Lecture 2

Recall Lemma 2.2. A natural question is that whether the converse is true, that is if $y \in Y$ is recurrent w.r.t S, is x recurrent w.s.t T for any $x \in \pi^{-1}(y)$? In general it is not true, but it does hold in a special case called group extension.
Definition 2.5 (Group extension). Let (Y, S) be a TDS and K a compact group. Assume $\psi: Y \rightarrow K$ is continuous. Define $X=Y \times K$ and $T: X \rightarrow X$ by $T(y, k)=(S y, \psi(y) k)$. Set $\pi: X \rightarrow Y$ by $\pi(y, k)=y$. Then (Y, S) is a factor of (X, T) under factor map π. Say (X, T) is a group extension of (Y, S).

Examples: 1. For $\alpha \in(0,1)$, let $(Y, S)=(\mathbb{T}, x \mapsto x+\alpha(\bmod 1))$. Set (X, T) by $X=\mathbb{T}^{2}, T(x, y)=(x+\alpha, x+y)$ (From now on, we sometimes omit " $(\bmod 1)$ " to ease notation). Then X is a group extension of Y. To see this, let $Y=\mathbb{T}, K=\mathbb{T}$, set $\psi: Y \rightarrow K$ by $\psi(y)=y$, then $T\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}+\alpha, \theta_{1}+\theta_{2}\right)=$ $\left(\theta_{1}+\alpha, \psi\left(\theta_{1}\right)+\theta_{2}\right)$.
2. Define $\left(\mathbb{T}^{2}, T\right)$ by $T\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}+\alpha, 2 \theta_{1}+\theta_{2}+\alpha\right)$. Then $\left(\mathbb{T}^{2}, T\right)$ is a group extension of $(\mathbb{T}, x \mapsto x+\alpha(\bmod 1))$. To see this, let $Y=K=\mathbb{T}$, define $\psi: Y \rightarrow K$ by $\psi(y)=2 y+\alpha$, then $T\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}+\alpha, \psi\left(\theta_{1}\right)+\theta_{2}\right)$.
Theorem 2.3. Let (Y, S) be a TDS and K a compact group. $\psi: Y \rightarrow K$ is continuous. Let (X, T) be given by $X=Y \times K, T(y, k)=(S y, \psi(y) k)$. Then if $y_{0} \in Y$ is recurrent w.r.t $S,\left(y_{0}, k\right)$ is recurrent w.r.t T for any $k \in K$.
Proof. For $k_{1} \in K$, define $R_{k_{1}}: X \rightarrow X$ by $R_{k_{1}}(y, k)=\left(y, k k_{1}\right)$. Note for any $(y, k) \in X, R_{k_{1}} T(y, k)=R_{k_{1}}(S y, \psi(y) k)=\left(S y, \psi(y) k k_{1}\right)=T\left(y, k k_{1}\right)=$ $T R_{k_{1}}(y, k)$, hence $R_{k_{1}}$ and T commute. Let e be the identity of K, write $Q\left(y_{0}, e\right)=\overline{\left\{T^{n}\left(y_{0}, e\right): n \geq 1\right\}}$, then $R_{k_{1}}\left(Q\left(y_{0}, e\right)\right)=Q\left(R_{k_{1}}\left(y_{0}, e\right)\right)=Q\left(y_{0}, k_{1}\right)$. We first show $\left(y_{0}, e\right)$ is recurrent w.r.t T, it suffices to show $\left(y_{0}, e\right) \in Q\left(y_{0}, e\right)$. Since $T^{n}\left(y_{0}, e\right)=T^{n-1}\left(S y_{0}, \psi\left(y_{0}\right)\right)=\cdots=\left(S^{n} y_{0}, \psi\left(S^{n-1} y_{0}\right) \psi\left(S^{n-2} y_{0}\right) \cdots \psi\left(y_{0}\right)\right)$, by assumption that y_{0} is recurrent w.r.t S and K is compact, there exist $\left\{n_{i}\right\}_{i=1}^{\infty} \subset \mathbb{N}_{+}$and $k_{1} \in K$ such that $T^{n_{i}}\left(y_{0}, e\right) \rightarrow\left(y_{0}, k_{1}\right)$, hence $\left(y_{0}, k_{1}\right) \in$ $Q\left(y_{0}, e\right)$, now act on both sides by $R_{k_{1}}, R_{k_{1}}\left(y_{0}, k_{1}\right) \in R_{k_{1}}\left(Q\left(y_{0}, e\right)\right)=Q\left(R_{k_{1}}\left(y_{0}, e\right)\right)=$ $Q\left(y_{0}, k_{1}\right)$, that is $\left(y_{0}, k_{1}^{2}\right) \in Q\left(y_{0}, k_{1}\right) \subset Q\left(y_{0}, e\right)$, inductively, $\left(y_{0}, k_{1}\right),\left(y_{0}, k_{1}^{2}\right), \cdots, \in$ $Q\left(y_{0}, e\right)$. We claim $\left(y_{0}, e\right)$ is an accumulation point of $\left\{\left(y_{0}, k_{1}^{n}\right): n \geq 1\right\}$. Since K is compact, there exists $\left\{l_{i}\right\}_{i=1}^{\infty} \subset \mathbb{N}_{+}$, such that $l_{i} \uparrow \infty$ and $k_{1}^{l_{i}^{-}} \rightarrow b$ for some $b \in K$, then $k_{1}^{l_{i+1}-l_{i}}=k_{1}^{l_{i+1}}\left(k_{1}^{l_{i}}\right)^{-1} \rightarrow e$, the claim follows, hence $\left(y_{0}, e\right) \in Q\left(y_{0}, e\right)$, i.e. $\left(y_{0}, e\right)$ is a recurrent point in X. Now for any $k \in K$, we have $\left.\left(y_{0}, k\right)=R_{k}\left(y_{0}, e\right) \in R_{k}\left(Q\left(y_{0}, e\right)\right)\right)=Q\left(R_{k}\left(y_{0}, e\right)\right)=Q\left(y_{0}, k\right)$, hence $\left(y_{0}, k\right)$ is recurrent in X.

