj

) =
( ∑

j odd

+
∑

j even

)
(Xαj+1

−Xαj
).
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It follows that

∑

j odd

(
Xαj+1

(ω)−Xαj
(ω)

) ≥ [l(ω)/2] · b = ν
(n)
[0,b](ω) · b.

On the other hand by Theorem 1.4.6, {Xαj
: 0 ≤ j ≤ n} is a submartingale,

so that for each 0 ≤ j ≤ n− 1, E(Xαj+1
−Xαj

) ≥ 0. Consequently

E(
∑

j even

(Xαj+1
−Xαj

)) ≥ 0.

Therefore E(Xn −X1) ≥ E(v
(n)
[0,b]) · b which yields the lemma. ¤.

Now to complete the proof of (1.4.4), we consider the upcrossing on any

[a,b]. We replace the r.v. in the lemma by (Xn − a)+. The sequence {(Xn −
a)+}n is still submartingale and by the lemma,

E(ν
(n)
[a,b]) ≤

E(Xn − a)+ − E(X1 − a)+

b− a
≤ E(Xn

+) + |a|
b− a

.

Let ν[a,b] = lim
n→∞

ν
(n)
[a,b]. The L1-boundedness of {Xn}n implies that E(ν[a,b]) <

∞. Hence ν[a,b] is finite with probability 1. Note that

Λ[a,b] = {ω : lim inf
n→∞

Xn(ω) ≤ a < b ≤ lim sup
n→∞

Xn(ω)}
⊆ {ω : ν[a,b](ω) = ∞},

hence Λ[a,b] is a zero set and (1.4.4) follows. This completes the proof of the

theorem. ¤

Corollary 1.4.13. Every uniformly bounded s-martingale converges a.e. Also

every positive supermartingale and every negative submartingale converges a.e.

Proof. The first statement follows directly from Theorem 1.4.8 and that {Xn}
is a submartingale if and only {−Xn} is a supermartingale.

For the second part we use Doob’s decomposition theorem (Theorem 1.4.3.

Let {Xn}n be a positive supermartingale, then Xn = Yn − Zn where {Yn} is a
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martingale and Zn ≥ 0, {Zn} ↗. Since Xn ≥ 0, it follows that 0 ≤ Zn ≤ Yn.

Let Z∞ = limn→∞ Zn. It is finite a.e. because

E(Z∞) = lim
n→∞

E(Zn) ≤ E(Y1) < ∞.

Also since {Xn}n is a supermartingale,

E(Yn) = E(Xn) + E(Zn) ≤ E(X1) + E(Z∞).

This implies {Yn}n is L1-uniformly bounded and {Yn}n converges to a finite

limit a.e. (Theorem 1.4.8). The same holds for {Xn}n. ¤

Recall that a sequence of r.v. {Xn}∞n=1 is called uniformly integrable if

lim
k→∞

∫

|Xn|≥k

|Xn|dP = 0 uniformly on n .

It is clear that it implies that {Xn}∞n=1 is L1- bounded. Also, if Xn → X a.e.,

then the uniformly boundedness implies that Xn → X in L1 ([1, p.96-97]).

Corollary 1.4.14. If {(Xn,Fn)}∞n=1 is a submartingale and is uniformly in-

tegrable, then X∞ = limn→∞ Xn a.e. and in L1.

Remark. Theorem 1.4.11 and Corollary 1.4.14 are more or less that the con-

verse of Example 1. However for Example 2, the sum {Sn}∞n=1 of i.i.d.r.v.

{Xn}∞n=0 with zero mean forms a martingale, but does not converge; it is be-

cause the L1-bounded condition is not satisfies. In fact, we can show that

lim
n→∞

E
( |Sn|√

n

)
=

√
2

π
σ

where σ is the variance of Xn. For more detail, the reader can refer to [1,

Chapter 5, 6] for the law of large number and the central limit theorem for

{Sn}∞n=1.
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Exercises

1. Suppose {(X(k)
n ,Fn)}n, k = 1, 2 are two martingales, α is a finite stopping

time and X
(1)
α = X

(2)
α . Define Xn = X

(1)
n χ{n≤α} + X

(2)
n χ{n≤α}. Show that

{(Xn,Fn)}n is a martingale.

2 If {(Xn,Fn)}n, {(Yn,Fn}n are martingales, then {(Xn + Yn,Fn)} is again a

martingale. However it may happen that {Xn}n, {Yn}n are martingales, but

{Xn + Yn}n is not a martingale. (Note the the σ-field generated by Xn + Yn

may not have the same σ-field Fn.)

