Lecture 12

6.3 Measures with maximal entropy

Recall we have proved the variational principle. Let (X, T) be a TDS, then

$$h_{top}(T) = \sup\{h_{\mu}(T) : \mu \in M(X,T)\}$$

Definition 6.1. Say $\mu \in M(X,T)$ is a measure with maximal entropy if

$$h_{top}(T) = h_{\mu}(T).$$

Proposition 6.2. Let (X,T) be a TDS. Suppose that the entropy map

$$\mu \mapsto h_{\mu}(T)$$

is upper-semi-continuous on M(X,T). Then there exists at least one measure in M(X,T) with maximal entropy.

Proof. By the variational principle, there exists a sequence $(\mu_n) \subset M(X,T)$ such that

$$h_{\mu_n}(T) \to h_{top}(T)$$

By compactness, there is a subsequence (μ_{n_k}) of (μ_n) such that $\mu_{n_k} \to \mu \in M(X,T)$. Hence

$$h_{\mu}(T) \ge \lim_{k \to \infty} h_{\mu_{n_k}}(T) = h_{top}(T).$$

Proposition 6.3. Let (X,T) be a subshift over $\{1, \dots, k\}$. Then the entropy map is upper-semi-continuous.

Proof. Let $\mu \in M(X,T)$. Recall that

$$h_{\mu}(T) = \lim_{n \to \infty} \frac{1}{n} H_{\mu} \Big(\bigvee_{i=0}^{n-1} T^{-i} \xi\Big) = \inf_{n} \frac{1}{n} H_{\mu} \Big(\bigvee_{i=0}^{n-1} T^{-i} \xi\Big)$$

where $\xi = \{[i] : 1 \le i \le k\}$. Hence for any $\epsilon > 0$, there exists $n \in \mathbb{N}$ such that

$$\frac{1}{n}H_{\mu}\Big(\bigvee_{i=0}^{n-1}T^{-i}\xi\Big) \le h_{\mu}(T) + \epsilon.$$

Write $\xi_n = \bigvee_{i=0}^{n-1} T^{-i} \xi$, recall it consists of closed and open sets. Suppose $\mu_m \in M(X,T)$ with $\mu_m \to \mu$, then

$$\lim_{m \to \infty} \frac{1}{n} H_{\mu_m}(\xi_n) = \frac{1}{n} H_{\mu}(\xi_n) \le h_{\mu}(T) + \epsilon.$$

Since $h_{\mu_m}(T) \leq \frac{1}{n} H_{\mu_m}(\xi_n)$, we have $\overline{\lim}_{m \to \infty} h_{\mu_m}(T) \leq h_{\mu}(T) + \epsilon$. Since $\epsilon > 0$ is arbitrary, we complete the proof.

Example 1. (Full shift over $\{1, \dots, k\}$). Let $\Sigma = \{1, \dots, k\}^{\mathbb{N}}$, let $\sigma : \Sigma \to \Sigma$ be the left shift. Recall $h_{top}(\sigma) = \log k$. Let μ be the $\{\frac{1}{k}, \dots, \frac{1}{k}\}$ -product measure on Σ . Recall $h_{\mu}(\sigma) = \log k$. Hence μ is a measure with maximal entropy. In fact, μ is the unique measure to attain the maximal entropy, we will show this in the following more general example.

Example 2. (Subshift of finite type over $\{1, \dots, k\}$). Let A be a $k \times k$ 0-1 matrix. Assume A is irreducible (that is there exists $l \in \mathbb{N}$, such that $\sum_{i=1}^{l} A^i > 0$). Define

$$\Sigma_A = \{ (x_i)_{i=1}^{\infty} \in \Sigma : A_{x_i x_{i+1}} = 1 \text{ for all } i \ge 1 \}.$$

Let σ be the left shift over Σ_A . Recall that

$$h_{top}(\sigma) = \log \lambda,$$

where λ is the largest positive eigenvalue of A, which exists by Perron–Frobenius theorem.

