
Lecture 4

With Corollary 3.3.1 in hand, we can now prove the Birkhoff ergodic theo-
rem.

Proof of Birkhoff Ergodic Theorem. By considering real and imaginary parts,
we can assume f ∈ L1

R(µ). Set for any x ∈ X,

f∗(x) = lim
n→∞

1

n

n−1∑
k=0

f(T kx) and f∗(x) = lim
n→∞

1

n

n−1∑
k=0

f(T kx),

then f∗(Tx) = f∗(x) and f∗(Tx) = f∗(x). For any α, β ∈ R with α < β, define

Eα,β = {x ∈ X : f∗(x) < α < β < f∗(x)},

then Eα,β ∈ B and T−1(Eα,β) = Eα,β . We claim that µ(Eα,β) = 0. To see this,

define Bβ = {x ∈ X : sup
n≥1

1
n

n−1∑
k=0

f(T kx) > β}, clearly Eα,β ⊂ Bβ . By Corollary

3.3.1, we have∫
Eα,β

fdµ =

∫
Eα,β∩Bβ

fdµ ≥ βµ(Eα,β ∩Bβ) = βµ(Eα,β). (3.3)

Now consider −f instead of f . Let g = −f , then g∗(x) = −f∗(x), g∗(x) =
−f∗(x). Moreover we have

Eα,β = {x ∈ X : g∗(x) < −β < −α < g∗(x)}.

Similar to (3.3), we have
∫
Eα,β

gdµ ≥ −αµ(Eα,β), that is∫
Eα,β

fdµ ≤ αµ(Eα,β). (3.4)

By (3.3) and (3.4), we have βµ(Eα,β) ≤ αµ(Eα,β), since α < β, it forces µ(Eα,β)
to be 0. We observe that

{x ∈ X : f∗(x) > f∗(x)} =
⋃

α,β∈Q with α<β

Eα,β ,

hence µ({x ∈ X : f∗(x) > f∗(x)}) = 0, therefore lim
n→∞

1
n

n−1∑
k=0

f(T kx) = f∗(x)

a.e. It’s clear f∗(Tx) = f∗(x).
Next we show that f∗ ∈ L1(µ). Let h(x) = |f(x)|, then h ∈ L1(µ) and

lim
n→∞

1
n

n−1∑
k=0

h(T kx) = h∗(x) a.e. Since f∗(x) ≤ h∗(x), it suffices to show h∗ ∈
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L1(µ). By Fatou’s lemma and the fact that µ is T -invariant, we have∫
h∗dµ =

∫
lim
n→∞

1

n

n−1∑
k=0

h(T kx)dµ

≤ lim
n→∞

∫
1

n

n−1∑
k=0

h(T kx)dµ

= lim
n→∞

1

n

n−1∑
k=0

∫
h(T kx)dµ

= lim
n→∞

1

n

n−1∑
k=0

∫
hdµ =

∫
hdµ <∞.

To the end, we prove that
∫
A
f∗dµ =

∫
A
fdµ for any A ∈ B with T−1A = A.

Fix A ∈ B with T−1A = A. Define for k ∈ Z, n ∈ N+ that Dn,k = {x ∈ X :
k
n ≤ f∗(x) < k+1

n }. Then Dn,k are T -invariant and (Dn,k)k∈Z is a partition of
X for each n. Set for ε > 0,

B k
n−ε

= {x : sup
n≥1

1

n

n−1∑
k=0

f(T kx) >
k

n
− ε},

then Dn,k ⊂ B k
n−ε

. By Corollary 3.3.1 again,∫
A∩Dn,k

fdµ =

∫
A∩Dn,k∩B k

n
−ε

fdµ ≥ (
k

n
−ε)µ(A∩Dn,k∩B k

n−ε
) = (

k

n
−ε)µ(A∩Dn,k),

letting ε → 0, we have
∫
A∩Dn,k fdµ ≥

k
nµ(A ∩Dn,k). Notice that f∗ < k+1

n on

Dn,k, hence∫
A∩Dn,k

f∗dµ ≤ k + 1

n
µ(A ∩Dn,k) ≤

∫
A∩Dn,k

fdµ+
1

n
µ(A ∩Dn,k).

Summing k over Z,
∫
A
f∗dµ ≤

∫
A
fdµ+ µ(A)

n . Letting n→∞, we obtain∫
A

f∗dµ ≤
∫
A

fdµ. (3.5)

Replacing f by−f in (3.5), we have
∫
A

(−f)∗dµ ≤
∫
A

(−f)dµ, that is
∫
A
−f∗dµ ≤∫

A
(−f)dµ, hence

∫
A
f∗dµ ≥

∫
A
fdµ. Since f∗ = f∗ a.e., we complete the

proof.

