
Lecture 6

We continue to consider some more examples of ergodic transformations.
Example 1. (Bernoulli shift on finite state space).
Let l ≥ 2 be an integer. Consider ΣN = {(xi)∞i=1 : xi ∈ {1, 2, · · · , l}}

and σ : ΣN → ΣN defined by σ((xi)
∞
i=1) = (xi+1)∞i=1. Let (p1, p2, · · · , pl) be

a probability vector, i.e. pi > 0 for each i and
∑l
i=1 pi = 1. Define µ on

ΣN by µ([i1i2 · · · ik]) = pi1pi2 · · · pik for any iii2 · · · ik ∈ {1, 2, · · · , l}k, where
[iii2 · · · ik] := {x ∈ ΣN : x1 = i1, x2 = i2, · · · , xk = ik} is called a cylinder. Let
G be the collection of all cylinders, then G is a semi-algebra generating B(ΣN ).
Since µ is countably additive on G , by Kolmogorov consistency theorem, µ
extends uniquely to a probability measure on B, still denoted by µ. We claim
that σ is ergodic w.r.t µ. To see this, let A = [i1i2 · · · ik] and B = [j1j2 · · · jm]
be two cylinders, then for i > m, µ(σ−iA ∩B) = µ(A)µ(B). Hence

lim
n→∞

1

n

n−1∑
i=0

µ(T−iA ∩B) = µ(A)µ(B), for A,B ∈ G .

By Theorem 3.10, σ is ergodic.
The same argument also works in the following general setting.
Example 2. (Bernoulli shift on general state spaces).

Let (Y,F , µ) be a probability space. Let (X,B,m) =

∞∏
i=0

(Y,F , µ). Define

T : X → X by (yi)
∞
i=0 7→ (yi+1)∞i=0. Then T is ergodic w.r.t m.

Example 3. (Markov shift).
Let l ≥ 2 be an integer. Let A = (aij)l×l with 0, 1 entries. Define

ΣN
A := {(xi)∞i=1 : xi ∈ {1, 2, · · · , l} and axixi+1

= 1 for all i}.

Define σ : ΣN
A → ΣN

A by σ((xi)
∞
i=1) = (xi+1)∞i=1. (ΣN

A, σ) is called a subshift of
finite type. Let P = (pij)l×l be a stochastic matrix in the sense that pij ≥ 0

and
∑l
j=1 pij = 1 for each i. We assume that pij > 0 iff aij = 1. Suppose

~p = (p1, p2, · · · , pl) is a probability vector with pi > 0 for each i and ~pP = ~p.
Then define µ on ΣN

A by

µ([i1i2 · · · in]) = pi1pi1i2pi2i3 · · · pin−1in ,

for any i1i2 · · · in ∈ {1, 2, · · · , l}n with aikik+1
= 1 for k = 1, 2, · · · , n − 1. µ is

called a (~p, P ) Markov measure. µ is σ-invariant. Moreover µ is ergodic iff A is
irreducible in the sense that there exists N , such that A+A2+· · ·+AN is strictly
positive, equivalently for any pair 1 ≤ i ≤ j ≤ l, there exist i1, i2, · · · , ik ∈
{1, 2, · · · , l} such that aii1 = ai1i2 = · · · = aikj = 1.

Example 4. (Continued fraction transformation).
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Define T : (0, 1)→ (0, 1) by Tx = 1
x−[ 1x ], where [x] denotes the integral part

of x. T is called the continued fraction transformation. Consider the continued
fraction of a real number x,

x =
1

a1 +
1

a2 +
1

a3 + · · ·

, a1, a2, · · · ∈ N.

Notice that a1 = [ 1x ], a2 = [ 1
1
x−[

1
x ]

] = [ 1
Tx ], inductively an = [ 1

Tn−1x ]. Now

define a measure µ on (0, 1) by µ(B) = 1
log 2

∫
B

1
x+1dx for Borel set B ⊂ (0, 1).

µ is called the Gaussian measure. µ is T -invariant and ergodic. See Pollicott
and Yuri’s book for a proof.

3.5 Mixing

Recall that a measure-preserving transformation T is ergodic if and only if for
any A,B ∈ B,

lim
n→∞

1

n

n−1∑
k=0

m(T−kA ∩B) = m(A)m(B).

We can change the way that the limit converges to give the following notions.

Definition 3.4. Let (X,B,m, T ) be a MPS.
(i) We say T is weak-mixing if for any A,B ∈ B,

lim
n→∞

1

n

n−1∑
k=0

|m(T−kA ∩B)−m(A)m(B)| = 0.

