Lecture 3

So far we have learned two fundamental recurrence theorems in dynamic systems, namely the Birkhoff recurrence theorem in a TDS and the Poincaré recurrence theorem in a measure-preserving system (MPS for short). However they do not give quantitative information about the behavior of orbits, for example, the frequency of a orbit returnning to a given set. In this lecture, we are going to present a method to study the statistical behavior of orbits and prove some ergodic theorems.

3 Statistical behavior of orbits and ergodic theorems

3.1 Statistical behavior of orbits

Let (X, T) be a TDS. For $B \in \mathscr{B}(X)$ and $x \in X$, set $F_{B}(T, x, n)=\sharp\{0 \leq j \leq$ $\left.n-1: T^{j} x \in B\right\}$, let $F_{B}(T, x)=\lim _{n \rightarrow \infty} \frac{F_{B}(T, x, n)}{n}$ provided the limit exists. The term $F_{B}(T, x)$ is called the asymptotic density of the distribution of the iterates over B and $X \backslash B$.

Let χ_{B} denote the characteristic function of B, that is $\chi_{B}(x)=1$ if $x \in B$, $\chi_{B}(x)=0$ if $x \notin B$. Then

$$
F_{B}(T, x, n)=\sum_{k=0}^{n-1} \chi_{B}\left(T^{k} x\right) \text { and } F_{B}(T, x)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_{B}\left(T^{k} x\right)
$$

The above expression of $F_{B}(T, x)$ is naturally interpreted as the average of χ_{B} at the orbit of x. Rather than dealing with characteristic functions, it is more reasonable to start from studying the average of continuous functions.

Let $C(X)$ be the space of real-valued continuous functions endowed with the uniform topology (that is the topology induced by sup-norm). For $\varphi \in C(X)$ and $x \in X$, let $I_{x}(\varphi)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(T^{k} x\right)$ if the limit exists. $I_{x}(\varphi)$ is called the Birkhoff average (or the time average) of φ at x.

Fix $x \in X$. If we assume that $I_{x}(\varphi)$ exists for any $\varphi \in C(X)$, it's easy to see $I_{x}: C(X) \longrightarrow \mathbb{R}$ enjoys the following properties:
(i) (Linearity) $I_{x}(\alpha \varphi+\beta \psi)=\alpha I_{x}(\varphi)+\beta I_{x}(\psi)$ for any $\alpha, \beta \in \mathbb{R}, \varphi, \psi \in C(X)$.
(ii) (Boundness) $\left|I_{x}(\varphi)\right| \leq \sup _{y \in X}|\varphi(y)|$, for any $\varphi \in C(X)$.
(iii) (Positivity) $I_{x}(\varphi) \geq 0$ if $\varphi \geq 0, I_{x}(1)=1$.
(iv) (Invariant under $T) I_{x}(\varphi \circ \bar{T})=I_{x}(\varphi)$ for any $\varphi \in C(X)$.
(i)-(iii) indicate that I_{x} is a positive bounded linear functional on $C(X)$, hence by the Riesz representation theorem, there exists a unique Borel proba-
bility measure μ_{x} on X such that

$$
I_{x}(\varphi)=\int \varphi d \mu_{x}, \text { for any } \varphi \in C(X)
$$

Applying (iv), $\int \varphi d \mu_{x}=\int \varphi \circ T d \mu_{x}$ for any $\varphi \in C(X)$, which implies that μ_{x} is T-invariant, that is $\mu_{x}\left(T^{-1} B\right)=\mu_{x}(B)$ for all $B \in \mathscr{B}(X)$.

Notice that the above argument is based on the assumption that $I_{x}(\varphi)$ exists for all $\varphi \in C(X)$, so it's natural to consider the following questions.

Questions: (1) Are there points $x \in X$ such that $I_{x}(\varphi)$ exists for all $\varphi \in$ $C(X)$?
(2) If μ is a T-invariant measure, does there exist $x \in X$ such that $I_{x}(\varphi)=$ $\int \varphi d \mu$ for all $\varphi \in C(X)$?

