Exercise 1 Suggested Solution

(1) Let \(\{A_k\}_{k=1}^{\infty} \) be a sequence of measurable sets in \((X, \mathcal{M})\). Let

\[A = \{ x \in X : x \in A_k \text{ for infinitely many } k \}, \]

and

\[B = \{ x \in X : x \in A_k \text{ for all except finitely many } k \}. \]

Show that \(A \) and \(B \) are measurable.

Solution

\[A = \bigcap_{n=1}^{\infty} \bigcup_{k \geq n} A_k. \]

\[B = \bigcup_{n=1}^{\infty} \bigcap_{k \geq n} A_k. \]

(2) Let \(\Psi : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) be continuous. Show that \(\Psi(f, g) \) are measurable for any measurable functions \(f, g \). This result contains Proposition 1.3 as a special case.

Solution Note that every open set \(G \subseteq \mathbb{R}^2 \) can be written as a countable union of set of the form \(V_1 \times V_2 \) where \(V_1, V_2 \) open in \(\mathbb{R} \). (Think of \(V_1 \times V_2 = (a, b) \times (c, d), a, b, c, d \in \mathbb{Q} \).)

Let \(G \subseteq \mathbb{R} \) be open. Then \(\Phi^{-1}(G) \) is open in \(\mathbb{R}^2 \), so

\[\Phi^{-1}(G) = \bigcup_n (V_n^1 \times V_n^2), \]
Then
\[h^{-1}(\Phi^{-1})(G) = \bigcup_n h^{-1}(V_1^1 \times V_2^1) = \bigcup_n f^{-1}(V_1^1) \cap g^{-1}(V_2^1) \]
is measurable since \(f \) and \(g \) are measurable. Hence \(h = (f, g) \).

(3) Show that \(f : X \to \mathbb{R} \) is measurable if and only if \(f^{-1}([a, b]) \) is measurable for all \(a, b \in \mathbb{R} \).

Solution By def \(f : X \to \mathbb{R} \) is measurable if \(f^{-1}(G) \) is measurable. \(\forall G \) open in \(\mathbb{R} \). Every open set \(G \) in \(\mathbb{R} \) can be written as a countable union of \((a, b), [−\infty, a), (b, \infty], a, b \in \mathbb{R}\). So \(ff \) is measurable iff \(f^{-1}(a, b), f^{-1}[−\infty, a), f^{-1}(b, \infty] \) are measurable.

\(\Rightarrow \) Use
\[
\begin{align*}
 f^{-1}(a, b) &= \bigcap_n f^{-1} \left(a - \frac{1}{n}, b + \frac{1}{n} \right) \\
 f^{-1}[−\infty, a) &= \bigcap_n f^{-1} \left(−\infty, a + \frac{1}{n} \right) \\
 f^{-1}(b, \infty] &= \bigcap_n f^{-1} \left(b - \frac{1}{n}, \infty \right)
\end{align*}
\]

\(\Leftarrow \) Use
\[
\begin{align*}
 f^{-1}(a, b) &= \bigcup_n f^{-1} \left[a - \frac{1}{n}, b + \frac{1}{n} \right] \\
 f^{-1}[−\infty, a) &= \bigcap_n f^{-1} \left(−\infty, a - \frac{1}{n} \right) \\
 f^{-1}(b, \infty] &= \bigcap_n f^{-1} \left[b + \frac{1}{n}, \infty \right].
\end{align*}
\]

(4) Let \(f : X \times [a, b] \to \mathbb{R} \) satisfy (a) for each \(x, y \mapsto f(x, y) \) is Riemann integrable, and (b) for each \(y, x \mapsto f(x, y) \) is measurable with respect to some
σ-algebra \mathcal{M} on X. Show that the function

$$F(x) = \int_a^b f(x,y) \, dy$$

is measurable with respect to \mathcal{M}.

Solution For simplicity let $[a,b] = [0,1]$. For $n \geq 1$, equally divide $[0,1]$ into subintervals of length $1/n$ and let

$$F_n(x) = \sum_{k=1}^{n} f\left(x, \frac{k}{n}\right) \frac{1}{n}.$$

Clearly F_n is measurable (with respect to \mathcal{M}). Now

$$F(x) = \lim_{n \to \infty} F_n(x),$$

so it is also measurable.

