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Topics: Introduction to Stochastic Calculus

In the past thirty years, there has been an increasing demand of stochastic

calculus in mathematics as well as various disciplines such as mathematical

finance, pde, physics and biology. The course is a rigorous introduction to this

topic. The material include conditional expectation, Markov property, mar-

tingales, stochastic processes, Brownian motions, Ito’s calculus, and stochastic

differential equations.
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Everyone knows calculus deals with deterministic objects. On the other

hand stochastic calculus deals with random phenomena. The theory was intro-

duced by Kiyosi Ito in the 40’s, and therefore stochastic calculus is also called

Ito calculus. Besides its interest in mathematics, it has been used extensively

in statistical mechanics in physics, the filter and control theory in engineering.

Nowadays it is very popular in the option price and hedging in finance. For

example the well-known Black-Scholes model is

dS(t) = rS(t)dt + σS(t)dB(t)

where S(t) is the stock price, σ is the volatility, and r is the interest rate,

and B(t) is the Brownian motion. The most important notion for us is the

Brownian motion. As is known the botanist R. Brown (1828) discovered certain

zigzag random movement of pollens suspended in liquid. A. Einstein (1915)

argued that the movement is due to bombardment of particle by the molecules

of the fluid. He set up some basic equations of Brownian motion and use them

to study diffusion. It was N. Wiener (1923) who made a rigorous study of the

Brownian motion using the then new theory of Lebesgue measure. Because of

that a Brownian motion is also frequently called a Wiener process.

Just like calculus is based on the fundamental theorem of calculus, the Ito

calculus is based on the Ito Formula: Let f be a twice differentiable function

on R, then

f(B(t))− f(B(0)) =

∫ T

0

f ′(B(t))dB(t) +
1

2

∫ T

0

f ′′(B(t))dt

where B(0) = 0 to denote the motion starts at 0. There are formula for

integration, for example, we have
∫ T

0

B(t)dB(t) =
1

2
B(t)2 − 1

2
T ;

∫ T

0

tdB(t) = TB(T )−
∫ T

0

B(t)dt.

In this course, the prerequisite is real analysis and basic probability theory.

In real analysis, one needs to know σ-fields, measurable functions, measures
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and integration theory, various convergence theorems, Fubini theorem and the

Radon-Nikodym theorem. We will go through some of the probability theory

on conditional expectation, optional r.v. (stopping time), Markov property,

martingales ([1], [2]). Then we will go onto study the Brownian motion ([2],

[3], [5]), the stochastic integration and the Ito calculus ([3], [4], [5]).
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Chapter 1

Basic Probability Theory

1.1 Preliminaries

Let Ω be a set and let F be a family of subsets of Ω, F is called a field if it

satisfies

(i) ∅, Ω ∈ F ;

(ii) for any A ∈ F , Ac ∈ F ;

(iii) for any A, B ∈ F , A ∪B ∈ F (hence A ∩B ∈ F).

It is called a σ-field if (iii) is replaced by

(iii)′ for any {An}∞n=1 ⊂ F , ∪∞n=1An ∈ F (hence ∩∞n=1An ∈ F).

If Ω = R and F is the smallest σ-field generated by the open sets, then we

call it the Borel field and denote by B.

A probability space is a triple (Ω,F , P ) such that F is a σ-field in Ω, and

P : F → [0, 1] satisfies

5
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(i) P (Ω) = 1

(ii) countable additivity : if {An}∞n=1 ⊆ F is a disjoint family, then

P (
∞⋃

n=1

An) =
∞∑

n=1

P (An).

We call Ω a sample space, A ∈ F an event (or measurable set) and P a

probability measure on Ω; an element ω ∈ Ω is called an outcome.

Theorem 1.1.1. (Caratheodory Extension Theorem) Let F0 be a field of

subsets in Ω and let F be the σ− field generated by F0. Let P : F0 → [0, 1]

satisfies (i) and (ii) (on F0). Then P can be extended uniquely to F , and

(Ω,F , P ) is a probability space.

