
Lecture 12

6.3 Measures with maximal entropy

Recall we have proved the variational principle. Let (X,T ) be a TDS, then

htop(T ) = sup{hµ(T ) : µ ∈M(X,T )}.

Definition 6.1. Say µ ∈M(X,T ) is a measure with maximal entropy if

htop(T ) = hµ(T ).

Proposition 6.2. Let (X,T ) be a TDS. Suppose that the entropy map

µ 7→ hµ(T )

is upper-semi-continuous on M(X,T ). Then there exists at least one measure
in M(X,T ) with maximal entropy.

Proof. By the variational principle, there exists a sequence (µn) ⊂ M(X,T )
such that

hµn(T )→ htop(T ).

By compactness, there is a subsequence (µnk) of (µn) such that µnk → µ ∈
M(X,T ). Hence

hµ(T ) ≥ lim
k→∞

hµnk (T ) = htop(T ).

Proposition 6.3. Let (X,T ) be a subshift over {1, · · · , k}. Then the entropy
map is upper-semi-continuous.

Proof. Let µ ∈M(X,T ). Recall that

hµ(T ) = lim
n→∞

1

n
Hµ

( n−1∨
i=0

T−iξ
)

= inf
n

1

n
Hµ

( n−1∨
i=0

T−iξ
)
,

where ξ = {[i] : 1 ≤ i ≤ k}. Hence for any ε > 0, there exists n ∈ N such that

1

n
Hµ

( n−1∨
i=0

T−iξ
)
≤ hµ(T ) + ε.

Write ξn =
∨n−1
i=0 T

−iξ, recall it consists of closed and open sets. Suppose
µm ∈M(X,T ) with µm → µ, then

lim
m→∞

1

n
Hµm(ξn) =

1

n
Hµ(ξn) ≤ hµ(T ) + ε.

Since hµm(T ) ≤ 1
nHµm(ξn), we have limm→∞ hµm(T ) ≤ hµ(T ) + ε. Since ε > 0

is arbitrary, we complete the proof.
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Example 1. (Full shift over {1, · · · , k}). Let Σ = {1, · · · , k}N, let σ : Σ→ Σ
be the left shift. Recall htop(σ) = log k. Let µ be the { 1k , · · · ,

1
k}-product

measure on Σ. Recall hµ(σ) = log k. Hence µ is a measure with maximal
entropy. In fact, µ is the unique measure to attain the maximal entropy, we will
show this in the following more general example.

Example 2. (Subshift of finite type over {1, · · · , k}). Let A be a k × k
0-1 matrix. Assume A is irreducible (that is there exists l ∈ N, such that∑l
i=1A

i > 0). Define

ΣA = {(xi)∞i=1 ∈ Σ : Axixi+1 = 1 for all i ≥ 1}.

Let σ be the left shift over ΣA. Recall that

htop(σ) = log λ,

where λ is the largest positive eigenvalue of A, which exists by Perron–Frobenius
theorem.

Let (u1, · · · , uk) be a strictly positive left eigenvector of A corresponding to
λ, let (v1, · · · , vk)T be a strictly positive right eigenvector of A of λ. Suppose

that
∑k
i=1 uivi = 1. Define ~p = {u1v1, · · · , ukvk}. Define a k × k matrix

P = (pij)k×k by

pij =
Aijvj
λvi

.

Observe that
(i) P is a stochastic matrix.
(ii) ~pP = ~p.
To see (i), for each i ∈ {1, · · · , k},

k∑
j=1

pij =

k∑
j=1

Aijvj
λvi

=
1

λvi

k∑
j=1

Aijvj = 1.

To see (ii), for each j ∈ {1, · · · , k},

(~pP )j =
∑
i

piPij =
∑
i

uivi
Aijvj
λvi

=
vj
λ

∑
i

uiAij = vjuj = pj .

Let µ be the (~p, P )-Markov measure, that is

µ([i1i2 · · · in]) = pi1pi1i2 · · · pin−1in ,

for any admissible word [i1i2 · · · in].
Recall that

hµ(σ) =
∑
i,j

−pipij log pij .
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By the definitions of ~p and P ,

hµ(σ) =
∑
i,j

−pipij log pij

=
∑

i,j:Aij=1

−uivi
vj
λvi

log
vj
λvi

= − 1

λ

∑
i,j:Aij=1

uivj(log vj − log vi − log λ)

= − 1

λ
(
∑
i,j

uiAijvj log vj −
∑
i,j

uiAijvj log vi − log λ
∑
i,j

uiAijvj)

= log λ.

Hence µ is a measure of maximal entropy.
We can see that µ attains the maximal entropy in another way. Notice that

for any admissible word [i1i2 · · · in],

µ([i1i2 · · · in]) = pi1pi1i2 · · · pin−1in

= ui1vi1 ·
vi2
λvi1

· · · vin
λvin−1

= ui1vinλ
−(n−1).

Hence there is some constant c > 0, such that

c−1λ−n ≤ µ([i1i2 · · · in]) ≤ cλ−n,

for any admissible word [i1i2 · · · in]. In general, we call this property the Gibbs
property.

Recall we have Shannon-McMillan-Breiman theorem,

lim
n→∞

− logµ(ξn(x))

n
= hµ(σ), for µ-a.e. x,

where ξn(x) is the admissible cylinder where x lies in. By Gibbs property,
the limit on the right hand side equals log λ for every x, hence we see again
hµ(σ) = log λ.

The measure µ constructed above is called the Parry measure, which was
first discovered by William Parry in 1964, he also showed that µ is the unique
measure that attains the maximal entropy.