(5) Let f, g, $f_k, k \geq 1$, be measurable functions from X to \mathbb{R}.

(a) Show that $\{x : f(x) < g(x)\}$ and $\{x : f(x) = g(x)\}$ are measurable sets.

(b) Show that $\{x : \lim_{k \to \infty} f_k(x) \text{ exists and is finite}\}$ is measurable.

Solution

(a) Suffice to show $\{x : F(x) > 0\}$ and $\{x : F(x) = 0\}$ are measurable. If F is measurable, use

$$\{x : F(x) > 0\} = F^{-1}(0, \infty]$$

$$\{x : F(x) = 0\} = F^{-1}[0, \infty] \cap F^{-1}[-\infty, 0]$$

(b) Since $g(x) = \limsup_{k \to \infty} f_k(x)$ and $\liminf_{k \to \infty} f_k(x)$ are measurable.

$$\{x : \lim_{k \to \infty} f_k(x) \text{ exists }\} = \{x : \liminf_{k \to \infty} f_k(x) = \limsup_{k \to \infty} f_k(x)\}$$
On the other hand, the set \(\{ x : g(x) < +\infty \} \) is also measurable, so is their intersection.

(6) There are two conditions (i) and (ii) in the definition of a measure \(\mu \) on \((X, \mathcal{M})\). Show that (i) can be replaced by the “nontriviality condition”: There exists some \(E \in \mathcal{M} \) with \(\mu(E) < \infty \).

Solution If \(\mu \) is a measure satisfying the nontriviality condition and (ii), let \(A_1 = E, \ A_i = \phi \) for \(i \geq 2 \) in (ii),

\[\infty > \mu(E) = \sum_{i=1}^{\infty} \mu(A_i) \geq \mu(A_1) + \mu(A_2) = \mu(E) + \mu(\phi) \]

so \(0 \geq \mu(\phi) \geq 0 \). We have \(\mu \) is a measure satisfying (i) and (ii).

If \(\mu \) is a measure satisfying (i) and (ii), taking \(E = \phi \), we have the nontriviality condition.

(7) Let \(\{A_k\} \) be measurable and \(\sum_{k=1}^{\infty} \mu(A_k) < \infty \) and

\[A = \{ x \in X : x \in A_k \text{ for infinitely many } k \} \]

We know that \(A \) is measurable from (1). Show that \(A \) is measurable.

Solution Since \(\sum_{k=1}^{\infty} \mu(A_k) < \infty \), we have \(\sum_{k=n}^{\infty} \mu(A_k) \to 0 \) as \(n \to \infty \). For any \(n \in \mathbb{N} \), we have

\[A \subset \bigcup_{k \geq n} A_k \]

and so

\[\mu(A) \leq \sum_{k=n}^{\infty} \mu(A_k) . \]

Taking \(n \to \infty \), we have \(\mu(A) = 0 \).

This result is called Borel-Cantelli lemma.
Let B be the set defined in (1). Let μ be a measure on (X, \mathcal{M}). Show that

$$\mu(B) \leq \liminf_{k \to \infty} \mu(A_k).$$

Solution Using the characterization

$$B = \bigcup_{k=1}^{\infty} \bigcap_{j \geq k} A_j,$$

and the fact that $\{\bigcap_{j \geq k} A_j\}$ is ascending in k, we have

$$\mu(B) = \lim_{k \to \infty} \mu\left(\bigcap_{j \geq k} A_j\right) = \liminf_{k \to \infty} \mu\left(\bigcap_{j \geq k} A_j\right) \leq \liminf_{k \to \infty} \mu(A_k).$$

