Lecture 3

So far we have learned two fundamental recurrence theorems in dynamic systems, namely the Birkhoff recurrence theorem in a TDS and the Poincaré recurrence theorem in a measure-preserving system (MPS for short). However they do not give quantitative information about the behavior of orbits, for example, the frequency of a orbit returning to a given set. In this lecture, we are going to present a method to study the statistical behavior of orbits and prove some ergodic theorems.

3 Statistical behavior of orbits and ergodic theorems

3.1 Statistical behavior of orbits

Let (X,T) be a TDS. For $B \in \mathscr{B}(X)$ and $x \in X$, set $F_B(T,x,n) = \sharp \{0 \leq j \leq n-1: T^j x \in B\}$, let $F_B(T,x) = \lim_{n \to \infty} \frac{F_B(T,x,n)}{n}$ provided the limit exists. The term $F_B(T,x)$ is called the asymptotic density of the distribution of the iterates over B and $X \setminus B$.

Let χ_B denote the characteristic function of B, that is $\chi_B(x) = 1$ if $x \in B$, $\chi_B(x) = 0$ if $x \notin B$. Then

$$F_B(T, x, n) = \sum_{k=0}^{n-1} \chi_B(T^k x) \text{ and } F_B(T, x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_B(T^k x).$$

The above expression of $F_B(T, x)$ is naturally interpreted as the average of χ_B at the orbit of x. Rather than dealing with characteristic functions, it is more reasonable to start from studying the average of continuous functions.

Let C(X) be the space of real-valued continuous functions endowed with the uniform topology (that is the topology induced by sup-norm). For $\varphi \in C(X)$ and $x \in X$, let $I_x(\varphi) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(T^k x)$ if the limit exists. $I_x(\varphi)$ is called the Birkhoff average (or the time average) of φ at x.

Fix $x \in X$. If we assume that $I_x(\varphi)$ exists for any $\varphi \in C(X)$, it's easy to see $I_x : C(X) \longrightarrow \mathbb{R}$ enjoys the following properties:

(i) (Linearity) $I_x(\alpha \varphi + \beta \psi) = \alpha I_x(\varphi) + \beta I_x(\psi)$ for any $\alpha, \beta \in \mathbb{R}, \varphi, \psi \in C(X)$.

(ii) (Boundness) $|I_x(\varphi)| \leq \sup_{y \in X} |\varphi(y)|$, for any $\varphi \in C(X)$.

(iii) (Positivity) $I_x(\varphi) \ge 0$ if $\varphi \ge 0$, $I_x(1) = 1$.

(iv) (Invariant under T) $I_x(\varphi \circ T) = I_x(\varphi)$ for any $\varphi \in C(X)$.

(i)-(iii) indicate that I_x is a positive bounded linear functional on C(X), hence by the Riesz representation theorem, there exists a unique Borel probability measure μ_x on X such that

$$I_x(\varphi) = \int \varphi d\mu_x$$
, for any $\varphi \in C(X)$.

Applying (iv), $\int \varphi d\mu_x = \int \varphi \circ T d\mu_x$ for any $\varphi \in C(X)$, which implies that μ_x is *T*-invariant, that is $\mu_x(T^{-1}B) = \mu_x(B)$ for all $B \in \mathscr{B}(X)$.

Notice that the above argument is based on the assumption that $I_x(\varphi)$ exists for all $\varphi \in C(X)$, so it's natural to consider the following questions.

Questions: (1) Are there points $x \in X$ such that $I_x(\varphi)$ exists for all $\varphi \in C(X)$?

(2) If μ is a *T*-invariant measure, does there exist $x \in X$ such that $I_x(\varphi) = \int \varphi d\mu$ for all $\varphi \in C(X)$?

The answers to the above questions are both positive. It bases on two fundamental theorems, one in TDS, one in ergodic theory.

3.2 Existence of invariant measures

Theorem 3.1 (Krylov–Bogolyubov). For any TDS(X,T), there exists at least one *T*-invariant Borel probability measure.

Proof. Fix a $y \in X$. Let $\{\varphi_i\}_{i=1}^{\infty}$ be a countable subset dense in C(X). Notice that for each $m \in \mathbb{N}_+$, the sequence $\frac{1}{n} \sum_{k=0}^{n-1} \varphi_m(T^k y)$ is bounded by $\|\varphi_m\|_{\infty}$, hence it has a convergent subsequence. Then by the diagonal process, one can find a subsequence $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}_+$ such that

$$\lim_{k \to \infty} \frac{1}{n_k} \sum_{j=0}^{n_k-1} \varphi_m(T^j y) =: J(\varphi_m)$$
(3.1)

exists for all φ_m . We claim

$$\lim_{k \to \infty} \frac{1}{n_k} \sum_{j=0}^{n_k-1} \varphi(T^j y) =: J(\varphi) \text{ exists for all } \varphi \in C(X).$$
(3.2)

To see (3.2), let $\varphi \in C(X)$ and $\epsilon > 0$, choose φ_m such that

$$\sup_{x \in X} |\varphi_m(x) - \varphi(x)| < \epsilon,$$

then

$$\frac{1}{n_k} \sum_{j=0}^{n_k-1} \varphi(T^j y) = \frac{1}{n_k} \sum_{j=0}^{n_k-1} \varphi_m(T^j y) + \frac{1}{n_k} \sum_{j=0}^{n_k-1} (\varphi(T^j y) - \varphi_m(T^j y)).$$

Notice that on the right hand side of the above equality, the first term converges to $J(\varphi_m)$, the second term is bounded by ϵ in absolute value, hence all limit

points of the left hand side differ only by ϵ in absolute value, letting $\epsilon \to 0$, we see (3.2) holds.

