
Lecture 9

We continue to consider some more examples.
Example 1. (Bernoulli shifts). Consider (p1, p2, · · · , pk)-shift on {1, 2, · · · , k}.

Recall Σ = {1, 2, · · · , k}N, σ is the left shift on Σ, µ([i1i2 · · · in]) = pi1pi2 · · · pin .
Consider partition P = {[i] : i = 1, 2, · · · , k}, then

n−1∨
i=0

σ−iP = {[i1i2 · · · in] : i1, · · · , in ∈ {1, 2, · · · , k}}.

Since diam(
∨n−1
i=0 σ

−iP) = 2−n → 0 as n→∞, we have

h(σ) = h(σ,P) = lim
n→∞

1

n
H
( n−1∨
i=0

σ−iP
)

= lim
n→∞

1

n

∑
i1i2···in

−µ([i1i2 · · · in]) logµ([i1i2 · · · in])

= lim
n→∞

1

n

∑
i1i2···in

−pi1pi2 · · · pin(log pi1 + log pi2 + · · ·+ logpin )

= lim
n→∞

∑
i1i2···in

−pi1pi2 · · · pin log pi1 =
∑
i1

−pi1 log pi1
∑

i2i3···in

pi2 · · · pin

=

k∑
i=1

−pi log pi.

Example 2. (Markov shifts). Consider (~p, P )-shift on {1, 2, · · · , k}. Re-
call that P is a stochastic matrix (pij), ~p is a probability vector with all en-
tries positive such that ~pP = ~p, σ is the left shift, and µ([pi1pi2 · · · pin ]) =
pi1pi1i2 · · · pin−1in . By the same argument in the above example, P = {[i] : 1 ≤
i ≤ k} is a partition and we have h(σ) = h(σ,P). Hence

h(σ) = lim
n→∞

1

n

∑
i1i2···in

−µ([i1i2 · · · in]) logµ([i1i2 · · · in])

= lim
n→∞

1

n

∑
i1i2···in

−pi1pi1i2 · · · pin−1in log pi1pi1i2 · · · pin−1in

= lim
n→∞

1

n

∑
i1i2···in

−pi1pi1i2 · · · pin−1in(log pi1 + log pi1i2 + · · ·+ log pin−1in).

Notice that

∑
i1

∑
i2···in

−pi1pi1i2 · · · pin−1in log pi1 =

k∑
i=1

−pi log pi,
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and∑
i1i2···in

−pi1pi1i2 · · · pin−1in log pi1i2 =
∑
i1i2

−pi1pi1i2 log pi1i2
∑
i3···in

pi2i3 · · · pin−1in =
∑
i

∑
j

−pipij log pij ,

similarly for l = 1, 2, · · · , n− 1, we have∑
i1i2···in

−pi1pi1i2 · · · pin−1in log pilil+1
=
∑
i

∑
j

−pipij log pij ,

hence

h(T ) = lim
n→∞

1

n
[−
∑
i

pi log pi−(n−1)
∑
i

∑
j

pipij log pij ] = −
∑
i

∑
j

pipij log pij .

The motivation of introducing the notion of entropy is to clarify MPSs.
There was an open problem before 1958:

Open problem (before 1958) Is ( 1
3 ,

1
3 ,

1
3 )-shift isomorphic to ( 1

2 ,
1
2 )-shift?

Kolmogorov showed that the answer is NO, by showing that entropy is an
isomorphism invariant and the two systems have different entropy.

4.5 Entropy as an isomorphism invariant

Definition 4.8. Let (Xi,Bi, µi, Ti) (i = 1, 2) be two MPSs. Say they are
isomorphic if there exists a map ϕ : X1 → X2 satisfies the following properties:

(i) ϕ is bijective (after removing some sets of measure zero).
(ii) ϕ is measurable, i.e. ϕ−1B2 ⊆ B1 and ϕB1 ⊆ B2.
(iii) µ2 = µ1 ◦ ϕ−1, µ1 = µ2 ◦ ϕ, that is ϕ preserves measures.
(iv) ϕ ◦ T1 = T2 ◦ ϕ, that is the following diagram commutes,

X1
T1−−−−→ X2yϕ yϕ

X2
T2−−−−→ X2.

Theorem 4.14. If (X1,B1, µ1, T1), (X2,B2, µ2, T2) are isomorphic, then hµ1(T1) =
hµ2

(T2).