(9) Here we review Riemann integral. Let f be a bounded function defined on $[a, b], a, b \in \mathbb{R}$. Given any partition $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$ on $[a, b]$ and tags $z_j \in [x_j, x_{j+1}]$, there corresponds a Riemann sum of f given by $R(f, P, z) = \sum_{j=0}^{n-1} f(z_j)(x_{j+1} - x_j)$. The function f is called Riemann integrable with integral L if for every $\varepsilon > 0$ there exists some δ such that

$$|R(f, P, z) - L| < \varepsilon,$$

whenever $\|P\| < \delta$ and z is any tag on P. (Here $\|P\| = \max_{j=0}^{n-1} |x_{j+1} - x_j|$ is the length of the partition.) Show that
1. For any partition P, define its Darboux upper and lower sums by

$$\overline{R}(f, P) = \sum_{j} \sup \{ f(x) : x \in [x_j, x_{j+1}] \} (x_{j+1} - x_j),$$

and

$$\underline{R}(f, P) = \sum_{j} \inf \{ f(x) : x \in [x_j, x_{j+1}] \} (x_{j+1} - x_j)$$

respectively. Show that for any sequence of partitions $\{P_n\}$ satisfying $\|P_n\| \to 0$ as $n \to \infty$, $\lim_{n \to \infty} \overline{R}(f, P_n)$ and $\lim_{n \to \infty} \underline{R}(f, P_n)$ exist.

2. $\{P_n\}$ as above. Show that f is Riemann integrable if and only if

$$\lim_{n \to \infty} \overline{R}(f, P_n) = \lim_{n \to \infty} \underline{R}(f, P_n) = L.$$

3. A set E in $[a, b]$ is called of measure zero if for every $\varepsilon > 0$, there exists a countable subintervals J_n satisfying $\sum_n |J_n| < \varepsilon$ such that $E \subset \bigcup_n J_n$. Prove Lebesgue’s theorem which asserts that f is Riemann integrable if and only if the set consisting of all discontinuity points of f is a set of measure zero. Google for help if necessary.

Solution:

(a) It suffices to show: For every $\varepsilon > 0$, there exists some δ such that

$$0 \leq \overline{R}(f, P) - \underline{R}(f) < \varepsilon,$$

and

$$0 \leq \underline{R}(f) - \overline{R}(f, P) < \varepsilon,$$

for any partition P, $\|P\| < \delta$, where

$$\overline{R}(f) = \inf_{P} \overline{R}(f, P),$$

and

$$\underline{R}(f) = \inf_{P} \underline{R}(f, P).$$
and

\[\overline{R}(f) = \sup_P R(f, P). \]

If it is true, then \(\lim_{n \to \infty} \overline{R}(f, P_n) \) and \(\lim_{n \to \infty} \overline{R}(f, P_n) \) exist and equal to \(\overline{R}(f) \) and \(R(f) \) respectively.

Given \(\varepsilon > 0 \), there exists a partition \(Q \) such that

\[\overline{R}(f) + \varepsilon/2 > \overline{R}(f, Q). \]

Let \(m \) be the number of partition points of \(Q \) (excluding the endpoints). Consider any partition \(P \) and let \(R \) be the partition by putting together \(P \) and \(Q \). Note that the number of subintervals in \(P \) which contain some partition points of \(Q \) in its interior must be less than or equal to \(m \). Denote the indices of the collection of these subintervals in \(P \) by \(J \). We have

\[0 \leq \overline{R}(f, P) - \overline{R}(f, R) \leq \sum_{j \in J} 2M \Delta x_j \leq 2M \times m \|P\|, \]

where \(M = \sup_{[a, b]} |f| \), because the contributions of \(\overline{R}(f, P) \) and \(\overline{R}(f, Q) \) from the subintervals not in \(J \) cancel out. Hence, by the fact that \(R \) is a refinement of \(Q \),

\[\overline{R}(f) + \varepsilon/2 > \overline{R}(f, Q) \geq \overline{R}(f, R) \geq \overline{R}(f, P) - 2Mm \|P\|, \]

i.e.,

\[0 \leq \overline{R}(f, P) - \overline{R}(f) < \varepsilon/2 + 2Mm \|P\|. \]

Now, we choose

\[\delta < \frac{\varepsilon}{1 + 4Mm}, \]
Then for P, $\|P\| < \delta$,

\[0 \leq \overline{R}(f, P) - \underline{R}(f) < \varepsilon. \]

Similarly, one can prove the second inequality.