Now consider $J : C(X) \longrightarrow \mathbb{R}$. Just as I_x in subsection 3.1, J satisfies conditions: (1) linearity, (2) boundness, (3) positivity, (4) $J(\varphi) = J(\varphi \circ T)$. By the Riesz representation theorem, there exists a Borel probability measure μ on X, such that for all $\varphi \in C(X)$, $J(\varphi) = \int \varphi d\mu$, moreover $\int \varphi d\mu = \int \varphi \circ T d\mu$, which implies $\mu = \mu \circ T^{-1}$.

3.3 Birkhoff ergodic theorem

1

Theorem 3.2 (Birkhoff Ergodic Theorem (1931)). Let (X, \mathscr{B}, μ, T) be a MPS. Let $f \in L^1(\mu)$ (i.e. $f : X \longrightarrow \mathbb{C}$ measurable and $\int |f| d\mu < \infty$). Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^k x) =: f^*(x) \text{ exists } \mu\text{-a.e. } x \in X,$$

furthermore

$$f^* \in L^1(\mu) \text{ and } \int_A f^* d\mu = \int_A f d\mu \text{ for any } A \in \mathscr{B} \text{ with } T^{-1}A = A.$$

The proof of this theorem is based on the following.

Theorem 3.3 (Maximal Ergodic Theorem). Let (X, \mathscr{B}, μ, T) be a MPS. Let $f \in L^1_{\mathbb{R}}(\mu)$. Set $f_0 = 0$ and $f_n = \sum_{k=0}^{n-1} f(T^k x)$ for $n \ge 1$. For $N \in \mathbb{N}$, define $F_N(x) = \max_{0 \le n \le N} f_n(x)$. Then

$$\int_{\{x:F_N(x)>0\}} f d\mu \ge 0.$$

Proof. Fix $N \geq 1$. Notice that

$$F_N(Tx) + f(x) = \max_{0 \le n \le N} f_n(Tx) + f(x)$$

= max{0, f(Tx), f(Tx) + f(T²x), ..., f(Tx) + ... + f(T^Nx)} + f(x)
= \max_{1 \le n \le N+1} f_n(x) \ge \max_{1 \le n \le N} f_n(x).

Let $A = \{x : F_N(x) > 0\}$. Since $F_N(x) = \max_{0 \le n \le N} f_n(x) = \max\{0, \max_{1 \le n \le N} f_n(x)\}$, we have $F_N(x) = \max_{1 \le n \le N} f_n(x)$ on A, hence $f(x) \ge F_N(x) - F_N(Tx)$ on A. Since F_N is nonnegative and $\int_X g(Tx) d\mu = \int_X g(x) d\mu$ for any $g \in L^1(\mu)$, we have

$$\int_{A} f d\mu \ge \int_{A} F_{N}(x) d\mu - \int_{A} F_{N}(Tx) d\mu$$
$$= \int_{X} F_{N}(x) d\mu - \int_{A} F_{N}(Tx) d\mu$$
$$= \int_{X} F_{N}(Tx) d\mu - \int_{A} F_{N}(Tx) d\mu \ge 0.$$

Corollary 3.3.1. Let (X, \mathscr{B}, μ, T) be a MPS. Let $g \in L^1_{\mathbb{R}}(\mu)$ and $\alpha \in \mathbb{R}$. Set $B_{\alpha} = \{x : \sup_{n \geq 1} \frac{1}{n} \sum_{k=0}^{n-1} g(T^k x) > \alpha\}$. Then for any $A \in \mathscr{B}$ with $T^{-1}A = A$, we have

$$\int_{A\cap B_{\alpha}} gd\mu \geq \alpha \mu (A\cap B_{\alpha}).$$

Proof. First consider the case that A = X. Define $f = g - \alpha$ and F_N as in the above theorem. Then $B_{\alpha} = \bigcup_{N \ge 1} \{x : F_N(x) > 0\}$ and $\{x : F_N(x) > 0\} \uparrow B_{\alpha}$. For each N, by the above theorem, $\int_{\{x:F_N(x)>0\}} fd\mu \ge 0$, apply the dominated convergence theorem, $\int_{B_{\alpha}} fd\mu \ge 0$, therefore $\int_{B_{\alpha}} gd\mu \ge \alpha \mu(B_{\alpha})$.

In general case that $A \neq X$, since $A = T^{-1}A$, we can consider the subsystem $(A, \mathscr{B}(A), \mu|_A, T|_A)$, where $\mathscr{B}(A)$ is the sub- σ -algebra of \mathscr{B} when restricted to A, more precisely, $\mathscr{B}(A) = A \cap \mathscr{B} := \{A \cap B : B \in \mathscr{B}\}, \ \mu|_A$ is defined by $\mu|_A(B) = \frac{\mu(B)}{\mu(A)}$ for $B \in \mathscr{B}(A)$ (the case $\mu(A) = 0$ is trivial). To apply the previous result to the new system, replace B_α by $B_\alpha \cap A$ and μ by $\mu|_A$, then $\int_{A \cap B_\alpha} gd\mu|_A \ge \alpha \mu|_A(A \cap B_\alpha)$, that is $\frac{1}{\mu(A)} \int_{A \cap B_\alpha} gd\mu \ge \frac{\alpha \mu(A \cap B_\alpha)}{\mu(A)}$, therefore $\int_{A \cap B_\alpha} gd\mu \ge \alpha \mu(A \cap B_\alpha)$.