Suggested Solutions to Test

Yu Mei ${ }^{\dagger}$

1. (5 points) Let X be the space of all continous real valued functions defined on $[a, b]$. Suppose the X is endowed with the sup-norm, that is $\|f\|:=\sup \{|f(x)|: x \in[a, b]\}$. Define $T: X \rightarrow \mathbb{R}$ by $T(f)=\int_{a}^{b} f(x) d x$ for $f \in X$. Show that $T \in X^{*}$ and find $\|T\|$.

Proof. Since for any $\alpha, \beta \in \mathbb{R}$ and $f, g \in X$

$$
T(\alpha f+\beta g)=\int_{0}^{t} \alpha f(x)+\beta g(x) d x=\alpha \int_{0}^{t} f(x) d x+\beta \int_{0}^{t} g(x) d x=\alpha T f+\beta T g
$$

T is linear. Moreover, note that

$$
|T f|=\left|\int_{a}^{b} f(x) d x\right| \leq\|f\|(b-a)
$$

Then T is bounded and $\|T\| \leq b-a$.
Taking $f \equiv 1$, then

$$
|T f|=\left|\int_{a}^{b} 1 d x\right|=b-a
$$

which implies $\|T\| \geq b-a$.
Therefore, $T \in X^{*}$ and $\|T\|=b-a$.
2.Let X be a normed space. Supporse that there is a countable set $D:=\left\{x_{n}:\left\|x_{n}\right\|=1 ; n=1,2, \cdots\right\}$ dense in the closed unit sphere of X.
For each f and g in $B_{X^{*}}:=\left\{f \in X^{*}:\|f\| \leq 1\right\}$, define

$$
d(f, g):=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left|f\left(x_{n}\right)-g\left(x_{n}\right)\right| .
$$

(a) (5 points) Show that d is a metric on $B_{X^{*}}$.
(b) (10 points) Let $f \in B_{X^{*}}$. Show that for any $\varepsilon>0$, we can find some elements x_{1}, \cdots, x_{N} in D and $\delta>0$ such that

$$
d(f, g)<\varepsilon
$$

whenever $g \in B_{X^{*}}$ with $\left|f\left(x_{i}\right)-g\left(x_{i}\right)\right|<\delta$ for all $i=1, \cdots, N$.
Proof. Note that for any $f, g \in B_{X^{*}}$,

$$
d(f, g):=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left|f\left(x_{n}\right)-g\left(x_{n}\right)\right| \leq \sum_{n=1}^{\infty} \frac{1}{2^{n}}(\|f\|+\|g\|)\left\|x_{n}\right\| \leq \sum_{n=1}^{\infty} \frac{1}{2^{n-1}}<+\infty
$$

So. d is well defined.

[^0](a) It is easy to certify that d satisfy that $d(f, g) \geq 0, d(f, g)=d(g, f)$ and $d(f, g) \leq d(f, h)+d(h, g)$.

Now we claim that $d(f, g)=0$ if and only if $f=g$.
Indeed, if $d(f, g)=0$, then $\left|f\left(x_{n}\right)-g\left(x_{n}\right)\right|=0$ i.e. $f\left(x_{n}\right)=g\left(x_{n}\right)$. Since D is dense in the closed unit sphere S of X, then for any $x \in S$, there exist a sequence $\left\{x_{n_{k}}\right\}$ in D such that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$. By the continuity of f and g, one has

$$
f(x)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=\lim _{k \rightarrow \infty} g\left(x_{n_{k}}\right)=g(x) .
$$

Finally, for any $x \in X-\{0\}, \frac{x}{\|x\|} \in S$, then it follows from the linearity of f and g that

$$
f(x)=\|x\| f\left(\frac{x}{\|x\|}\right)=\|x\| g\left(\frac{x}{\|x\|}\right)=g(x) .
$$

It is clear that $f(0)=g(0)$. Therefore, $f=g$. On the other hand, it is obvious that $d(f, g)=0$ when $f=g$.
(b) Given any $\varepsilon>0$, choosing $N=1+\left[\log _{2} \varepsilon\right]$, then

$$
\sum_{n=N+1}^{\infty} \frac{1}{2^{n}}\left|f\left(x_{n}\right)-g\left(x_{n}\right)\right| \leq \sum_{n=N+1}^{\infty} \frac{1}{2^{n-1}}=\frac{1}{2^{N+1}}<\frac{\varepsilon}{2}
$$