3 Prove that for any L1-bounded s-martingale {(Xn,Fn)}n, and for any α

stopping time, then E(|Xα|) < ∞.

4. If X is an integrable r.v., then the collection of r.v., D(X|G) with G ranging

over all Borel subfields of F , is uniformly integrable.

5. Find an example of a positive martingale that is not uniformly integrable.

6. Find an example of a martingale {Xn}n such that Xn → −∞. This implies

that in a fair game one player may lose an arbitrary large amount if he stays on

long enough. (Hint: Try sums of independent but not identically distributed

r.v. with mean 0.)

7. If {Xn}n is a uniformly integrable submartingale, then for any stopping

time α, {Xα∧n}n is again a uniformly integrable submartingale and

E(X1) ≤ E(Xα) ≤ sup
n

E(Xn).

8 Prove that for any s-martingale, we have for each λ > 0,

λP (sup
n
|Xn| ≥ λ) ≤ 3 sup

n
E(|Xn|) .
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For a martingale or a positive or nonnegative s-martingale the constant 3 may

be replaced by 1.

9. Let {Xn}n be a positive supermartingale. Then for almost every ω, Xk(ω) =

0 implies Xn(ω) = 0 for all n ≥ k.

10. Every L1-martingale is the difference of two positive L1-bounded martin-

gales. (Hint, take one of them to be limk→∞ E(X+
k |Fn)).

11. If {Xn} is a martingale or positive submartingale such that supn E(X2
n) ≤

∞, then {Xn}n converges in L2 as well as a.e.

12. Show that if {(Xn,Fn)}n is a submartingate, Xn ≥ 0, then for p > 1,

|| max
{1≤k≤n}

||p ≤ p

p− 1
||Xn||p .

(Hint: Show that for Y ≥ 0, E(Y p) = p
∫∞

0
λp−1P (Y ≥ λ)dλ.)
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Chapter 2

Brownian Motion

2.1 Continuous time stochastic processes

We call a family of random variables {Xt}t≥0 on (Ω,F , P ) a continuous time

stochastic process. For each ω ∈ Ω, X(·, ω) = X(·)(ω) is called a sample path.

Usually we treat X(·, ω) = ω(t) (this can be justified).

There are two most important classes of continuous time stochastic pro-

cesses. The first one is the Poisson process {Nt}t≥0, the number of arrivals

in time [0, t] according to an arrival rate λ per unit time.

Figure 2.1:

45



46 CHAPTER 2. BROWNIAN MOTION

Recall that a Poisson random variable X with rate λ has distribution

P (X = k) = e−λ λk

k!
, k = 0, 1, 2 · · ·

Hence Nt has distribution

P (Nt = k) = e−λt (λt)k

k!
, k = 0, 1, 2 · · ·

A Poisson process is characterized by

1. N0 = 0;

2. Independent increment: for 0 < t1 < t2 < · · · < tn,

Nt1 , Nt2 −Nt1 , Nt3 −Nt2 , · · · , Ntn −Ntn−1

are independent.

3. Poisson increment: for t > s, Nt − Ns ∼ N(t−s), i.e., it has a Poisson

distribution with rate λ(t− s).

The next one is the Brownian motion {Bt}t≥0. It is also called a Wiener

process due to the pioneer work of Wiener in the 20’s. Recall that a one

dimension normal distribution N(µ, σ2) has density function

1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R

and N(0, 1) is called the standard normal distribution. The Brownian motion

is defined by

1. B0 = 0;

2. Independent increment: for 0 < t1 < t2 < · · · < tn,

Bt1 , Bt2 −Bt1 , Bt3 −Bt2 , · · · , Btn −Btn−1

are independent;
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Figure 2.2:

3. Normal increment: for t > s, Bt−Bs, has normal distribution N(0, t−s).

We will see in the next section that almost all sample paths are continuous,

but not differentiable anywhere. We can also define in the same way the higher

dimensional Brownian motion, i.e., {Bt}t≥0 has range in Rd; the corresponding

density function in (3) is

1

(2π(t− s))d/2
e−

|x|2
2(t−s) , x ∈ Rd.

The Brownian motion was first formulated by Einstein to study diffusion.

Heuristically we can realize it as the following: it is direct to check that

p(t, x) = (2πt)−
d
2 e−|x|

2/2t satisfies

∂p(t, x)

∂t
=

1

2
∆p(t, x)

where ∆ =
∑d

i=1
∂2

∂x2 is the Laplacian. Hence it satisfies the heat equation

∂u

∂t
=

1

2
∆u on Rd.