(ii) Say that T is mixing (or strong-mixing) if for any A,B ∈ B,

lim
n→∞

m(T−nA ∩B) = m(A)m(B).

Remark: (1). In probability view, T is ergodic ⇔ for any A,B ∈ B, T−nA
is independent form B on average. T is mixing ⇔ for any A,B ∈ B, T−nA is
asymptotically independent form B.

(2). It is clear that mixing ⇒ weak-mixing ⇒ ergodicity.
Example 1. Let α be an irrational number. Let m be the Haar measure on

R/Z. Define T : R/Z→ R/Z by Tx = x+α(mod1). Then T is ergodic but not
weak-mixing. To see this, let A = [0, 18 ] and B = [ 78 , 1). Notice that for each
k, T−kA = A− kα(mod1). Since {kα(mod1) : k ∈ N} is uniformly distributed
on [0, 1), there are half of k such that −kα(mod1) ∈ [0, 12 ), for such k, we have
A− kα(mod1) ⊂ [0, 18 + 1

2 ] disjoint with B, therefore

lim
n→∞

1

n

n−1∑
k=0

|m(T−kA ∩B)−m(A)m(B)| ≥ 1

2
m(A)m(B) > 0.
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Hence T is not mixing.
Remark: There are examples of weak-mixing MPSs which are not mixing.
Just like the case of ergodicity, to check mixing property it is enough to

consider a subcollection of B that generates B. The following theorem can be
proved in the same way as Theorem 3.10.

Theorem 3.11. Let (X,B,m, T ) be a MPS. Let G be a semi-algebra generating
B. Then

(i) T is ergodic ⇔ for any A,B ∈ G ,

lim
n→∞

1

n

n−1∑
k=0

m(T−kA ∩B) = m(A)m(B).

(ii) T is weak-mixing ⇔ for any A,B ∈ G ,

lim
n→∞

1

n

n−1∑
k=0

|m(T−kA ∩B)−m(A)m(B)| = 0.

(iii) T is mixing ⇔ for any A,B ∈ G ,

lim
n→∞

m(T−nA ∩B) = m(A)m(B).

Example 2. (Bernoulli shift on finite state space).
Let G = {[i1i2 · · · ik] : i1i2 · · · ik ∈ {1, 2, · · · , l}k, k ∈ N}, then G is a semi-

algebra generating B. Recall we have shown that for any A,B ∈ G , µ(σ−nA ∩
B) = µ(A)µ(B) when n is large, hence σ is mixing.

Example 3. (Markov shift).
Let (~p, P ) be a Markov measure on ΣN

A. Then T is mixing ⇔ T is weak-
mixing⇔ P is primitive in the sense that there exists N such that PN is strictly
positive.

We can further characterize weak-mixing as follows.

Definition 3.5. A subset J of N is said to have zero density in N if

lim
n→∞

1

n
](J ∩ [0, n− 1]) = 0.

For example {1, 22, 32, · · · } has zero density, the set of all primes has zero
density.

Theorem 3.12. Let (X,B,m, T ) be a MPS. The following are equivalent.
(i) T is weak-mixing.
(ii) For any A,B ∈ B, there exists a subset J = J(A,B) of N of density 0,

such that
lim

J 63n→∞
m(T−nA ∩B) = m(A)m(B).

(iii) For any A,B ∈ B,

lim
n→∞

1

n

n−1∑
k=0

|m(T−kA ∩B)−m(A)m(B)|2 = 0.
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This theorem follows from the following lemma immediately.

Lemma 3.13. Let {an} be a bounded sequence of real numbers. The following
are equivalent.

(i) lim
n→∞

1
n

n−1∑
k=0

|ak| = 0.

(ii) There exists a subset J of N of density 0 such that

lim
J 63n→∞

an = 0.

(iii) lim
n→∞

1
n

n−1∑
k=0

a2k = 0.

Proof. (i) ⇒ (ii). For k ∈ N+, define Jk = {n ∈ N : |an| ≥ 1
k}, clearly

J1 ⊆ J2 ⊆ · · · , we claim that each Jk is of density 0. Notice that

n−1∑
j=0

|aj | ≥
∑

0≤j≤n−1
j∈Jk

|aj | ≥
∑

0≤j≤n−1
j∈Jk

1

k
=

1

k
](Jk ∩ [0, n− 1]),

hence

0 = lim
n→∞

1

n

n−1∑
j=0

|aj | ≥
1

k
lim
n→∞

1

n
](Jk ∩ [0, n− 1]).

Hence each Jk is of density 0. Therefore we can find a sequence of integers
0 = l0 < l1 < l2 < · · · , such that

1

n
](Jk+1 ∩ [0, n− 1]) ≤ 1

k + 1
for any n ≥ lk.