The proof of the theorem is to use the outer measure argument.

Example 1. Let Ω = [0, 1], let F0 be the family of set consisting of finite

disjoint unions of half open intervals (a, b] and [0, b], Let P ([a, b)) = |b − a|.
Then F is the Borel field and P is the Lebesgue measure on [0, 1].

Example 2. Let {(Ωn,Fn, Pn)}n be a sequence of probability spaces. Let

Ω =
∏∞

n=1 Ωn be the product space and let F0 be the family of subsets of the

form E =
∏∞

n=1 En, where En ∈ Fn, En = Ωn except for finitely many n.

Define

P (E) =
∞∏

n=1

P (En)

Let F be the σ-field generated F0, then (Ω,F , P ) is the standard infinite

product measure space.

Example 3. (Kolmogorov Extension Theorem) Let Pn be probability mea-

sures on (
∏n

k=1 Ωk,Fn) satisfying the following consistency condition: for m ≤
n

Pn ◦ πnm
−1 = Pm
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where πnm(x1 · · · xn) = (x1 · · · xm). On Ω =
∏∞

k=1 Ωk, we let F0 be the field of

sets F = E ×∏∞
k=n+1 Ωk, E ∈ Fn and let

P (F ) = Pn(E).

Then this defines a probability spaces (Ω, F , P ), where F is the σ-field gen-

erated by F0.

Remark: The probability space in Example 2 is the underlying space for

a sequence of independent random variables. Example 3 is for more general

sequence of random variables (with the consistency condition).

A random variable (r.v.) X on (Ω,F) is an (extended) real valued function

X : (Ω,F) → R such that for any Borel subset B of R,

X−1(B) = {ω : X(ω) ∈ B} ∈ F .

(i.e. X is F -measurable). We denote this by X ∈ F . It is well known that

− For X ∈ F , X is either a simple function (i.e.,
∑n

k=1 akχAk
(ω) where

Ak ∈ F), or is the pointwise limit of a sequence of simple functions.

− Let X ∈ F and g is a Borel measurable function, then g(X) ∈ F .

− If {Xn} ⊆ F and limn→∞ Xn = X, then X ∈ F .

− Let FX be the σ-field generated by X, i.e., the sub-σ-field {X−1(B) : B ∈
B}. Then for any Y ∈ FX , Y = ϕ(X) for some extended-valued Borel function

ϕ on R.

Sketch of proof ([1, p.299]): First prove this for simple r.v. Y so that

Y = φ(X) for some simple function φ. For a bounded r.v. Y ≥ 0, we can

find a sequence of increasing simple functions {Yn} such that Yn = φn(X) and
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Yn ↗ Y . Let φ(x) = limnφn(x), hence Y = φ(X). Then prove Y for the

general case.

A r.v. X : (Ω,F) → R induces a distribution (function) on R:

F (x) = FX(x) = P (X ≤ x).

It is a non-decreasing, right continuous function with limn→−∞ F (x) = 0,

limn→∞ F (x) = 1. The distribution defines a measure µ

µ((a, b]) = F (b)− F (a)

(use the Caratheodory Extension Theorem here). More directly, we can define

µ by

µ(B) = P (X−1(B)) , B ∈ B.

The jump of F at x is F (x)−F (x−) = P (X = x). A r.v. X is called a discrete

if F is a jump function; X is called a continuous r.v. if F is continuous, i.e.,

P (X = x) = 0 for each x ∈ R, and X is said to have a density function f(x) if

F is absolutely continuous with the Lebesgue measure and f(x) = F ′(x) a.e.,

equivalently F (x) =
∫ x

−∞ f(y)dy.

For two random variables X,Y on (Ω,F), the random vector (X,Y ) :

(Ω,F) → R2 induces a distribution F on R2

F (x, y) = P (X ≤ x, Y ≤ y)

and F is called the joint distribution of (X,Y ), the corresponding measure µ

is given by

µ((a, b]× (c, d]) = F (b, d)− F (a, d)− F (b, c) + F (a, c),

Similarly we can define the joint distribution F (x1 · · · xn) and the correspond-

ing measure.
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For a sequence of r.v., {Xn}∞n=1, there are various notions of convergence.