Proof. We prove hµ2
(T2) ≤ hµ1

(T1), the reverse inequality will hold symmetri-
cally. Let α = {A1, · · · , Ak} be a partition ofX2, then ϕ−1α = {ϕ−1A1, · · · , ϕ−1Ak}
is a partition of X1. Then

Hµ2

( n−1∨
i=0

T−i2 α
)

= Hµ1◦ϕ−1

( n−1∨
i=0

T−12 α
)

= Hµ1

(
ϕ−1

n−1∨
i=0

T−i2 α
)

= Hµ1

( n−1∨
i=0

T−i1 (ϕ−1α)
)
,

hence

hµ2
(T2, α) = lim

n→∞

1

n
Hµ2

( n−1∨
i=0

T−i2 α
)

= lim
n→∞

1

n
Hµ1

( n−1∨
i=0

T−i1 (ϕ−1α)
)

= hµ1
(T1, ϕ

−1α) ≤ hµ1
(T1),

taking supremum over all finite partitions, we complete the proof.
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Now we see that the two Bernoulli shifts ( 1
3 ,

1
3 ,

1
3 )-shift and ( 1

2 ,
1
2 )-shift are

not isomorphic since they have entropy log 3 and log 2 respectively. In 1969,
Ornstein proved the following deep theorem.

Theorem 4.15 (Ornstein). For any two Bernoulli shifts both on finite state
spaces, they are isomorphic iff they have the same entropy.

4.6 Ergodic theory of information

The following theorem is called Shannon-McMillan-Breiman theorem, for a
proof see William Parry’s book.

Theorem 4.16. Let (X,B, µ, T ) be a MPS. Let ξ = {A1, · · · , Ak} be a finite

partition of X. For n ∈ N and x ∈ X, let ξn(x) be the member of
∨n−1
i=0 T

−iξ
that contains x. If T is ergodic, then

lim
n→∞

− 1

n
logµ(ξn(x)) = h(T, ξ), for µ-a.e. x ∈ X.

That is µ(ξn(x)) ∼ e−nh(T,ξ) for µ-a.e. x ∈ X.

5 Topological entropy

5.1 Conjugacy problem in TDS

Recall (X,T ) is a TDS if X is a compact metric space and T : X → X is
continuous.

Definition 5.1. Two TDSs (X,T ) and (Y, S) are said to be topological conju-
gate if there is a homeomorphism φ : X → Y such that φ ◦ T = S ◦ φ , that is
the following diagram commutes,

X
T−−−−→ Xyφ yφ

Y
S−−−−→ Y.

Question: How can we determine whether two TDSs are topological con-
jugate?

Just as in the situation of MPS, we expect to find some conjugacy invariant.

5.2 Definition of topological entropy

The notion of topological entropy was first introduced by Adler, Konheim and
McAndrew in 1965.

Let (X,T ) be a TDS. Say α = {Ai : i ∈ I} is an open cover of X if⋃
i∈I Ai = X and Ai are open.
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Definition 5.2. Let α be an open cover of X. Define

N(α) = inf{k : ∃A1, · · · , Ak ∈ α, s.t.X ⊆
k⋃
i=1

Ai},

and define H(α) := logN(α).

Let α, β be two open covers of X. Say β is a refinement of α if every member
of β is a subset of some member of α, we write α < β. For instance, let X = T,
set β = {(0, 12 ), ( 1

3 ,
3
4 ), ( 2

3 ,
5
4 )} and α = {(0, 12 ), ( 1

4 ,
3
4 ), (0, 23 ), ( 2

3 ,
5
4 )}, then α < β.

Remark.
(i) N(α) ≥ 1.
(ii) If α < β, then N(α) ≤ N(β).
(iii) N(T−1α) ≤ N(α), where T−1α := {T−1A : A ∈ α}.

Proof. (i) is clear. For (ii), let t = N(β), then ∃A1, · · · , Ak ∈ β s.t. X =⋃k
i=1Ai. Since α < β, ∃Bi ∈ α s.t. Ai ⊆ Bi, hence X ⊆

⋃k
i=1Bi, then

N(α) ≤ N(β). (iii) be can seen in the same way.

Definition 5.3. Let α, β be two open covers of X. Define

α ∨ β = {A ∩B : A ∈ α,B ∈ β}.

It’s clear that α ∨ β is an open cover of X and α < α ∨ β, β < α ∨ β.

Lemma 5.1. N(α ∨ β) ≤ N(α)N(β) and H(α ∨ β) ≤ H(α) +H(β).

Proof. Suppose X =
⋃N(α)
i=1 Ai =

⋃N(β)
j=1 Bj , with Ai ∈ α, Bj ∈ β, then X =⋃

i,j Ai ∩ Bj , hence N(α ∨ β) ≤ N(α)N(β), the second inequality follows after
taking logarithm.