Let (u_1, \dots, u_k) be a strictly positive left eigenvector of A corresponding to λ , let $(v_1, \dots, v_k)^T$ be a strictly positive right eigenvector of A of λ . Suppose that $\sum_{i=1}^k u_i v_i = 1$. Define $\vec{p} = \{u_1 v_1, \dots, u_k v_k\}$. Define a $k \times k$ matrix $P = (p_{ij})_{k \times k}$ by

$$p_{ij} = \frac{A_{ij}v_j}{\lambda v_i}.$$

Observe that

(i) P is a stochastic matrix.

(ii) $\vec{p}P = \vec{p}$.

To see (i), for each $i \in \{1, \dots, k\}$,

$$\sum_{j=1}^{k} p_{ij} = \sum_{j=1}^{k} \frac{A_{ij}v_j}{\lambda v_i} = \frac{1}{\lambda v_i} \sum_{j=1}^{k} A_{ij}v_j = 1.$$

To see (ii), for each $j \in \{1, \dots, k\}$,

$$(\vec{p}P)_j = \sum_i p_i P_{ij} = \sum_i u_i v_i \frac{A_{ij} v_j}{\lambda v_i} = \frac{v_j}{\lambda} \sum_i u_i A_{ij} = v_j u_j = p_j.$$

Let μ be the (\vec{p}, P) -Markov measure, that is

$$\mu([i_1 i_2 \cdots i_n]) = p_{i_1} p_{i_1 i_2} \cdots p_{i_{n-1} i_n},$$

for any admissible word $[i_1i_2\cdots i_n]$. Recall that

$$h_{\mu}(\sigma) = \sum_{i,j} -p_i p_{ij} \log p_{ij}.$$

By the definitions of \vec{p} and P,

$$\begin{split} h_{\mu}(\sigma) &= \sum_{i,j} -p_i p_{ij} \log p_{ij} \\ &= \sum_{i,j:A_{ij}=1} -u_i v_i \frac{v_j}{\lambda v_i} \log \frac{v_j}{\lambda v_i} \\ &= -\frac{1}{\lambda} \sum_{i,j:A_{ij}=1} u_i v_j (\log v_j - \log v_i - \log \lambda) \\ &= -\frac{1}{\lambda} (\sum_{i,j} u_i A_{ij} v_j \log v_j - \sum_{i,j} u_i A_{ij} v_j \log v_i - \log \lambda \sum_{i,j} u_i A_{ij} v_j) \\ &= \log \lambda. \end{split}$$

Hence μ is a measure of maximal entropy.

We can see that μ attains the maximal entropy in another way. Notice that for any admissible word $[i_1i_2\cdots i_n]$,

$$\mu([i_{1}i_{2}\cdots i_{n}]) = p_{i_{1}}p_{i_{1}i_{2}}\cdots p_{i_{n-1}i_{n}}$$
$$= u_{i_{1}}v_{i_{1}}\cdot \frac{v_{i_{2}}}{\lambda v_{i_{1}}}\cdots \frac{v_{i_{n}}}{\lambda v_{i_{n-1}}}$$
$$= u_{i_{1}}v_{i_{n}}\lambda^{-(n-1)}.$$

Hence there is some constant c > 0, such that

$$c^{-1}\lambda^{-n} \le \mu([i_1i_2\cdots i_n]) \le c\lambda^{-n},$$

for any admissible word $[i_1 i_2 \cdots i_n]$. In general, we call this property the Gibbs property.

Recall we have Shannon-McMillan-Breiman theorem,

$$\lim_{n \to \infty} -\frac{\log \mu(\xi_n(x))}{n} = h_{\mu}(\sigma), \text{ for } \mu\text{-a.e. } x,$$

where $\xi_n(x)$ is the admissible cylinder where x lies in. By Gibbs property, the limit on the right hand side equals $\log \lambda$ for every x, hence we see again $h_{\mu}(\sigma) = \log \lambda$.

The measure μ constructed above is called the Parry measure, which was first discovered by William Parry in 1964, he also showed that μ is the unique measure that attains the maximal entropy.