(b) With the result in part a, it suffices to prove the following result: Let f be bounded on $[a, b]$. Then f is Riemann integrable on $[a, b]$ if and only if $\overline{R}(f) = \underline{R}(f)$. When this holds, $L = \overline{R}(f) = \underline{R}(f)$.

According to the definition of integrability, when f is integrable, there exists some $L \in \mathbb{R}$ so that for any given $\varepsilon > 0$, there is a $\delta > 0$ such that for all partitions P with $\|P\| < \delta$,

\[|R(f, P, z) - L| < \varepsilon/2, \]

holds for any tags z. Let (P_1, z_1) be another tagged partition. By the triangle inequality we have

\[|R(f, P, z) - R(f, P_1, z_1)| \leq |R(f, P, z) - L| + |R(f, P_1, z_1) - L| < \varepsilon/2 + \varepsilon/2 = \varepsilon. \]

Since the tags are arbitrary, it implies

\[\overline{R}(f, P) - \underline{R}(f, P) \leq \varepsilon. \]

As a result,

\[0 \leq \overline{R}(f) - \underline{R}(f) \leq \overline{R}(f, P) - \underline{R}(f, P) \leq \varepsilon. \]

Note that the first inequality comes from the definition of the upper/lower Riemann integrals. Since $\varepsilon > 0$ is arbitrary, $\overline{R}(f) = \underline{R}(f)$.

Conversely, using $\overline{R}(f) = \underline{R}(f)$ in part a, we know that for $\varepsilon > 0$, there exists
a δ such that

$$0 \leq \overline{R}(f, P) - \overline{R}(f, P) < \varepsilon,$$

for all partitions P, $\|P\| < \delta$. We have

$$R(f, P, z) - R(f) \leq \overline{R}(f, P) - \overline{R}(f)$$

$$\leq \overline{R}(f, P) - \overline{R}(f, P)$$

$$< \varepsilon,$$

and similarly,

$$\overline{R}(f) - R(f, P, z) \leq \overline{R}(f, P) - \overline{R}(f, P) < \varepsilon.$$

As $\overline{R}(f) = R(f)$, combining these two inequalities yields

$$|R(f, P, z) - R(f)| < \varepsilon,$$

for all P, $\|P\| < \delta$, so f is integrable, where $L = \overline{R}(f)$.

(c) For any bounded f on $[a, b]$ and $x \in [a, b]$, its oscillation at x is defined by

$$\omega(f, x) = \inf_{\delta} \{(\sup f(y) - \inf f(y)) : y \in (x - \delta, x + \delta) \cap [a, b]\}$$

$$= \lim_{\delta \to 0^+} \{(\sup f(y) - \inf f(y)) : y \in (x - \delta, x + \delta) \cap [a, b]\}.$$

It is clear that $\omega(f, x) = 0$ if and only if f is continuous at x. The set of discontinuity of f, D, can be written as $D = \bigcup_{k=1}^{\infty} O(k)$, where $O(k) = \{x \in [a, b] : \omega(f, x) \geq 1/k\}$. Suppose that f is Riemann integrable on $[a, b]$. It suffices to show that each $O(k)$ is of measure zero. Given $\varepsilon > 0$, by Integrability of f, we can find a partition P such that

$$\overline{R}(f, P) - \overline{R}(f, P) < \varepsilon/2k.$$
Let \(J \) be the index set of those subintervals of \(P \) which contains some elements of \(O(k) \) in their interiors. Then

\[
\frac{1}{k} \sum_{j \in J} |I_j| \leq \sum_{j \in J} (\sup_{I_j} f - \inf_{I_j} f) \Delta x_j \\
\leq \sum_{j=1}^{n} (\sup_{I_j} f - \inf_{I_j} f) \Delta x_j \\
= \mathcal{R}(f, P) - \mathcal{R}(f, P) \\
< \varepsilon/2k.
\]

Therefore

\[
\sum_{j \in J} |I_j| < \varepsilon/2.
\]

Now, the only possibility that an element of \(O(k) \) is not contained by one of these \(I_j \) is it being a partition point. Since there are finitely many partition points, say \(N \), we can find some open intervals \(I'_1, \ldots, I'_N \) containing these partition points which satisfy

\[
\sum |I'_i| < \varepsilon/2.
\]

So \(\{I_j\} \) and \(\{I'_i\} \) together form a covering of \(O(k) \) and its total length is strictly less than \(\varepsilon \). We conclude that \(O(k) \) is of measure zero.