Definition 5.4 (Entropy of an open cover). Let α be an open cover of X.
Define

h(T, α) := lim
n→∞

1

n
H
( n−1∨
i=0

T−iα
)
,

we call h(T, α) the topological entropy of T w.r.t α.

The existence of the above limit is guarantee by the following lemma.

Lemma 5.2. Set an = H
(∨n−1

i=0 T
−iα

)
, then an+m ≤ an + am and hence

lim
n→∞

an
n

= inf
n

an
n
.

Proof.

an+m = H
( n+m−1∨

i=0

T−iα
)

= H
(
(

n−1∨
i=0

T−iα)
∨
T−n(

m−1∨
j=0

T−jα)
)

≤ an +H
(
T−n(

m−1∨
j=0

T−jα)
)
≤ an + am.
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Definition 5.5 (Topological entropy of T ).

h(T ) := sup
α
h(T, α),

where the supremum is taking over all open covers of X.

The definition of topological entropy is quite similar to that of measure-
theoretical entropy, it turns out to be an invariant of topological conjugacy.

Theorem 5.3. Suppose (X,T ) and (Y, S) are topological conjugate, then h(T ) =
h(S).

Proof. We show that h(S) ≤ h(T ). It suffices to show h(S, α) ≤ h(T ) for any
open cover α of Y . Let φ : X → Y be the conjugacy map, we have

h(S, α) = lim
n→∞

1

n
H
( n−1∨
i=0

S−iα
)

= lim
n→∞

1

n
H
(
φ−1

n−1∨
i=0

S−iα
)

= lim
n→∞

1

n
H
( n−1∨
i=0

T−i(φ−1α)
)

= h(T, φ−1α) ≤ h(T ),

notice that in the second equality we have used the fact that H(β) = H(φ−1β)
for any open cover β of Y .

5.3 Calculation of topological entropy

For any open cover α of X, define

diam(α) := sup
A∈α

diam(A).

A Lebesgue number of α is a value δ > 0 such that for any x ∈ X, the open
ball B(x, δ) is a subset of some member of α. Lebesuge number of an open cover
always exists due to the compactness of X.

Claim. Any open cover has a Lebesgue number.

Proof. Suppose α is an open cover of X which does not have a Lebesgue number,
then for any n, ∃xn ∈ X, s.t. B(xn,

1
n ) is not contained in any member of

α. By compactness, ∃ subsequence (nk) and some x ∈ X, s.t. xnk → x as
k → ∞. But since x ∈ A for some open set A ∈ α, ∃r > 0, s.t. B(x, r) ⊆
A, however B(xnk ,

1
nk

) ⊆ B(x, r) when k is large, which contradicts with our
assumption.

Lemma 5.4. Let α, β be two open covers of X. If diam(β) is a Lebesgue number
of α, then α < β and h(T, α) ≤ h(T, β).

Proof. Let B ∈ β, pick x ∈ B, then B ⊆ B(x, diam(β)) ⊆ A for some A ∈ α,
hence α < β. The second inequality follows from the definition of entropy.
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Lemma 5.5. Let (αn) be a sequence of open covers of X with diam(αn) → 0
as n→∞, then

h(T ) = lim
n→∞

h(T, αn).

Proof. It suffices to prove for any open cover α,

h(T, α) ≤ lim
n→∞

h(T, αn).

Since diam(αn)→ 0 as n→∞, when n is large, diam(αn) is a Lebesgue number
of α, hence h(T, α) ≤ h(T, αn) for n large, this completes the proof.

Lemma 5.6. If diam
(∨n−1

i=0 T
−iα

)
→ 0 as n→∞, then h(T ) = H(T, α).

Proof. We first check an identity

h(T, α) = h
(
T,

n−1∨
i=0

T−iα
)

for all n ∈ N.

By definition

h
(
T,

n−1∨
i=0

T−iα
)

= lim
m→∞

1

m
H
(m−1∨
j=0

T−j(

n−1∨
i=0

T−iα)
)

= lim
m→∞

1

m
H
(m+n−2∨

i=0

T−iα
)

= lim
m→∞

1

m+ n− 1
H
(m+n−2∨

i=0

T−iα
)

= h(T, α).

Applying the above lemma, we complete the proof.

Notice that the above definition of topological entropy is completely topo-
logical, it is Rufus Bowen who found an equivalent definition which may have
more apparent dynamical interpretation.

Let d be the metric on X. For n ∈ N, define

dn(x, y) := max
0≤i≤n−1

d(T ix, T iy) for x, y ∈ X,

then dn is again a metric. For x ∈ X and ε > 0, define

Bn(x, ε) := {y ∈ X : dn(x, y) < ε},

and call it a Bowen ball. Define

Nn(ε) := inf{k : ∃x1, x2, · · · , xk s.t.

k⋃
i=1

Bn(xi, ε) ⊇ X}.
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Proposition 5.1. h(T ) = lim
ε→0

lim
n→∞

1
n logNn(ε).