The answers to the above questions are both positive. It bases on two fundamental theorems, one in TDS, one in ergodic theory.

3.2 Existence of invariant measures

Theorem 3.1 (Krylov-Bogolyubov). For any TDS (X, T), there exists at least one T-invariant Borel probability measure.

Proof. Fix a $y \in X$. Let $\left\{\varphi_{i}\right\}_{i=1}^{\infty}$ be a countable subset dense in $C(X)$. Notice that for each $m \in \mathbb{N}_{+}$, the sequence $\frac{1}{n} \sum_{k=0}^{n-1} \varphi_{m}\left(T^{k} y\right)$ is bounded by $\left\|\varphi_{m}\right\|_{\infty}$, hence it has a convergent subsequence. Then by the diagonal process, one can find a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty} \subset \mathbb{N}_{+}$such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} \varphi_{m}\left(T^{j} y\right)=: J\left(\varphi_{m}\right) \tag{3.1}
\end{equation*}
$$

exists for all φ_{m}. We claim

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} \varphi\left(T^{j} y\right)=: J(\varphi) \text { exists for all } \varphi \in C(X) \tag{3.2}
\end{equation*}
$$

To see (3.2), let $\varphi \in C(X)$ and $\epsilon>0$, choose φ_{m} such that

$$
\sup _{x \in X}\left|\varphi_{m}(x)-\varphi(x)\right|<\epsilon,
$$

then

$$
\frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} \varphi\left(T^{j} y\right)=\frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} \varphi_{m}\left(T^{j} y\right)+\frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1}\left(\varphi\left(T^{j} y\right)-\varphi_{m}\left(T^{j} y\right)\right)
$$

Notice that on the right hand side of the above equality, the first term converges to $J\left(\varphi_{m}\right)$, the second term is bounded by ϵ in absolute value, hence all limit
points of the left hand side differ only by ϵ in absolute value, letting $\epsilon \rightarrow 0$, we see (3.2) holds.

Now consider $J: C(X) \longrightarrow \mathbb{R}$. Just as I_{x} in subsection 3.1, J satisfies conditions: (1) linearity, (2) boundness, (3) positivity, (4) $J(\varphi)=J(\varphi \circ T)$. By the Riesz representation theorem, there exists a Borel probability measure μ on X, such that for all $\varphi \in C(X), J(\varphi)=\int \varphi d \mu$, moreover $\int \varphi d \mu=\int \varphi \circ T d \mu$, which implies $\mu=\mu \circ T^{-1}$.

3.3 Birkhoff ergodic theorem

Theorem 3.2 (Birkhoff Ergodic Theorem (1931)). Let (X, \mathscr{B}, μ, T) be a MPS. Let $f \in L^{1}(\mu)$ (i.e. $f: X \longrightarrow \mathbb{C}$ measurable and $\left.\int|f| d \mu<\infty\right)$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k} x\right)=: f^{*}(x) \text { exists } \mu \text {-a.e. } x \in X
$$

furthermore

$$
f^{*} \in L^{1}(\mu) \text { and } \int_{A} f^{*} d \mu=\int_{A} f d \mu \text { for any } A \in \mathscr{B} \text { with } T^{-1} A=A
$$

The proof of this theorem is based on the following.
Theorem 3.3 (Maximal Ergodic Theorem). Let (X, \mathscr{B}, μ, T) be a MPS. Let $f \in L_{\mathbb{R}}^{1}(\mu)$. Set $f_{0}=0$ and $f_{n}=\sum_{k=0}^{n-1} f\left(T^{k} x\right)$ for $n \geq 1$. For $N \in \mathbb{N}$, define $F_{N}(x)=\max _{0 \leq n \leq N} f_{n}(x)$. Then

$$
\int_{\left\{x: F_{N}(x)>0\right\}} f d \mu \geq 0
$$

Proof. Fix $N \geq 1$. Notice that

$$
\begin{aligned}
F_{N}(T x)+f(x) & =\max _{0 \leq n \leq N} f_{n}(T x)+f(x) \\
& =\max \left\{0, f(T x), f(T x)+f\left(T^{2} x\right), \cdots, f(T x)+\cdots+f\left(T^{N} x\right)\right\}+f(x) \\
& =\max _{1 \leq n \leq N+1} f_{n}(x) \geq \max _{1 \leq n \leq N} f_{n}(x) .
\end{aligned}
$$

