Suggested Solutions to Test

Yu Mei[†]

1. (5 points) Let X be the space of all continous real valued functions defined on [a,b]. Suppose the X is endowed with the sup-norm, that is $||f|| := \sup\{|f(x)| : x \in [a,b]\}$. Define $T : X \to \mathbb{R}$ by $T(f) = \int_a^b f(x) dx$ for $f \in X$. Show that $T \in X^*$ and find ||T||.

Proof. Since for any $\alpha, \beta \in \mathbb{R}$ and $f, g \in X$

$$T(\alpha f + \beta g) = \int_0^t \alpha f(x) + \beta g(x) dx = \alpha \int_0^t f(x) dx + \beta \int_0^t g(x) dx = \alpha T f + \beta T g,$$

 ${\cal T}$ is linear. Moreover, note that

$$|Tf| = |\int_{a}^{b} f(x)dx| \le ||f||(b-a),$$

Then T is bounded and $||T|| \le b - a$. Taking $f \equiv 1$, then

$$|Tf| = |\int_a^b 1dx| = b - a,$$

which implies $||T|| \ge b - a$. Therefore, $T \in X^*$ and ||T|| = b - a.

2.Let X be a normed space. Suppose that there is a countable set $D := \{x_n : ||x_n|| = 1; n = 1, 2, \dots\}$ dense in the closed unit sphere of X. For each f and g in $B_{X^*} := \{f \in X^* : ||f|| \le 1\}$, define

$$d(f,g) := \sum_{n=1}^{\infty} \frac{1}{2^n} |f(x_n) - g(x_n)|.$$

- (a) (5 points) Show that d is a metric on B_{X^*} .
- (b) (10 points) Let $f \in B_{X^*}$. Show that for any $\varepsilon > 0$, we can find some elements x_1, \dots, x_N in D and $\delta > 0$ such that

$$d(f,g) < \varepsilon$$

whenever $g \in B_{X^*}$ with $|f(x_i) - g(x_i)| < \delta$ for all $i = 1, \dots, N$.

Proof. Note that for any $f, g \in B_{X^*}$,

$$d(f,g) := \sum_{n=1}^{\infty} \frac{1}{2^n} |f(x_n) - g(x_n)| \le \sum_{n=1}^{\infty} \frac{1}{2^n} (\|f\| + \|g\|) \|x_n\| \le \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} < +\infty.$$

So. d is well defined.

[†] Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

(a) It is easy to certify that d satisfy that $d(f,g) \ge 0$, d(f,g) = d(g,f) and $d(f,g) \le d(f,h) + d(h,g)$. Now we claim that d(f,g) = 0 if and only if f = g. Indeed, if d(f,g) = 0, then $|f(x_n) - g(x_n)| = 0$ i.e. $f(x_n) = g(x_n)$. Since D is dense in the closed unit sphere S of X, then for any $x \in S$, there exist a sequence $\{x_{n_k}\}$ in D such that $\lim_{k \to \infty} x_{n_k} = x$. By the continuity of f and g, one has

$$f(x) = \lim_{k \to \infty} f(x_{n_k}) = \lim_{k \to \infty} g(x_{n_k}) = g(x).$$

Finally, for any $x \in X - \{0\}$, $\frac{x}{\|x\|} \in S$, then it follows from the linearity of f and g that

$$f(x) = \|x\|f(\frac{x}{\|x\|}) = \|x\|g(\frac{x}{\|x\|}) = g(x).$$

It is clear that f(0) = g(0). Therefore, f = g. On the other hand, it is obvious that d(f,g) = 0 when f = g.

(b) Given any $\varepsilon > 0$, choosing $N = 1 + \lfloor \log_2 \varepsilon \rfloor$, then

$$\sum_{n=N+1}^{\infty} \frac{1}{2^n} |f(x_n) - g(x_n)| \le \sum_{n=N+1}^{\infty} \frac{1}{2^{n-1}} = \frac{1}{2^{N+1}} < \frac{\varepsilon}{2}$$

Let $\delta = \frac{\varepsilon}{2}$, then

$$\sum_{n=1}^{N-1} \frac{1}{2^n} |f(x_n) - g(x_n)| \le \sum_{n=1}^{N-1} \frac{1}{2^n} \delta < \delta = \frac{\varepsilon}{2}$$

Therefore, $d(f,g) < \varepsilon$.

3. Let *M* be a closed subspace of a normed space *X*. Let $Q: X \to X/M$ be the quotient map. For each $x \in X$, the distance between *x* and *M* is defined by $d(x, M) := \inf\{\|x - m\| : m \in M\}$.

(a) (5 points) Show that if $\overline{F} \in (X/M)^*$, then $\|\overline{F}\| = \|\overline{F} \circ Q\|$.

(b) (10 points) If $a \notin M$, show that there is $f \in X^*$ such that $f(M) \equiv 0$; f(a) = 1 and $||f|| = \frac{1}{d(a,M)}$.

Proof.

(a) Let $\overline{F} \in (X/M)^*$. For any $x \in X$, set $\overline{x} = Q(x)$. Then, by the definition of norm on quotient space X/M

$$\|\bar{x}\|_{X/M} = \inf_{m \in M} \|x - m\| \le \|x - 0\| = \|x\|.$$

Thus, $\|\bar{F} \circ Q(x)\| = \|\bar{F}(\bar{x})\| \le \|\bar{F}\| \|\bar{x}\|_{X/M} \le \|\bar{F}\| \|x\|$. Therefore, $\bar{F} \circ Q$ is bounded and $\|\bar{F} \circ Q\| \le \|\bar{F}\|$.

On the other hand, for any $\bar{x} \in X/M$, there exists a $m_0 \in M$ such that $||x - m_0|| \leq ||\bar{x}||_{X/M} + \varepsilon$. Then,

$$\|\bar{F}(\bar{x})\| = \|\bar{F}(Qx)\| = \|\bar{F}(Q(x-m_0))\| = \|\bar{F} \circ Q(x-m_0)\| \le \|\bar{F} \circ Q\| \|x-m_0\| \le \|\bar{F} \circ Q\| (\|\bar{x}\|_{X/M} + \varepsilon).$$

Since c is orbitany $\|\bar{F}\| \le \|\bar{F} \circ Q\|$

Since ε is arbitrary, $||F|| \leq ||F \circ Q||$.

$$|\bar{F}_0(\alpha \bar{a})| = |\alpha| \le \|\alpha \bar{a}\| \frac{1}{\|\bar{a}\|} = \frac{1}{d(a,M)} \|\alpha \bar{a}\|.$$

 F_0 is bounded. Then

$$|\alpha| = |\bar{F}_0(\alpha \bar{a})| \le ||F_0|| ||\alpha \bar{a}|| \le ||F_0|| ||\bar{a}|| |\alpha|$$

which implies that $||F_0|| \ge \frac{1}{d(a, M)}$. So, F_0 is a linear bounded functional on X_0 . By Hahn-Banach Theorem, there exists a bounded linear functional \overline{F} on X/M such that

$$\bar{F}(\bar{a}) = \bar{F}_0(\bar{a}) = 1$$
, and $\|\bar{F}\| = \|\bar{F}_0\| = \frac{1}{d(a,M)}$.

Set $f = \bar{F} \circ Q$, then $f(a) = \bar{F} \circ Q(a) = \bar{F}(\bar{a}) = 1$, $f(M) = \bar{F}(Q(M)) = \bar{F}(0) = 0$. Moreover, by (a), $||f|| = ||\bar{F}|| = \frac{1}{d(a,M)}$.