Suggested Solution to Homework 7

Yu Mei ${ }^{\dagger}$
$\mathbf{P} 207$, 4. Show that for any bounded linear operator T on H, the operators

$$
T_{1}=\frac{1}{2}\left(T+T^{*}\right) \quad \text { and } \quad T_{2}=\frac{1}{2 i}\left(T-T^{*}\right)
$$

are self-adjoint. Show that

$$
T=T_{1}+i T_{2}, \quad T^{*}=T_{1}-i T_{2}
$$

Show uniqueness, that is $T_{1}+i T_{2}=S_{1}+i S_{2}$ implies $S_{1}=T_{1}$ and $S_{2}=T_{2}$; here S_{1} and S_{2} are self-adjoint by assumption.

Proof. Let T be a bounded linear operator on H. Set $T_{1}=\frac{1}{2}\left(T+T^{*}\right)$ and $T_{2}=\frac{1}{2 i}\left(T-T^{*}\right)$. Then,

$$
\begin{aligned}
& T_{1}^{*}=\left(\frac{1}{2}\left(T+T^{*}\right)\right)^{*}=\frac{1}{2}\left(T^{*}+\left(T^{*}\right)^{*}\right)=\frac{1}{2}\left(T^{*}+T\right)=T_{1} \\
& T_{1}^{*}=\left(\frac{1}{2 i}\left(T+T^{*}\right)\right)^{*}=-\frac{1}{2 i}\left(T^{*}-\left(T^{*}\right)^{*}\right)=\frac{1}{2 i}\left(-T^{*}+T\right)=T_{2}
\end{aligned}
$$

So, T_{1} and T_{2} are self-adjoint. Moreover, it is easy to check that

$$
T=T_{1}+i T_{2}, \quad T^{*}=T_{1}-i T_{2}
$$

Assume $T_{1}+i T_{2}=S_{1}+i S_{2}$ with S_{1}, S_{2} are self-adjoint. Then,

$$
\left(T_{1}+i T_{2}\right)^{*}=\left(S_{1}+i S_{2}\right)^{*} \Leftrightarrow T_{1}-i T_{2}=S_{1}-i S_{2}
$$

Therefore, $T_{1}=S_{1}$ and $T_{2}=S_{2}$.
P374, 3.(Invariant subspace) A subspace Y of a normed space X is said to be invariant under a linear operator $T: X \rightarrow X$ if $T(Y) \subset Y$. Show that an eigenspace of T is invariant under T. Give examples.

Proof. Let Y be an eigenspace of T corresponding to the eigenvalue λ. Then $T x=\lambda x, \forall x \in Y$. Thus,

$$
T(T x)=T(\lambda x)=\lambda T x
$$

So, $T x \in Y$, i.e. Y is invariant.
Example: Consider $X=\mathbb{R}^{2}$ and $T(x, y)=(x, 0), \forall(x, y) \in \mathbb{R}^{2}$. Then $Y=\{(x, 0) \mid x \in \mathbb{R}\}$ is an eigenspace of T corresponding to the eigenvalue 1. Obviously, $T(x, 0)=(x, 0) \in Y$. So, Y is invariant.

P374, 5. Let $\left(e_{k}\right)$ be a total orthonormal sequence in a separable Hilbert space H and let $T: H \rightarrow H$ be defined at e_{k} by

$$
T e_{k}=e_{k+1}, \quad(k=1,2, \cdots)
$$

and then linearly and continuously extended to H. Find invariant subspaces. Show that T has no eigenvalues.
Proof. Let $Y_{n}=\operatorname{span}\left\{e_{k}\right\}_{k \geq n}$. Then Y_{n} are invariant subspaces. Indeed, $\forall x \in Y_{n}, x=\sum_{k=n}^{\infty} \alpha_{k} e_{k}$. Then

$$
T(x)=T\left(\sum_{k=n}^{\infty} \alpha_{k} e_{k}\right)=\sum_{k=n}^{\infty} \alpha_{k} T\left(e_{k}\right)=\sum_{k=n}^{\infty} \alpha_{k} e_{k+1} \in Y_{n}
$$

Now we claim that T has no eigenvalue. Otherwise, suppose λ is a eigenvalue of T, i.e. $T x=\lambda x$ for some $x \neq 0$. Since H is separable Hilbert space, and $\left(e_{k}\right)$ is its total orthonormal sequence. Then $x=\sum_{k=1}^{\infty} \alpha_{k} e_{k}$ so that $T x=\sum_{k=1}^{\infty} \alpha_{k} e_{k+1}=\lambda \sum_{k=1}^{\infty} \alpha_{k} e_{k}$. Thus $\lambda \alpha_{1}=0$ and $\lambda \alpha_{k}=\alpha_{k-1}$. Hence $\alpha_{k}=0, \forall k \in \mathbb{N}$. A contradiction!

[^0]
[^0]: \dagger Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