(a) Xn → X a.e. (or a.s.) if limn→∞ Xn(ω) = X(ω) (pointwise) for ω ∈ Ω\E
where P (E) = 0.

(b) Xn → X in probability if for any ε > 0, limn→∞ P (|Xn −X| ≥ ε) = 0.

(c) Xn → X in distribution if Fn(x) → F (x) at every point x of continuity.

It is equivalent to µn → µ vaguely i.e., µn(f) → µ(f) for all f ∈ C0(R), the

space of continuous functions vanish at ∞ (detail in [1]).

The following relationships are basic ([1] or Royden): (a) ⇒ (b) ⇒ (c);

(b) ⇒ (a) on some subsequence. On the other hand we cannot expect (c)

to imply (b) as the distribution does not determine X. For example consider

the interval [0, 1] with the Lebesgue measure, the r.v.’s X1 = χ[0, 1
2
], X2 =

χ[ 1
2
,1], X3 = χ[0, 1

4
] + χ[ 3

4
,1] all have the same distribution.

The expectation of a random variable is defined as

E(X) =

∫

Ω

X(ω)dP (ω) =

∫ ∞

−∞
xdF (x) (=

∫ ∞

−∞
xdµ(x))

and for a Borel measurable h, we have

E(h(X)) =

∫

Ω

h(X(ω))dP (ω) =

∫ ∞

−∞
h(x)dF (x).

The most basic convergence theorems are:

(a) Fatou lemma:

Xn ≥ 0, then E(limn→∞Xn) ≤ limn→∞E(Xn).

(b) Monotone convergence theorem:

Xn ≥ 0, Xn ↗ X, then lim
n→∞

E(Xn) = E(X).
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(c) Dominated convergence theorem:

|Xn| ≤ Y, E(Y ) < ∞ and Xn → X a.e., then lim
n→∞

E(Xn) = E(X).

We say that Xn → X in Lp, p > 0 if E(|X|p) < ∞ and E(|Xn −X|p) → 0

as n →∞. It is known that Lp convergence implies convergence in probability.

The converse also holds if we assume further E(|Xn|p) → E(|X|p) < ∞ ([1],

p.97).

Two events A,B ∈ F are said to be independent if

P (A ∩B) = P (A)P (B).

Similarly we say that the events A1, · · ·An ∈ F are independent if for any

subsets Aj1 , · · · , Ajk
,

P (
k⋂

i=1

Aji
) =

k∏
i=1

P (Aji
).

Two sub-σ-fields F1 and F2 are said to be independent if any choice of sets of

each of these σ-fields are independent. Two r.v.’s X, Y are independent if the

σ-fields FX and FY they generated are independent. Equivalently we have

P (X ≤ x, Y ≤ y) = P (X ≤ x) P (Y ≤ y),

(i.e., the joint distribution equals the product of their marginal distributions).

We say that X1 · · ·Xn are independent if for any Xi1 · · ·Xik , their joint distri-

bution is a product of their marginal distributions.

Proposition 1.1.2. Let X, Y be independent, then f(X) and g(Y ) are inde-

pendent for any Borel measurable functions f and g.
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Exercises

1. Can you identify the interval [0, 1] with the Lebesgue measure to the prob-

ability space for tossing a fair coin repeatedly?

2. Prove Proposition 1.1.2.

3. Suppose that supn |Xn| ≤ Y and E(Y ) < ∞. Show that

E(limn→∞Xn) ≥ limn→∞E(Xn)

4. If p > 0 and E(|X|p) < ∞, then xpP (|X| > x) = o(1) as x → ∞. The

converse also holds for E(|X|p−ε) < ∞ for 0 < ε < p .