If we are given an initial condition u(x, 0) = f(x), it is known that the solution

is given by

u(x, t) =

∫

Rd

f(y)p(t, x− y)dy = (f ∗ pt)(x) = Ex(f(Bt)).
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Equivalently, we can put it in terms of the Brownian motion u(x, t) = E(f(x−
Bt)). The study of heat equation can be put entirely into a probabilistic

setting.

In view of the two definitions above, there is another more general type

of stochastic processes called Lévy processes. They are {Xt}t≥0 defined by

replacing (3) with a stationary increment condition, i.e., for t > s, Xt − Xs

has the same distribution as X(t−s). The reader can refer to [Ito, Stochastic

Process, Springer, 2004] for detail.

In the following we outline the theoretical existence of a probability space

(Ω,F , P ) for a stochastic process {Xt}t≥0, and the measurability problem

arised. The space and the σ-field are constructed by the family of finite di-

mensional distributions as for the discrete time case {Xn}∞n=1.

Let T = [0,∞) and let RT denote all functions ω : T → R. For t1 < · · · <
tn, the n-variate r.v. (Xt1 , · · · , Xtn) induces a distribution µt1···tn on Rd. Let

F be the σ-field generated by (Xt1 , · · · , Xtn), i.e., by sets (cylinder sets) of the

form

Et1···tn = {ω : ω(ti) ∈ Ei} with Ei Borel sets, 0 ≤ t1 · ·· < tn.

It can be checked that the family {µt1···tn}t1<···<tn satisfies the consistency con-

dition:

µt1···ti−1ti+1···tn = µt1...tn ◦ ϕ−1
i

where ϕi : Rn → Rn−1, (x1 . . . xn) → (x1 . . . xi−1, xi+1 . . . xn) is the projection

map. In this case µt1...ti−1ti+1...tn is the marginal distribution of µt1...tn . By

the Kolmogorov extension theorem, there exists a probability P on (Ω,F) and

{Xt}t≥0 is the stochastic process with respect to (Ω,F , P ).

The probability space defined in this way is, however, still needed to be

refined. One of the problems we often encounter is the measurability of union
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of uncountably many sets with indices from T = [0,∞). Another problem is

that the σ-field F thus defined does not impose any condition on the continuity

of the sample paths on [0,∞) as is seen in the following example.

Example. Consider (Ω,F , P ) on which there is a continuous random variable

τ with values in [0, T ) (i.e., P (τ = t) = 0 for all t ≥ 0). Define Xt(ω) ≡ 0 for

all t ≥ 0, and

Yt(ω) =





1 if τ(ω) = t

0 if τ(ω) 6= t

Then the only sample path of X(·, ω) is 0, but each sample path of Y (·, ω) has

a jump at τ(ω) = t. On the other hand, it follows from the assumption on τ

that P (Yt = 1) = P (τ = t) = 0 for each t, hence P (Xt = Yt) = 1 for each t.

Therefore {Xt}t≥0, {Yt}t≥0 have the same finite dimensional distribution, they

equals the point mass with probability 1 at the path ω ≡ 0.

We will resolve the problem as follows:

Definition 2.1.1. Two stochastic processes {Xt}t>0, {Yt}t≥0 on (Ω,F , P ) is

called a version of each other if P (Xt = Yt) = 1 for all t ≥ 0.

Note that if we let Nt = {Xt 6= Yt}, they are zero set with respect to P .

We would like to have
⋃

t≥0 Nt to be a zero set, however, it is not necessary

measurable from the construction of probability space. We will use the fol-

lowing theoretical device to overcome this dilemma. Let D be a countable

subset of T = [0,∞), a function x : T → R is called separable if for any t ∈ T ,

there exists a sequence {tn} ⊆ D, tn → t and x(tn) → x(t). For example

continuous functions or right continuous functions are separable with respect

to the rationals.

Definition 2.1.2. A stochastic process {Xt}t≥0 on (Ω,F , P ) is separable with

respect to D if there exists an F-null set N such that X(·, ω) is separable with
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respect to D for all ω /∈ N .

The process {Yt}t≥0 in the Example is not separable. For if otherwise let

D be a countable set in the definition. For any t̃ /∈ D, let ω be such that

τ(ω) = t̃, then Y (t̃, ω) = 1 and Y (t, ω) = 0 for all t 6= t̃. Hence for {tn} ⊆ D

and tn → t, Y (tn, ω) 9 Y (t̃, ω).

The following is the main theorem

Theorem 2.1.3. . Let {Xt}t≥0 be a process on (Ω,F , P ), then there exists

on the same space a separable process {X ′
t}t>0 such that P (X

′
t = Xt) = 1 for

every t > 0.