In the above theorem, the fact that group extension preserves recurrent points finds its applications in number theory, which is first discovered by Furstenberg.

Recall that $\left(\mathbb{T}^{2}, T\right)$ given by $T\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}+\alpha, 2 \theta_{1}+\alpha+\theta_{2}\right)$ is a group extension of $(\mathbb{T}, \theta \mapsto \theta+\alpha(\bmod 1))$. Since every point in \mathbb{T} is recurrent w.r.t $\theta \mapsto \theta+\alpha(\bmod 1)$, apply Theorem 2.3 , we have

Corollary 2.3.1. Let $\alpha \in(0,1)$. Any point in \mathbb{T}^{2} is recurrent w.r.t $T\left(\theta_{1}, \theta_{2}\right)=$ $\left(\theta_{1}+\alpha, 2 \theta_{1}+\theta_{2}+\alpha\right)$.

Now consider the obit of $(0,0)$,

$$
(0,0) \rightarrow(\alpha, \alpha) \rightarrow(2 \alpha, 4 \alpha) \rightarrow \cdots \rightarrow\left(n \alpha, n^{2} \alpha\right) \rightarrow \cdots
$$

since $(0,0)$ is recurrent, there exists $\left\{n_{i}\right\}_{i=1}^{\infty}$, such that $\left(n_{i} \alpha, n_{i}^{2} \alpha\right) \rightarrow(0,0)$. Hence we obtain

Corollary 2.3.2. For any $\alpha \in(0,1)$ and $\epsilon>0$, there exist $n \geq 1$ and $m \in \mathbb{N}$, such that $\left|n^{2} \alpha-m\right|<\epsilon$.

More generally, let $P_{d}(x) \in \mathbb{R}[x]$ be a polynomial of degree d with $P_{d}(0)=0$, using the same idea we have