5. For any d.f. F and any a ≥ 0, we have
∫ ∞

−∞
(F (x + a)− F (x))dx = a

6. Let X be a positive r.v. with a distribution F , then
∫ ∞

0

(1− F (x)) dx =

∫ ∞

0

x dF (x).

and

E(X) =

∫ ∞

0

P (X > x) dx =

∫ ∞

0

P (X ≥ x) dx

7. Let {Xn} be a sequence of identically distributed r.v. with finite mean,

then

lim
n

1

n
E( max

1≤j≤n
|Xj|) = 0.

(Hint: use Ex.6 to express the mean of the maximum)

8. If X1, X2 are independent r.v.’s each takes values +1 and −1 with prob-

ability 1
2
, then the three r.v.’s {X1, X2, X1X2} are pairwise independent but

not independent.

9. A r.v. is independent of itself if and only if it is constant with probability

one. Can X and f(X) be independent when f ∈ B?
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10 . Let {Xj}n
j=1 be independent with distributions {Fj}n

j=1. Find the distri-

bution for maxj Xj and minj Xj.

11. If X and Y are independent and E(|X + Y |p) < ∞ for some p > 0, then

E(|X|p) < ∞ and E(|Y |p) < ∞.

12. If X and Y are independent, E(|X|p) < ∞ for some p ≥ 1, and E(Y ) = 0,

then E(|X + Y |p) ≥ E(|X|p).
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1.2 Conditional Expectation

Let Λ ∈ F with P (Λ) > 0, we define

P (E|Λ) =
P (Λ ∩ E)

P (Λ)
where P (Λ) > 0.

It follow that for a discrete random vector (X, Y ),

P (Y = y|X = x) =





P (Y = y, X = x)

P (X = x)
, if P (X = x) > 0 ,

0 , otherwise.

Moreover if (X, Y ) is a continuous random variable with joint density f(x, y),

the conditional density of Y given X = x is

f(y|x) =





f(x, y)

fX(x)
, if fX(x) > 0 ,

0 , otherwise .

where fX(x) =
∫∞
−∞ f(x, y)dy is the marginal density. The conditional expec-

tation of Y given X = x is

E(Y |X = x) =

∫ ∞

−∞
yf(y|x)dy.

Note that

g(x) := E(Y |X = x) is a function on x ,

and hence

g(X(·)) := E(Y |X(·)) is a r.v. on Ω . (1.2.1)

In the following we have a more general consideration for the conditional

expectation (and also the conditional probability): E(Y |G) where G is a sub-

σ-field of F .

First let us look at a special case where G is generated by a measurable

partition {Λn}n of Ω (each member in G is a union of {Λn}n). Let Y be an
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integrable r.v., then

E(Y |Λn) =

∫

Ω

Y (ω)dPΛn(ω) =
1

P (Λn)

∫

Λn

Y (ω)dP (ω). (1.2.2)

(Here PΛn(·) = P ( · ∩ Λn)
P (Λn)

is a probability measure for P (Λn) > 0). Consider

the random variable (as in (1.2.1))

Z(·) = E(Y |G)(·) :=
∑

n

E(Y |Λn)χΛn(·) ∈ G.

It is easy to see that if ω ∈ Λn, then Z(ω) = E(Y |Λn), and moreover

∫

Ω

E(Y |G)dP =
∑

n

∫

Λn

E(Y |G)dP =
∑

n

E(Y |Λn)P (Λn) =

∫

Ω

Y dP .

We can also replace Ω by Λ ∈ G and obtain

∫

Λ

E(Y |G)dP =

∫

Λ

Y dP ∀ Λ ∈ G.

Recall that for µ, ν two σ-finite measures on (Ω,F) and µ ≥ 0, ν is called

absolutely continuous with respect to µ (ν ¿ µ) if for any Λ ∈ F and

µ(Λ) = 0, then ν(Λ) = 0. The Radon-Nikodym theorem says that there exists

g =
dν

dµ
such that

ν(Λ) =

∫

Λ

gdµ ∀ Λ ∈ F .