Now define

J =

∞⋃
k=0

(Jk+1 ∩ [lk, lk+1)).

We claim that J has zero density. Let n be given, pick k such that lk ≤ n < lk+1.
Since J1 ⊆ J2 ⊆ · · · , we have

J ∩ [0, n− 1] ⊆
k⋃
i=0

(
Jk+1 ∩ [lk, lk+1) ∩ [0, n− 1]

)
⊆ Jk+1 ∩ [0, n− 1],

then
1

n
]
(
J ∩ [0, n− 1]) ≤ 1

n
](Jk+1 ∩ [0, n− 1]

)
≤ 1

k + 1
,

since as n → ∞, k → ∞, we see that J is of density 0. Let n /∈ J and
lk ≤ n < lk+1, then n /∈ Jk+1, so |an| < 1

k+1 , hence lim
J 63n→∞

an = 0. Notice that a

similar argument yields (iii)⇒ (ii). (ii)⇒ (i) and (ii)⇒ (iii) are straightforward.
This completes the proof.
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One way to obtain new MPSs from old ones is to consider their product.

Definition 3.6. Let (X1,B1,m1, T1) and (X2,B2,m2, T2) be two MPSs. Their
product is denoted by (X1 ×X2,B1 ×B2,m1 ×m2, T1 × T2), where

(i) B1×B2 is the smallest σ-algebra containing all rectangles B1×B2 with
B1 ∈ B1, B2 ∈ B2.

(ii) m1 ×m1 is the product probability measure.
(iii) T1×T2 is defined by (T1×T2)(x, y) := (T1x, T2y), for (x, y) ∈ X1×X2.

The fact T1 × T2 is a measure-preserving transformation can be seen in the
following way: Let G = {B1 × B2 : B1 ∈ B1, B2 ∈ B2}. Then G is a semi-
algebra. One easily checks T1 × T2 preserves measure of all rectangles in G .
Write M = {A ∈ B1 × B2 : (m1 × m2)((T1 × T2)−1A) = (m1 × m2)(A))},
then M ⊇ G and M is a monotone class. Then by monotone class theorem,
M = B.

The following theorem shows the connection between weak-mixing of T and
the ergodicity of T × T .

Theorem 3.14. Let (X,B,m, T ) be a MPS. The following are equivalent.
(i) T is weak-mixing.
(ii) T × T is ergodic.
(iii) T × T is weak-mixing.

Proof. We show (i) ⇒ (iii) ⇒ (ii) ⇒ (i). First consider (i) ⇒ (iii). Let
A,B,C,D ∈ B. Since T is weak-mixing, there exist J1, J2 ⊆ N of density
0, such that

lim
J1 63n→∞

m(T−nA∩C) = m(A)m(C) and lim
J2 63n→∞

m(T−nB∩D) = m(B)m(D).

Notice that

lim
n→∞

n/∈J1∪J2
m×m

(
(T × T )−n(A×B) ∩ (C ×D)

)
= lim

n→∞
n/∈J1∪J2

m×m
(
(T−nA ∩ C)× (T−nB ∩D)

)
= lim

n→∞
n/∈J1∪J2

m(T−nA ∩ C)m(T−nB ∩D)

= m(A)m(B)m(C)m(D)

= (m×m)(A×B)(m×m)(C ×D).

Since J1 ∪ J2 is of density 0, by Theorem 3.12 T × T is weak-mixing. (iii) ⇒
(ii) is trivial. Now consider (ii) ⇒ (i). Let A,B ∈ B. Since T × T is ergodic,
we have

1

n

n−1∑
k=0

m(T−kA ∩B) =
1

n

n−1∑
k=0

m×m
(
(T × T )−k(A×X) ∩ (B ×X)

)
→ m(A)m(B), as n→∞,
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and

1

n

n−1∑
k=0

m(T−kA ∩B)2 =
1

n

n−1∑
k=0

m×m
(
(T−kA ∩B)× (T−kA ∩B)

)
=

1

n

n−1∑
k=0

m×m
(
T−k(A×A) ∩ (B ×B)

)
→ m(A)2m(B)2, as n→∞.

Hence we have

1

n

n−1∑
k=0

(
m(T−kA ∩B)−m(A)m(B)

)2
=

1

n

n−1∑
k=0

m(T−kA ∩B)2

− 2m(A)m(B)
[ 1

n

n−1∑
k=0

m(T−kA ∩B)
]

+m(A)2m(B)2

→ 0, as n→∞.

By Theorem 3.12, T is weak-mixing.
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