Let $\delta=\frac{\varepsilon}{2}$, then

$$
\sum_{n=1}^{N-1} \frac{1}{2^{n}}\left|f\left(x_{n}\right)-g\left(x_{n}\right)\right| \leq \sum_{n=1}^{N-1} \frac{1}{2^{n}} \delta<\delta=\frac{\varepsilon}{2}
$$

Therefore, $d(f, g)<\varepsilon$.
3. Let M be a closed subspace of a normed space X. Let $Q: X \rightarrow X / M$ be the quotient map. For each $x \in X$, the distance between x and M is defined by $d(x, M):=\inf \{\|x-m\|: m \in M\}$.
(a) (5 points) Show that if $\bar{F} \in(X / M)^{*}$, then $\|\bar{F}\|=\|\bar{F} \circ Q\|$.
(b) (10 points) If $a \notin M$, show that there is $f \in X^{*}$ such that $f(M) \equiv 0 ; f(a)=1$ and $\|f\|=\frac{1}{d(a, M)}$.

Proof.

(a) Let $\bar{F} \in(X / M)^{*}$. For any $x \in X$, set $\bar{x}=Q(x)$. Then, by the definition of norm on quotient space X / M

$$
\|\bar{x}\|_{X / M}=\inf _{m \in M}\|x-m\| \leq\|x-0\|=\|x\| .
$$

Thus, $\|\bar{F} \circ Q(x)\|=\|\bar{F}(\bar{x})\| \leq\|\bar{F}\|\|\bar{x}\|_{X / M} \leq\|\bar{F}\|\|x\|$.
Therefore, $\bar{F} \circ Q$ is bounded and $\|\bar{F} \circ Q\| \leq\|\bar{F}\|$.
On the other hand, for any $\bar{x} \in X / M$, there exists a $m_{0} \in M$ such that $\left\|x-m_{0}\right\| \leq\|\bar{x}\|_{X / M}+\varepsilon$. Then,

$$
\|\bar{F}(\bar{x})\|=\|\bar{F}(Q x)\|=\left\|\bar{F}\left(Q\left(x-m_{0}\right)\right)\right\|=\left\|\bar{F} \circ Q\left(x-m_{0}\right)\right\| \leq\|\bar{F} \circ Q\|\left\|x-m_{0}\right\| \leq\|\bar{F} \circ Q\|\left(\|\bar{x}\|_{X / M}+\varepsilon\right) .
$$

Since ε is arbitary, $\|\bar{F}\| \leq\|\bar{F} \circ Q\|$.
(b) Let $a \notin M$. Then $\|\bar{a}\|_{X / M}=d(a, M)>0$. Set $X_{0}=\{\alpha \bar{a}\}$ and define \bar{F}_{0} on X_{0} by $\bar{F}_{0}(\alpha \bar{a})=\alpha$. Then \bar{F}_{0} is linear and $\bar{F}_{0}(\bar{a})=1$. Since

$$
\left|\bar{F}_{0}(\alpha \bar{a})\right|=|\alpha| \leq\|\alpha \bar{a}\| \frac{1}{\|\bar{a}\|}=\frac{1}{d(a, M)}\|\alpha \bar{a}\| .
$$

F_{0} is bounded. Then

$$
|\alpha|=\left|\bar{F}_{0}(\alpha \bar{a})\right| \leq\left\|F_{0}\right\|\|\alpha \bar{a}\| \leq\left\|F_{0}\right\|\|\bar{a}\||\alpha|
$$

which implies that $\left\|F_{0}\right\| \geq \frac{1}{d(a, M)}$. So, F_{0} is a linear bounded functional on X_{0}. By Hahn-Banach Theorem, there exists a bounded linear functional \bar{F} on X / M such that

$$
\bar{F}(\bar{a})=\bar{F}_{0}(\bar{a})=1, \quad \text { and } \quad\|\bar{F}\|=\left\|\bar{F}_{0}\right\|=\frac{1}{d(a, M)}
$$

Set $f=\bar{F} \circ Q$, then $f(a)=\bar{F} \circ Q(a)=\bar{F}(\bar{a})=1, f(M)=\bar{F}(Q(M))=\bar{F}(0)=0$. Moreover, by (a), $\|f\|=\|\bar{F}\|=\frac{1}{d(a, M)}$.

[^0]: \dagger Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