Theorem 1.2.1. If E(|Y |) < ∞ and G is a sub-σ-field of F , t hen there

exists a unique G-measurable r.v., denote by E(Y |G) ∈ G, such that

∫

Λ

Y dP =

∫

Λ

E(Y |G) dP ∀ Λ ∈ G.

Proof. Consider the set-valued function

ν(Λ) =

∫

Λ

Y dP Λ ∈ G.
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Then ν is a “signed measure” on G. It satisfies

P (Λ) = 0 =⇒ ν(Λ) = 0.

Hence ν is absolutely continuous with respect to P . By the Radon-Nikodym

theorem, the derivative g = dν
dP
∈ G and

∫

Λ

Y dP = v(Λ) =

∫

Λ

gdP ∀ Λ ∈ G.

This g is unique: for if we have g1 ∈ G satisfies the same identity,

∫

Λ

Y dP = v(Λ) =

∫

Λ

g1dP ∀ Λ ∈ G.

Let Λ = {g > g1} ∈ G, then
∫
Λ
(g − g1)dP = 0 implies that P (Λ) = 0. We can

reverse g and g1 and hence we have P (g 6= g1) = 0. It follows that g = g1 G-a.e.

Definition 1.2.2. Given an integrable r.v. Y and a sub-σ-field G, we say

that E(Y |G) is the conditional expectation of Y with respect to G (also denote

by EG(Y ) ) if it satisfies

(a) E(Y |G) ∈ G;

(b)
∫
Λ

Y dP =
∫
Λ

E(Y |G)dP ∀ Λ ∈ G.

If Y = χ∆ ∈ F , we define P (∆|G) = E(χ∆|G) and call this the conditional

probability with respect to G.

Note that the conditional probability can be put in the following way:

(a)′ P (∆|G) ∈ G;

(b)′ P (∆ ∩ Λ) =
∫

Λ
P (∆|G)dP ∀ Λ ∈ G.

It is a simple exercise to show that the original definition of P (∆|Λ) agrees

with this new definition by taking G = {∅, Λ, Λc, Ω}.
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Note that E(Y |G) is “almost everywhere” defined, and we call one such

function as a “version” of the conditional expectation. For brevity we will not

mention the “a.e.” in the conditional expectation unless necessary. If G is the

sub-σ-field FX generated by a r.v. X, we write E(Y |X) instead of E(Y |FX).

Similarly we can define E(Y |X1, · · · , Xn).

Proposition 1.2.3. For E(Y |X) ∈ FX , there exists an extended-valued Borel

measurable ϕ such that E(Y |X) = ϕ(X), and ϕ is given by

ϕ =
dλ

dµ
,

where λ(B) =
∫

X−1(B)
Y dP, B ∈ B, and µ is the associated probability of the

r.v. X on R.

Proof. Since E(Y |X) ∈ FX , we can write E(Y |X) = ϕ(X) for some Borel

measurable ϕ (see §1). For Λ ∈ F , there exists B ∈ B such that Λ = X−1(B).

Hence

∫

Λ

E(Y |X)dP =

∫

Ω

χB(X)ϕ(X)dP =

∫

R
χB(X)ϕ(X)dµ =

∫

B

ϕ(x)dµ

On the other hand by the definition of conditional probability,

∫

Λ

E(Y |X)dP =

∫

X−1(B)

Y dP = λ(B).

It follows that λ(B) =
∫

B
ϕ(x)dµ for all B ∈ B. Hence ϕ =

dλ

dµ
. ¤

The following are some simple facts of the conditional expectation:

− If G = {φ, Ω}, then E(Y |G) is a constant function and equals E(Y ).

− If G = {φ, Λ, Λc, Ω}, then E(Y |G) is a simple function which equals

E(Y |Λ) on Λ, and equals E(Y |Λc) on Λc,
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− If G = F or Y ∈ G, then E(Y |G) = Y .

− If (X,Y ) has a joint density function, then E(Y |X) coincides with the

expression in (1.2.1).