For convenience, let us denote the right hand side by hB(T ), to mean the
definition of Bowen. Before we prove this proposition, we mention another dual
but also equivalent definition as follows.

Define

Sn(ε) = sup{k : ∃x1, x2, · · · , xk ∈ X, s.t. Bn(xi, ε) are pairwisely disjoint}.

Remark: Nn(2ε) ≤ Sn(ε) ≤ Nn(ε).

Proof. Assume x1, · · · , xSn(ε) ∈ X such that Bn(xi, ε) are pairwisely disjoint.
We claim that {Bn(x1, 2ε), · · · , Bn(xSn(ε), 2ε)} is an open cover of X. Otherwise

if x̃ ∈ X\
⋃Sn(ε)
i=1 Bn(xi, 2ε), thenBn(x̃, ε) is disjoint withBn(x1, ε), · · · , Bn(xSn(ε), ε),

contradicting with the definition of Sn(ε), this proves the first inequality. On
the other hand, assume Bn(y1, ε), · · · , Bn(yk, ε) are Bowen balls such that X ⊆⋃k
i=1Bn(yi, ε), then each Bn(yi, ε) can contain at most one xj since dn(xj , xj′) ≥

2ε if j 6= j′, hence Sn(ε) ≤ k, taking infimum over all such k, we have Sn(ε) ≤
Nn(ε).

Write S(ε) = limn→∞
1
n logSn(ε), it is clear if ε1 < ε2, then S(ε2) ≤ S(ε1).

Combining this fact with the above remark, we immediately have

lim
ε→0

lim
n→∞

1

n
logNn(ε) = lim

ε→0
lim
n→∞

1

n
logSn(ε).

We will use the following lemma to relate our previous definition of the
entropy of an open cover and Bowen’s notation.

Lemma 5.7. Let (X,T ) be a TDS, then
(i) Let α be an open cover of X. Let δ be a Lebesgue number of α, then

N
( n−1∨
i=0

T−iα
)
≤ Nn(δ).

(ii) Let β be an open cover of X with diam(β) < ε, then

Nn(ε) ≤ N
( n−1∨
i=0

T−iβ
)
.

Proof. (i) Assume that X ⊆
⋃Nn(δ)
i=1 Bn(xi, δ) for some x1, · · · , xNn(δ) ∈ X.

Notice that for x ∈ X, Bn(x, δ) =
⋂n−1
i=0 T

−iB(T ix, δ). Since δ is a Lebesgue
number of α, we have B(T ix, δ) is a subset of some element of α, hence Bn(x, δ)

is a subset of some element of
∨n−1
i=0 T

−iα. In particular, Bn(xi, δ) ⊆ Ai ∈∨n−1
j=0 T

−jα for i = 1, · · · , Nn(δ), hence X ⊆
⋃Nn(δ)
i=1 Ai with Ai ∈

∨n−1
j=0 T

−jα,
therefore by definition

N
( n−1∨
i=0

T−iα
)
≤ Nn(δ).
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(ii) Write l = N
(∨n−1

i=0 T
−iβ
)

and assume A1, · · · , Al ∈
∨n−1
i=0 T

−iβ is an open
cover of X. For i = 1, · · · , l, pick xi ∈ Ai, then it’s easy to see Ai ⊆ Bn(xi, ε),

hence X ⊆
⋃l
i=1Bn(xi, ε), which implies Nn(ε) ≤ l.

Corollary 5.7.1. Let (X,T ) be a TDS. For ε > 0, let αε = {all open balls of radius ε},
then

N
( n−1∨
i=0

T−iαε
)
≤ Nn(ε) ≤ N

( n−1∨
i=0

T−iα ε
3

)
.

Proof. Notice that αε and α ε
3

both are open covers of X and ε itself is a Lebesgue
number of αε, then the corollary follows by applying the above lemma.

Now we can prove that the two definitions of topological entropy coincide,
that is h(T ) = hB(T ).

Proof of Proposition 5.1. By the above corollary, we have

1

n
logN

( n−1∨
i=0

T−iαε
)
≤ 1

n
logNn(ε) ≤ 1

n
logN

( n−1∨
i=0

T−iα ε
3

)
,

letting n→∞, we have

h(T, αε) ≤ lim
n→∞

1

n
logNn(ε) ≤ h(T, α ε

3
),

taking ε = 1
n and letting n→∞, by Lemma 5.5, we complete the proof.
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