Theorem 2.4. For any $\epsilon>0$, there exist $n \geq 1$ and $m \in \mathbb{Z}$ such that

$$
\left|P_{d}(n)-m\right|<\epsilon .
$$

Proof. Set $P_{d-1}(x)=P_{d}(x+1)-P_{d}(x), P_{d-2}(x)=P_{d-1}(x+1)-P_{d-1}(x), \cdots, P_{0}(x)=$ $P_{1}(x+1)-P_{1}(x)$, then for $k=0,1, \cdots, d, P_{k}(x)$ is a polynomial of degree of at most k, in particular $P_{0}(x)=\alpha$ some constant. For $k=1,2, \ldots, d$, define $T_{k}: \mathbb{T}^{k} \rightarrow \mathbb{T}^{k}$ by

$$
T\left(\theta_{1}, \theta_{2}, \cdots, \theta_{k}\right)=\left(\theta_{1}+\alpha, \theta_{2}+\theta_{1}, \cdots, \theta_{k}+\theta_{k-1}\right)
$$

It's easy to see $\left(\mathbb{T}^{d}, T_{d}\right)$ is a group extension of $\left(\mathbb{T}^{d-1}, T_{d-1}\right), \cdots,\left(\mathbb{T}^{2}, T_{2}\right)$ is a group extension of $(\mathbb{T}, \theta \mapsto \theta+\alpha(\bmod 1))$. Since every point in \mathbb{T} is recurrent w.r.t $\theta \mapsto \theta+\alpha(\bmod 1)$, by Theorem 2.3 , every point in \mathbb{T}^{2} is recurrent w.r.t T_{2}, inductively, every point in \mathbb{T}^{d} is recurrent w.r.t T_{d}. Note that $T_{d}\left(P_{1}(n), P_{2}(n), \cdots, P_{d}(n)\right)=\left(P_{1}(n+1), P_{2}(n+1), \cdots, P_{d}(n+1)\right)$, hence

$$
T_{d}^{n}\left(P_{1}(0), P_{2}(0), \cdots, P_{d}(0)(=0)\right)=\left(P_{1}(n), P_{2}(n), \cdots, P_{d}(n)\right), \forall n \in \mathbb{N}_{+}
$$

Since $\left(P_{1}(0), P_{2}(0), \cdots, P_{d}(0)\right)$ is recurrent w.r.t T_{d}, there exists $\left\{n_{i}\right\}_{i=1}^{\infty} \subset \mathbb{N}_{+}$, such that $P_{d}\left(n_{i}\right) \rightarrow P_{d}(0)=0$, hence for any $\epsilon>0$, there exists $n \geq 1$, such that $\left|P_{d}(n)(\bmod 1)\right|<\epsilon$.

2.4 Minilarity

Definition 2.6 (Minimal TDS). Let (X, T) be a TDS, say X is minimal if $\overline{\left\{T^{n} x: n \geq 1\right\}}=X$ for all $x \in X$.

Equivalently, X is said to be minimal if X has no proper non-empty T invariant compact subset, that is if $Y \subset X$ compact, $Y \neq \emptyset$ and $T Y=Y$, then $Y=X$.

Example: For $\alpha \in(0,1)$, define $T_{\alpha}: x \mapsto x+\alpha(\bmod 1)$ on \mathbb{T}. Then if $\alpha \in \mathbb{Q}$, every point in \mathbb{T} is periodic, hence $\left(\mathbb{T}, T_{\alpha}\right)$ is not minimal. If $\alpha \notin \mathbb{Q},\left(\mathbb{T}, T_{\alpha}\right)$ is minimal, this can be seen from the fact that $\left\{n_{i} \alpha(\bmod 1)\right\}_{i=1}^{\infty}$ is dense in $[0,1]$ for $\alpha \notin \mathbb{Q}$. However, we give a proof as follows.