Conversely, given \(\varepsilon > 0 \), fix a large \(k \) such that \(\frac{1}{k} < \varepsilon \). Now the set \(O(k) \) is of measure zero, we can find a sequence of open intervals \(\{I_j\} \) satisfying

\[
O(k) \subseteq \bigcup_{j=1}^{\infty} I_j,
\]

\[
\sum_{j=1}^{\infty} |I_{ij}| < \varepsilon.
\]
One can show that $O(k)$ is closed and bounded, hence it is compact. As a result, we can find I_{i_1}, \ldots, I_{i_N} from $\{I_j\}$ so that

$$O(k) \subseteq I_{i_1} \cup \ldots \cup I_{i_N},$$

$$\sum_{j=1}^{N} |I_j| < \varepsilon.$$

Without loss of generality we may assume that these open intervals are mutually disjoint since, whenever two intervals have nonempty intersection, we can put them together to form a larger open interval. Observe that $[a, b] \setminus (I_{i_1} \cup \ldots \cup I_{i_N})$ is a finite disjoint union of closed bounded intervals, call them $V_i’s$, $i \in A$. We will show that for each $i \in A$, one can find a partition on each $V_i = [v_{i-1}, v_i]$ such that the oscillation of f on each subinterval in this partition is less than $1/k$.

Fix $i \in A$. For each $x \in V_i$, we have

$$\omega(f, x) < \frac{1}{k}.$$

By the definition of $\omega(f, x)$, one can find some $\delta_x > 0$ such that

$$\sup\{f(y) : y \in B(x, \delta_x) \cap [a, b]\} - \inf\{f(z) : z \in B(x, \delta_x) \cap [a, b]\} < \frac{1}{k},$$

where $B(y, \beta) = (y - \beta, y + \beta)$. Note that $V_i \subseteq \bigcup_{x \in V_i} B(x, \delta_x)$. Since V_i is closed and bounded, it is compact. Hence, there exist $x_{i_1}, \ldots, x_{i_M} \in V_i$ such that $V_i \subseteq \bigcup_{j=1}^{M} B(x_{i_j}, \delta_{x_{i_j}})$. By replacing the left end point of $B(x_{i_j}, \delta_{x_{i_j}})$ with v_{i-1} if $x_{i_j} - \delta_{x_{i_j}} < v_{i-1}$, and replacing the right end point of $B(x_{i_j}, \delta_{x_{i_j}})$ with v_i if $x_{i_j} + \delta_{x_{i_j}} > v_i$, one can list out the endpoints of $\{B(x_{i_j}, \delta_{i_j})\}_{j=1}^{M}$ and use them to form a partition S_i of V_i. It can be easily seen that each subinterval in S_i is covered by some $B(x_{i_j}, \delta_{x_{i_j}})$, which implies that the oscillation of f in each subinterval is less than $1/k$. So, S_i is the partition that we want.
The partitions S_i’s and the endpoints of $I_{i_1}, ..., I_{i_N}$ form a partition P of $[a, b]$. We have

$$
\overline{R}(f, P) - \underline{R}(f, P) = \sum_{i_j} (M_j - m_j) \Delta x_j + \sum (M_j - m_j) \Delta x_j
$$

$$
\leq 2M \sum_{j=1}^{N} |I_{i_j}| + \frac{1}{k} \sum \Delta x_j
$$

$$
\leq 2M \varepsilon + \varepsilon (b - a)
$$

$$
= [2M + (b - a)] \varepsilon,
$$

where $M = \sup_{[a, b]} |f|$ and the second summation is over all subintervals in $V_i, i \in A$. Hence f is integrable on $[a, b]$.