Let $A=\left\{x: F_{N}(x)>0\right\}$. Since $F_{N}(x)=\max _{0 \leq n \leq N} f_{n}(x)=\max \left\{0, \max _{1 \leq n \leq N} f_{n}(x)\right\}$, we have $F_{N}(x)=\max _{1 \leq n \leq N} f_{n}(x)$ on A, hence $f(x) \geq F_{N}(x)-F_{N}(T x)$ on A. Since F_{N} is nonnegative and $\int_{X} g(T x) d \mu=\int_{X} g(x) d \mu$ for any $g \in L^{1}(\mu)$, we have

$$
\begin{aligned}
\int_{A} f d \mu & \geq \int_{A} F_{N}(x) d \mu-\int_{A} F_{N}(T x) d \mu \\
& =\int_{X} F_{N}(x) d \mu-\int_{A} F_{N}(T x) d \mu \\
& =\int_{X} F_{N}(T x) d \mu-\int_{A} F_{N}(T x) d \mu \geq 0
\end{aligned}
$$

Corollary 3.3.1. Let (X, \mathscr{B}, μ, T) be a MPS. Let $g \in L_{\mathbb{R}}^{1}(\mu)$ and $\alpha \in \mathbb{R}$. Set $B_{\alpha}=\left\{x: \sup _{n \geq 1} \frac{1}{n} \sum_{k=0}^{n-1} g\left(T^{k} x\right)>\alpha\right\}$. Then for any $A \in \mathscr{B}$ with $T^{-1} A=A$, we have

$$
\int_{A \cap B_{\alpha}} g d \mu \geq \alpha \mu\left(A \cap B_{\alpha}\right) .
$$

Proof. First consider the case that $A=X$. Define $f=g-\alpha$ and F_{N} as in the above theorem. Then $B_{\alpha}=\bigcup_{N \geq 1}\left\{x: F_{N}(x)>0\right\}$ and $\left\{x: F_{N}(x)>0\right\} \uparrow B_{\alpha}$. For each N, by the above theorem, $\int_{\left\{x: F_{N}(x)>0\right\}} f d \mu \geq 0$, apply the dominated convergence theorem, $\int_{B_{\alpha}} f d \mu \geq 0$, therefore $\int_{B_{\alpha}} g d \mu \geq \alpha \mu\left(B_{\alpha}\right)$.

In general case that $A \neq X$, since $A=T^{-1} A$, we can consider the subsystem $\left(A, \mathscr{B}(A),\left.\mu\right|_{A},\left.T\right|_{A}\right)$, where $\mathscr{B}(A)$ is the sub- σ-algebra of \mathscr{B} when restricted to A, more precisely, $\mathscr{B}(A)=A \cap \mathscr{B}:=\{A \cap B: B \in \mathscr{B}\},\left.\mu\right|_{A}$ is defined by $\left.\mu\right|_{A}(B)=\frac{\mu(B)}{\mu(A)}$ for $B \in \mathscr{B}(A)$ (the case $\mu(A)=0$ is trivial). To apply the previous result to the new system, replace B_{α} by $B_{\alpha} \cap A$ and μ by $\left.\mu\right|_{A}$, then $\left.\int_{A \cap B_{\alpha}} g d \mu\right|_{A} \geq\left.\alpha \mu\right|_{A}\left(A \cap B_{\alpha}\right)$, that is $\frac{1}{\mu(A)} \int_{A \cap B_{\alpha}} g d \mu \geq \frac{\alpha \mu\left(A \cap B_{\alpha}\right)}{\mu(A)}$, therefore $\int_{A \cap B_{\alpha}} g d \mu \geq \alpha \mu\left(A \cap B_{\alpha}\right)$.