Proposition 2.2. (\mathbb{T}, T_{α}) is minimal if and only if $\alpha \notin \mathbb{Q}$.
Proof. Only" $\Leftarrow "$ needs a proof. Suppose $\alpha \notin \mathbb{Q}$, but T_{α} is not minimal. Then there exists a non-empty and compact $A \subset \mathbb{T}$, such that $A \neq \mathbb{T}$ and $A+\alpha=A(\bmod 1)$. Since $\mathbb{T} \backslash A \neq \emptyset$ and is open, we can write $\mathbb{T} \backslash A=\cup_{j=1}^{\infty} I_{j}$, a countable union of disjoint open intervals. Note $T_{\alpha}(\mathbb{T} \backslash A)=\mathbb{T} \backslash A$. Assume I is such an interval of the longest length (such I can be found since \mathbb{T} has finite length). There are only three possibilities: (1). $I \cap T_{\alpha}(I)=\emptyset ;(2)$. $I \cap T_{\alpha}(I) \neq \emptyset$ and $T \neq T_{\alpha}(I) ;(3) . I=T_{\alpha}(I)$. (2) is impossible, since otherwise $I \cup T_{\alpha}(I) \subset \mathbb{T} \backslash A$ is an open interval of greater length than I, which contradicts with the choice of I. (3) is also impossible, since otherwise $I=m+T_{\alpha}(I)$ for some $m \in \mathbb{Z}$, contradicting with $\alpha \notin \mathbb{Q}$. Therefore $I \cap T_{\alpha}(I)=\emptyset$. Proceed in this way, we get a sequence of pairwise disjoint open intervals $\left\{I, T_{\alpha}(I), T_{\alpha}^{2}(I), \cdots\right\}$, with each interval being of the same length, which is impossible since \mathbb{T} is compact. Hence T_{α} is minimal for $\alpha \notin \mathbb{Q}$.

Any topological dynamical system contains a subsystem that is minimal.
Theorem 2.5. Let (X, T) be a TDS, then there exists a compact $Y \subset X, Y \neq \emptyset$, such that $T Y=Y$ and $\left(Y,\left.T\right|_{Y}\right)$ is minimal.

Proof. The proof is already contained in Birkhoff Recurrence Theorem. In fact, let $\mathcal{F}=\{Y \subset X$ nonemty and compact, $T Y \subset Y\}$, partially ordered under set inclusion. As shown in Theorem 2.1, there exists a $Y \in \mathcal{F}$ which is a minimal element of \mathcal{F}. Hence $Y \subset X$ compact, $Y \neq \emptyset$ and $T Y \subset Y$. Since $T(T Y) \subset T Y \subset Y$ and $T Y$ is compact, $T Y \in \mathcal{F}$, whence $T Y=Y$ since Y is a minimal element of \mathcal{F}. If $A \subset Y$ is non-empty, compact and $T A=A$, then for the same reason, $A=Y$, therefore $\left(Y,\left.T\right|_{Y}\right)$ is a minimal subsystem.

2.5 Poincaré Recurrence Theorem

Theorem 2.6 (Poincaré Recurrence Theorem). Let (X, \mathscr{F}, μ) be a probability space. $T: X \rightarrow X$ is measurable and preserves μ. Let $B \in \mathscr{F}$ with $\mu(B)>0$, then almost every point of B returns infinitely many often to B. That is

$$
\mu\left(\left\{x \in B: T^{n} x \in B \text { for infinite many } n \geq 1\right\}\right)=\mu(B)
$$

Proof. First Note

$$
\left\{x \in B: T^{n} x \in B \text { for infinite many } n \geq 1\right\}=B \bigcap \bigcap_{n=0}^{\infty} \bigcup_{k=n}^{\infty} T^{-k} B
$$

For each $n \in \mathbb{N}$, set $B_{n}=\bigcup_{k=n}^{\infty} T^{-k} B$, then

$$
B_{0} \supset B_{1} \supset B_{2} \supset \cdots,
$$

since $B \subset B_{0}$,

$$
B=B \cap B_{0} \supset B \cap B_{1} \supset B \cap B_{2} \supset \cdots
$$

Since $T^{-n} B_{0}=B_{n}$ for each $n \in \mathbb{N}$ and T preserves μ,

$$
\mu\left(B_{0}\right)=\mu\left(B_{1}\right)=\mu\left(B_{2}\right)=\cdots
$$

and since μ is a probability measure hence finite, we get

$$
\mu(B)=\mu\left(B \cap B_{0}\right)=\mu\left(B \cap B_{1}\right)=\mu\left(B \cap B_{2}\right) \cdots
$$

Therefore

$$
\mu\left(B \bigcap \bigcap_{n=0}^{\infty} \bigcup_{k=n}^{\infty} T^{-k} B\right)=\mu\left(\bigcap_{n=0}^{\infty}\left(B \cap B_{n}\right)\right)=\lim _{n \rightarrow \infty} \mu\left(B \cap B_{n}\right)=\mu\left(B \cap B_{0}\right)=\mu(B),
$$

note we have used the fact that μ is finite in the second equality.