We can understand the result of Birkhoff ergodic theorem from another point
of view. Let I = {A ∈ B : T−1A = A}, i.e. the collection of T -invariant sets in
B, it’s easy to see I is a sub-σ-algebra of B. By Birkhoff ergodic theorem, given
an integrable function f , the Birkhoff average f∗ satisfies

∫
A
f∗dµ =

∫
A
fdµ for

any A ∈ I, with this property f∗ is in fact the conditional expectation of f w.r.t
I. We will see this more precisely after we introduce the notion of conditional
expectation as follows.
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Theorem 3.4 (Radon-Nikodym Theorem). Let (X,B,m) be a probability space.
Let µ be a finite signed measure on measurable space (X,B) that is absolutely
continuous w.r.t m. Then there exists f ∈ L1(X,B,m) such that

µ(A) =

∫
A

fdm for any A ∈ B. (3.6)

Moreover f is unique in the sense that if g ∈ L1(X,B,m) is another function
satisfying (3.6), then f = g a.e.

f in (3.6) is denoted by f = dµ
dm , and called the Radon-Nikodym derivative

of µ w.r.t m.

Definition 3.1 (Conditional expectation). Let (X,B,m) be a probability space.
Let C be a sub-σ-algebra of B. Let f ∈ L1(X,B,m). Define µ on (X,C ) by
µ(C) =

∫
C
fdm for C ∈ C . Then µ is a finite signed measure and absolutely

continuous w.r.t m over (X,C ). By Radon-Nikodym theorem, there exists a
unique g ∈ L1(X,C ,m) such that µ(C) =

∫
C
gdm for any C ∈ C , we denote g

by E(f |C ) and call it the conditional expectation of f over C .

In the above definition, E(f |C ) as a C -measurable function, can be under-
stood as the average of f over sub-σ-algebra C , it provides information of f up
to C . To illustrate this, let’s consider the following example.

Example. Let (X,B,m) be a probability space and f ∈ L1(X,B,m). A
finite collection of elements in B, say D = {C1, C2, · · · , Ck}, is said to be a

finite partition of X if X =
⋃k
i=1 Ci is a mutually disjoint union. Let C be a

sub-σ-algebra of B. If C = B, clearly E(f |C ) = f , it provides all information
of f . If C = N := {A ∈ B : m(A) = 0 or 1}, i.e. the trivial sub-σ-algebra
consisting of B-measurable sets of full or null measure, then it’s easy to see
E(f |N ) =

∫
X
fdm a constant, it provides no information but the integral of

f over the whole space. If we let C be the sub-σ-algebra generated by the
partition D, it’ easy to see C consists of finite unions of elements in D. Let

g(x) =
k∑
i=1

( 1
m(Ci)

∫
Ci
fdm)χCi(x), then g ∈ L1(X,C ,m). For each Ci ∈ D, we

have
∫
Ci
gdm =

∫
Ci
fdm, hence

∫
C
gdm =

∫
C
fdm for any C ∈ C , therefore

g = E(f |C ). Notice that on each piece Ci of the partition D, E(f |C ) takes
constant value 1

m(Ci)

∫
Ci
fdm.

We collect some properties of conditional expectation that may be used later.

Proposition 3.1. Let (X,B,m) be a probability space. Let C a sub-σ-algebra
of B. The operator E(·|C ) : L1(B)→ L1(C ) enjoys the following properties.

(i) E(αf + βg|C ) = αE(f |C ) + βE(g|C ), for any α, β ∈ R and f, g ∈
L1(X,B,m).

(ii) If C1 ⊂ C2 ⊂ B, then E(E(f |C1)|C2) = E(f |C1) = E(E(f |C2)|C1), for
any f ∈ L1(X,B,m).

(iii) If f ∈ L1(X,B,m) and g ∈ L∞(X,C ,m), then E(fg|C ) = gE(f |C ).
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(iv) |E(h|C )| ≤ E(|h||C ) for all h ∈ L1(X,B,m). If p ∈ (1,∞) and 1/p +
1/q = 1, then

E(|fg||C ) ≤ E(|f |p|C )1/pE(|g|q|C )1/q,

for any f ∈ Lp(X,B,m), g ∈ Lq(X,B,m).
(v) Let (fn)n≥1 be a nonnegative increasing sequence in L1(X,B,m). If

fn ↑ f ∈ L1(X,B,m) a.e., then E(fn|C ) ↑ E(f |C ) a.e.
(vi) If T is a measure-preserving transformation on X, then E(f |C ) ◦ T =

E(f ◦ T |T−1C ).

Remark: All “=” and “≤” in the above proposition are understood in the
sense of “almost everywhere”.

Proof. We only prove (vi) since other properties can be found in any text book
on probability theory. Recall we have for any g ∈ L1(X,B,m),

∫
X
g ◦ Tdm =∫

X
gdm. Since by definition E(f |C ) ∈ L1(C ), we have E(f |C ) ◦T ∈ L1(T−1C ).

Fix A ∈ T−1C , let B ∈ C such that A = T−1B. Then we have∫
A

E(f |C ) ◦ Tdm =

∫
T−1B

E(f |C ) ◦ Tdm =

∫
X

E(f |C ) ◦ TχT−1Bdm

=

∫
X

E(f |C ) ◦ TχB ◦ Tdm =

∫
X

(E(f |C )χB) ◦ Tdm

=

∫
X

E(f |C )χBdm
by(iii)

======

∫
X

E(fχB |C )dm

=

∫
X

fχBdm =

∫
X

(fχB) ◦ Tdm

=

∫
X

f ◦ TχB ◦ Tdm =

∫
T−1B

f ◦ Tdm =

∫
A

f ◦ Tdm.

Hence we have proved (vi).
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