Sketch of proof ([2, p.555-559]). Note that for any fixed t and for any countable

set D(⊂ [0, T )), the set of ω for which X(·, ω) is separable with respect to D

at t can be written as
∞⋂

n=1

⋃

|s−t|< 1
n

s∈D

{ω : |X(s, ω)−X(t, ω)| < 1

n
}.

The main task is to construct D (independent of t) so the above set has

probability 1. To prove this, we take any interval I ⊆ T and J ⊆ R, and let

p(C) = P (
⋂
s∈C

(Xs /∈ J))

for any countable set C ⊂ I. Observe that as C increases, p(C) decreases. we

can choose Cn such that p(Cn) → infC p(C), and let U(I,J) =
⋃

n Cn. Then

P
({Xt ∈ J} ∩

⋂
s∈CI,J

(Xs /∈ J)
)

= 0

(otherwise, we consider CI,J∪{t} and obtain a contradiction). Let D =
⋃

C(I,J)

where (I, J) runs through all intervals I and J with rational end points. If we

let

N(t) =
⋃
I,J

(
{Xt ∈ J} ∩

⋂
s∈CI,J

(Xs /∈ J)
)
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Then we have P (N(t)) = 0. It is direct to check that D has the property we

want. Now we define the separable version of {Xt}t≥0 as

X ′(t, ω) =





X(t, ω) if t ∈ D or t ∈ D & ω /∈ N(t),

lim supn→∞ X(sn(t), ω) if t /∈ D and ω ∈ N(t)

where sn(t) is a fixed sequence converges to t. It follows that for each t, and

for ω 6∈ N(t), X ′(·, ω) is separable with respect to D at t. ¤

We introduce the following definitions on a probability space (Ω,F , P ):

− a family F = {Ft}t≥0 of sub-σ-fields in F is called a filtration if {Ft} is an

increasing sequence of σ−fields on t;

− a process {Xt}t≥0 is said to be adaptable to F if Xt ∈ Ft for each t > 0;

− a filtration F is called right continuous if Ft+ = Ft (by definiton Ft+ =
⋂

s>tFs).

For any filtration {Ft}, let Gt = Ft+, then G = {Gt}t≥0 is right continuous.

It is clear that if {Xt}t≥0 is adaptable to F, then it is also adaptable to G. For

reasons that will be obvious later, we assume without loss of generality that F

is right continuous. It is also convenient to enlarge F0 (hence all Ft) to include

all subsets of the zero sets (completion by null sets).

With the filtration F, we can define the necessary terminologies as before:

− Markov property: P (Xt+s ∈ E | Ft) = P (Xt+s ∈ E | Xt) for t, s > 0;

− Martingale: Xs = E(Xt | Fs) for t > s;

− Stopping time α : Ω → [0,∞) such that {τ ≤ t} ∈ Ft.
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Exercises

1. Let ξ : Ω → [0,∞) be a random variable which satisfies

P (ξ ≥ t + s | ξ ≥ s) ∀ t, s ≥ 0

(lack of memory property). Show that this property is equivalent to ξ being

an exponential distribution, i.e., P (ξ ≥ t) = e−λt, t > 0, the waiting time with

arrival rate λ.

2. Let X(t) be a Poisson process, let Si = inf{t > 0 : X(t) = n} and let

ξn = Sn−Sn−1 be the waiting time of the interarrivals. Show that the {ξn}∞n=1

are i.i.d. exponential random variables.

3. Conversely, let {ξn}∞n=1 be i.i.d. exponential random variables. Let τn =

ξ1 + · · ·+ ξn, and let

X(t) = max{n : τn ≤ t}, t > 0 .

Show that X(t) is a Poisson process. (This is an alternative way to define a

Poisson process.) Use the picture of a sample path to realize τn and X(t) are

“inverse” of each other (like the inverse function).

4. Show that if X is measurable in the sub-σ-field σ{Xt : t ∈ T}, then X is

measurable in σ{Xt : t ∈ S} for some countable subset S ⊂ T .

5. Let {Xt}t≥0 be a stochastic process on (Ω,F , P ) and A ∈ F . Show that

there is a countable set S ⊂ T such that P (A | Xt, t ∈ T ) = P (A | Xt, t ∈ S).

6. Let K(s, t) be a real function over T × T . Suppose that K is symmetric

and nonnegative definite on T . Show that there is a process {Xt}t≥0 for which

(Xt1 , · · · , Xtn) has the central (zero mean) normal distribution with covariance

cov(Xti , Xtj) = K(ti, tj), i, j = 1, · · · , k .