Lemma 6.5. Let p1, · · · , pm > 0 with
∑m
i=1 pi = s. Let a1, · · · , am ∈ R. Then

m∑
i=1

(piai − pi log pi) ≤ s(log (

m∑
i=1

eai) + log
1

s
).
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Proof. Let pi = sqi, then (q1, · · · , qm) is a probability vector. Hence

m∑
i=1

(piai − pi log pi) =

m∑
i=1

(sqiai − sqi log sqi)

=

m∑
i=1

(sqiai − sqi log s− sqi log qi)

= s

m∑
i=1

(qiai − qi log qi)− s log s

= s

m∑
i=1

qi log
eai

qi
− s log s

≤ s log(

m∑
i=1

qi ·
eai

qi
)− s log s

= s(log (

m∑
i=1

eai)− log s).

Lemma 6.6. Let µ, η be two probability measures on ΣA. Suppose µ ⊥ η. Then

lim
n→∞

∑
I∈ξn

η(I) logµ(I)− η(I) log η(I) = −∞.

Proof. Since µ ⊥ η, there exists E ⊂ ΣA Borel with µ(E) = 0 and η(E) = 1.
Given ε > 0, there are compact setsK1 ⊆ E, K2 ⊆ X\E, such that η(E\K1) < ε
and µ((X \ E) \K2) < ε.

Let n be so large that diam(ξn) < 1
2dist(K1,K2), then for any I ∈ ξn, I

intersects at most one of K1 and K2. Hence∑
I∈ξn

(η(I) logµ(I)− η(I) log η(I))

=
∑
I∈ξn

I∩K1 6=∅

(η(I) logµ(I)− η(I) log η(I))

+
∑
I∈ξn

I∩K1=∅

(η(I) logµ(I)− η(I) log η(I)).

Notice that
1− ε = η(E)− ε < η(K1) ≤

∑
I∈ξn

I∩K1 6=∅

η(I) ≤ 1,

and
0 = µ(K1) ≤

∑
I∈ξn

I∩K1 6=∅

µ(I) ≤ µ((X \ E) \K2) < ε.
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Applying the above lemma,∑
I∈ξn

I∩K1 6=∅

(η(I) logµ(I)− η(I) log η(I))

≤
( ∑

I∈ξn
I∩K1 6=∅

η(I)
)[

log
( ∑

I∈ξn
I∩K1 6=∅

µ(I)
)
− log

( ∑
I∈ξn

I∩K1 6=∅

η(I)
)]

≤ log
ε

1− ε
.

Also we have estimate∑
I∈ξn

I∩K1=∅

(η(I) logµ(I)− η(I) log η(I))

≤
( ∑

I∈ξn
I∩K1=∅

η(I)
)[

log
( ∑

I∈ξn
I∩K1=∅

µ(I)
)
− log

( ∑
I∈ξn

I∩K1=∅

η(I)
)]

≤ max
0≤s≤1

(−s log s).

Combining these estimates together, we have∑
I∈ξn

(η(I) logµ(I)− η(I) log η(I)) ≤ log
ε

1− ε
+ max

0≤s≤1
(−s log s).

Since the right hand side tends to −∞ as ε→ 0, we complete the proof.

We will need the following property of ergodic measures.

Proposition 6.4. Let µ, η ∈M(X,T ) be two ergodic measures. If µ 6= η, then
µ ⊥ η.

Proof. By Lebesgue decomposition theorem, there exist two unique probability
measures µ1 and µ2 and a unique number r ∈ [0, 1], such that

µ = rµ1 + (1− r)µ2,

where µ1 � η and µ2 ⊥ η.
We first show that µ1, µ2 ∈M(X,T ). Notice that

µ = µ ◦ T−1 = rµ1 ◦ T−1 + (1− r)µ2 ◦ T−1,

and
µ1 ◦ T−1 � η ◦ T−1 = η, µ2 ◦ T−1 ⊥ η ◦ T−1 = η.

By uniqueness of the decomposition, we have µ1 ◦T−1 = µ1 and µ2 ◦T−1 = µ2,
namely µ1, µ2 ∈M(X,T ).
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Next we show we must have r = 0, which shows µ ⊥ η. Since µ is ergodic,
µ is an extreme point of M(X,T ), we have r = 0 or r = 1. If r = 1, we have
µ� η. In this situation, we consider decomposition

η = pη1 + (1− p)η2, with η1 � µ, η2 ⊥ µ, p ∈ [0, 1].

Again we have p = 0 or p = 1. If p = 0, we have η ⊥ µ and µ� η, which forces
µ = 0, a contradiction. If p = 1, we have η � µ and µ � η, which leads to
µ = η, also a contradiction. Hence we have r = 0 and µ ⊥ η.

Now we can give the proof that the Parry measure is the unique measure
that attains the maximal entropy.

Proof of µ is the unique measure with maximal entropy. Let µ be the Parry mea-
sure on ΣA. Notice that µ is ergodic since A is irreducible. Recall we have

c−1λ−n ≤ µ(I) ≤ cλ−n,

for any admissible word I ∈ ξn.
Now assume that η is another ergodic measure with entropy log λ. By propo-

sition above, we have µ ⊥ η. Since

log λ = inf
n

1

n
Hη(ξn) = inf

n

1

n

∑
I∈ξn

−η(I) log η(I),

we have for any n, ∑
I∈ξn

−η(I) log η(I) ≥ n log λ.

By the Gibbs property of µ,∑
I∈ξn

η(I) logµ(I) ≥ log (c−1λ−n) = −n log λ− log c.

Taking the summation,∑
I∈ξn

(η(I) logµ(I)− η(I) log η(I)) ≥ − log c,

contradicting Lemma 6.6. The proof is completed.
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