Using the defining relationship of conditional expectation, we can show

that the linearity, the basic inequalities and the convergence theorems for E(·)
also hold for E(· |G). For example we have

Proposition 1.2.4. (Jensen inequality) If ϕ is a convex function on R, and

Y and ϕ(Y ) are integrable r.v., then for each sub-σ-algebra G,

ϕ
(
E(Y |G)

) ≤ E
(
ϕ(Y )|G)

Proof. If Y is a simple r.v., then Y =
∑n

j=1 yjχΛj
with Λ ∈ F . It follows that

E(Y |G) =
n∑

j=1

yjE(χΛj
|G) =

n∑
j=1

yjP (YΛj
|G)

and

E(ϕ(Y )|G) =
n∑

j=1

ϕ(yj)P (YΛj
|G).

Since
∑n

j=1 P (Λj|G) = 1, the inequality holds by the convexity of ϕ.

In general we can find a sequence of simple r.v. {Ym} with |Ym| ≤ |Y |
and Ym → Y , then apply the above together with the dominated convergence

theorem. ¤

Proposition 1.2.5. Let Y and Y Z be integrable r.v. and Z ∈ G, then we

have

E(Y Z|G) = ZE(Y |G).
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Proof. It suffices to show that for Y, Z ≥ 0

∫

Λ

ZE(Y |G)dP =

∫

Λ

ZY dP ∀ Λ ∈ G.

Obviously, this is true for Z = χ∆, ∆ ∈ G. We can pass it to the simple

r.v. Then use the monotone convergence theorem to show that it hold for all

Z ≥ 0, and then the general integrable r.v. ¤

Proposition 1.2.6. Let G1 and G2 be sub-σ-fields of F and G1 ⊆ G2. Then

for Y integrable r.v.

E(E(Y |G2)|G1) = E(Y |G1) = E(E(Y |G1)|G2). (1.2.3)

Moreover

E(Y |G1) = E(Y |G2) iff E(Y |G2) ∈ G1. (1.2.4)

Proof. Let Λ ∈ G1, then Λ ∈ G2. Hence

∫

Λ

E(E(X|G2)|G1)dP =

∫

Λ

E(Y |G2)dP =

∫

Λ

Y dP =

∫

Λ

E(Y |G1)dP,

and the first identity in (1.2.3) follows. The second identity is by E(Y |G1) ∈ G2

(recall that Z ∈ G implies E(Z|G) = Z).

For the last part, the necessity is trivial, and the sufficiency follows from

the first identity. ¤

As a simple consequence, we have

Corollary 1.2.7. E(E(Y |X1, X2)|X1) = E(Y |X1) = E(E(Y |X1)|X1, X2).
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Exercises

1. (Bayes’ rule) Let {Λn} be a F -measurable partition of Ω and let E ∈ F
with P (E) > 0. Then

P (Λn|E) =
P (Λn) P (E|Λn)∑
n P (Λn)P (Λn|E)

.

2. If the random vector (X, Y ) has probability density p(x, y) and X is inte-

grable, then one version of E(X|X + Y = z) is given by

∫
xp(x, z − x)dx

/ ∫
p(x, z − x)dx .

3. Let X be a r.v. such that P (X > t) = e−t, t > 0. Compute E(X|X ∨ t)

and E(X|X ∧ t) for t > 0. ( Here ∨ and ∧ mean maximum and minimum

respectively.

4. If X is an integrable r.v., Y is a bounded r.v., and G is a sub-σ-field, then

E
(
E(X|G)Y

)
= E

(
XE(Y |G)

)
.

5. Prove that var(E(Y |G)) ≤ var(Y ).

6. Let X,Y be two r.v., and let G be a sub-σ-field. Suppose

E(Y 2|G) = X2, E(Y |G) = X,

then Y = X a.e.

7. Give an example that E(E(Y |X1)|X2) 6= E(E(Y |X2)|X1). (Hint: it suf-

fices to find an example E(X|Y ) 6= E(E(X|Y )|X) for Ω to have three points).