Lemma 6.5. Let $p_1, \dots, p_m > 0$ with $\sum_{i=1}^m p_i = s$. Let $a_1, \dots, a_m \in \mathbb{R}$. Then

$$\sum_{i=1}^{m} (p_i a_i - p_i \log p_i) \le s(\log (\sum_{i=1}^{m} e^{a_i}) + \log \frac{1}{s}).$$

Proof. Let $p_i = sq_i$, then (q_1, \dots, q_m) is a probability vector. Hence

$$\sum_{i=1}^{m} (p_i a_i - p_i \log p_i) = \sum_{i=1}^{m} (sq_i a_i - sq_i \log sq_i)$$

=
$$\sum_{i=1}^{m} (sq_i a_i - sq_i \log s - sq_i \log q_i)$$

=
$$s \sum_{i=1}^{m} (q_i a_i - q_i \log q_i) - s \log s$$

=
$$s \sum_{i=1}^{m} q_i \log \frac{e^{a_i}}{q_i} - s \log s$$

$$\leq s \log(\sum_{i=1}^{m} q_i \cdot \frac{e^{a_i}}{q_i}) - s \log s$$

=
$$s(\log(\sum_{i=1}^{m} e^{a_i}) - \log s).$$

Lemma 6.6. Let μ, η be two probability measures on Σ_A . Suppose $\mu \perp \eta$. Then

$$\lim_{n \to \infty} \sum_{I \in \xi_n} \eta(I) \log \mu(I) - \eta(I) \log \eta(I) = -\infty.$$

Proof. Since $\mu \perp \eta$, there exists $E \subset \Sigma_A$ Borel with $\mu(E) = 0$ and $\eta(E) = 1$. Given $\epsilon > 0$, there are compact sets $K_1 \subseteq E$, $K_2 \subseteq X \setminus E$, such that $\eta(E \setminus K_1) < \epsilon$ and $\mu((X \setminus E) \setminus K_2) < \epsilon$.

and $\mu((X \setminus E) \setminus K_2) < \epsilon$. Let *n* be so large that diam $(\xi_n) < \frac{1}{2}$ dist (K_1, K_2) , then for any $I \in \xi_n$, *I* intersects at most one of K_1 and K_2 . Hence

$$\sum_{I \in \xi_n} (\eta(I) \log \mu(I) - \eta(I) \log \eta(I))$$

=
$$\sum_{\substack{I \in \xi_n \\ I \cap K_1 \neq \emptyset}} (\eta(I) \log \mu(I) - \eta(I) \log \eta(I))$$

+
$$\sum_{\substack{I \in \xi_n \\ I \cap K_1 = \emptyset}} (\eta(I) \log \mu(I) - \eta(I) \log \eta(I)).$$

Notice that

$$1 - \epsilon = \eta(E) - \epsilon < \eta(K_1) \le \sum_{\substack{I \in \xi_n \\ I \cap K_1 \neq \emptyset}} \eta(I) \le 1,$$

and

$$0 = \mu(K_1) \le \sum_{\substack{I \in \xi_n \\ I \cap K_1 \neq \emptyset}} \mu(I) \le \mu((X \setminus E) \setminus K_2) < \epsilon.$$

Applying the above lemma,

$$\sum_{\substack{I \in \xi_n \\ I \cap K_1 \neq \emptyset}} (\eta(I) \log \mu(I) - \eta(I) \log \eta(I))$$

$$\leq \left(\sum_{\substack{I \in \xi_n \\ I \cap K_1 \neq \emptyset}} \eta(I)\right) \left[\log\left(\sum_{\substack{I \in \xi_n \\ I \cap K_1 \neq \emptyset}} \mu(I)\right) - \log\left(\sum_{\substack{I \in \xi_n \\ I \cap K_1 \neq \emptyset}} \eta(I)\right)\right]$$

$$\leq \log \frac{\epsilon}{1 - \epsilon}.$$

Also we have estimate

$$\begin{split} &\sum_{\substack{I\in\xi_n\\I\cap K_1=\emptyset}} (\eta(I)\log\mu(I)-\eta(I)\log\eta(I))\\ &\leq \big(\sum_{\substack{I\in\xi_n\\I\cap K_1=\emptyset}} \eta(I)\big)\big[\log\big(\sum_{\substack{I\in\xi_n\\I\cap K_1=\emptyset}} \mu(I)\big)-\log\big(\sum_{\substack{I\in\xi_n\\I\cap K_1=\emptyset}} \eta(I)\big)\big]\\ &\leq \max_{0\leq s\leq 1}(-s\log s). \end{split}$$

