Suggested Solution to Homework 5

Yu Mei[†]

P238, 9.(Annihilator) Let X and Y be normed spaces, $T: X \to Y$ a bounded linear operator and $M = \overline{\mathscr{R}(T)}$, the closure of the range of T. Show that

$$M^a = \mathscr{N}(T^{\times}).$$

Proof. On the one hand, let $f \in M^a \subset Y'$, then

$$(T^{\times}f)(x) = f(Tx) = 0, x \in X \text{ such that } Tx \in \mathscr{R}(T) \subseteq M.$$

So, $f \in \mathcal{N}(T^{\times})$ which yields that $M^a \subseteq \mathcal{N}(T^{\times})$. On the other hand, let $g \in \mathcal{N}(T^{\times})$, then, for any $y \in M$, there exists a sequence of $\{x_n\} \in X$ such that $y = \lim_{n \to +\infty} Tx_n$. Since $g \in \mathcal{N}(T^{\times})$ is continuous, we have

$$g(y) = g(\lim_{n \to +\infty} Tx_n) = \lim_{n \to +\infty} g(Tx_n) = \lim_{n \to +\infty} (T^{\times}g)(x_n) = 0.$$

So, $g \in M^a$ which yields that $\mathscr{N}(T^{\times}) \subseteq M^a$. Therefore, $M^a = \mathscr{N}(T^{\times})$.

P239, 10. Let B be a subset of the dual space X' of a normed space X. The annihilator ^aB of B is defined to be

 $^{a}B = \{ x \in X | f(x) = 0 \text{ for all } f \in B \}.$

Show that, in the above problem,

$$\mathscr{R}(T) \subset^{a} \mathscr{N}(T^{\times})$$

What does this mean with respect to the task of solving an equation Tx = y?

Proof. Let $y = Tx \in \mathscr{R}(T)$. Then, for any $f \in \mathscr{N}(T^{\times})$, since $T^{\times}f = 0$, we have

$$f(y) = f(Tx) = (T^{\times}f)(x) = 0.$$

which yields that $y \in \mathcal{N}(T^{\times})$. So, $\mathscr{R}(T) \subset \mathcal{N}(T^{\times})$.

This means that a necessary condition for the existence of solution to Tx = y is that $f(y) = 0, \forall f \in \mathcal{N}(T^{\times})$.

P246, 8. Let *M* be any subset of a normed space *X*. Show that an $x_0 \in X$ is an element of $A = \overline{\text{span}M}$ if and only $f(x_0) = 0$ for every $f \in X'$ such that $f|_M = 0$.

Proof. Assume $x_0 \in \overline{\text{span}M}$. Let $f \in X'$ and $f|_M = 0$. Then, by linearity, f(x) = 0, for any $x \in \text{span}M$. Moreover, since f is bounded, so is continuous. Therefore, $f(x_0) = \lim_{n \to +\infty} f(x_n) = 0$, where (x_n) is a sequence in spanM converging to x_0 .

On the other hand, assume $f(x_0) = 0$ for every $f \in X'$ such that $f|_M = 0$. We claim that $x_0 \in \overline{\text{span}M}$. Otherwise, suppose $x_0 \notin Z := \overline{\text{span}M}$, then $\operatorname{dist}(x_0, Z) = \delta > 0$. Then by Lemma 4.6-7, $\exists \tilde{f} \text{ in } X \text{ s.t } \|\tilde{f}\| = 1$, $\tilde{f}(x_0) = \delta$ and $\tilde{f}|_Z = 0$. Thus $\tilde{f}|_M = 0$. A contradiction, since $\tilde{f}(x_0) \neq 0$.

[†] Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)