Combining these estimates together, we have

$$\sum_{I \in \xi_n} (\eta(I) \log \mu(I) - \eta(I) \log \eta(I)) \le \log \frac{\epsilon}{1 - \epsilon} + \max_{0 \le s \le 1} (-s \log s).$$

Since the right hand side tends to $-\infty$ as $\epsilon \to 0$, we complete the proof. \Box

We will need the following property of ergodic measures.

Proposition 6.4. Let $\mu, \eta \in M(X,T)$ be two ergodic measures. If $\mu \neq \eta$, then $\mu \perp \eta$.

Proof. By Lebesgue decomposition theorem, there exist two unique probability measures μ_1 and μ_2 and a unique number $r \in [0, 1]$, such that

$$\mu = r\mu_1 + (1 - r)\mu_2,$$

where $\mu_1 \ll \eta$ and $\mu_2 \perp \eta$.

We first show that $\mu_1, \mu_2 \in M(X, T)$. Notice that

$$\mu = \mu \circ T^{-1} = r\mu_1 \circ T^{-1} + (1 - r)\mu_2 \circ T^{-1},$$

and

$$\mu_1 \circ T^{-1} \ll \eta \circ T^{-1} = \eta, \ \mu_2 \circ T^{-1} \perp \eta \circ T^{-1} = \eta.$$

By uniqueness of the decomposition, we have $\mu_1 \circ T^{-1} = \mu_1$ and $\mu_2 \circ T^{-1} = \mu_2$, namely $\mu_1, \mu_2 \in M(X, T)$.

Next we show we must have r = 0, which shows $\mu \perp \eta$. Since μ is ergodic, μ is an extreme point of M(X,T), we have r = 0 or r = 1. If r = 1, we have $\mu \ll \eta$. In this situation, we consider decomposition

$$\eta = p\eta_1 + (1-p)\eta_2$$
, with $\eta_1 \ll \mu, \eta_2 \perp \mu, p \in [0,1]$.

Again we have p = 0 or p = 1. If p = 0, we have $\eta \perp \mu$ and $\mu \ll \eta$, which forces $\mu = 0$, a contradiction. If p = 1, we have $\eta \ll \mu$ and $\mu \ll \eta$, which leads to $\mu = \eta$, also a contradiction. Hence we have r = 0 and $\mu \perp \eta$.

Now we can give the proof that the Parry measure is the unique measure that attains the maximal entropy.

Proof of μ is the unique measure with maximal entropy. Let μ be the Parry measure on Σ_A . Notice that μ is ergodic since A is irreducible. Recall we have

$$c^{-1}\lambda^{-n} \le \mu(I) \le c\lambda^{-n},$$

for any admissible word $I \in \xi_n$.

Now assume that η is another ergodic measure with entropy log λ . By proposition above, we have $\mu \perp \eta$. Since

$$\log \lambda = \inf_n \frac{1}{n} H_\eta(\xi_n) = \inf_n \frac{1}{n} \sum_{I \in \xi_n} -\eta(I) \log \eta(I),$$

we have for any n,

$$\sum_{I \in \xi_n} -\eta(I) \log \eta(I) \ge n \log \lambda.$$

By the Gibbs property of μ ,

$$\sum_{I \in \xi_n} \eta(I) \log \mu(I) \ge \log \left(c^{-1} \lambda^{-n} \right) = -n \log \lambda - \log c.$$

Taking the summation,

$$\sum_{I \in \xi_n} (\eta(I) \log \mu(I) - \eta(I) \log \eta(I)) \ge -\log c,$$

contradicting Lemma 6.6. The proof is completed.