Suggested Solution to Homework 4

Yu Mei[†]

P101, 5. Show that the operator $T : \ell^{\infty} \to \ell^{\infty}$ defined by $y = (\eta_j) = Tx$, $\eta_j = \frac{\xi_j}{j}, x = (\xi_j)$, is linear and bounded.

Proof. Let $x = (\xi_j), y = (\eta_j)$ be in ℓ^{∞} . For any $\alpha, \beta \in \mathbb{R}, \alpha x + \beta y = (\alpha \xi_j + \beta \eta_j)$. Then, by the definition of T,

$$T(\alpha x + \beta y) = \frac{\alpha \xi_j + \beta \eta_j}{j} = \alpha \frac{\xi_j}{j} + \beta \frac{\eta_j}{j} = \alpha T x + \beta T y.$$

So, T is linear. Furthermore,

$$||Tx|| = \sup_{j} |\frac{\xi_j}{j}| \le \sup_{j} |\xi_i| = ||x||.$$

So, T is bounded.

P101, 6.(Range) Show that the range $\mathscr{R}(T)$ of a bounded linear operator $T: X \to Y$ need not be closed in Y.

Proof. Let T be the linear bounded operator in Prob.5. We claim that $\mathscr{R}(T)$ is not closed. It sufficies to show that there exists a sequece $(y_n) \subset \mathscr{R}(T)$ which converges to some y, but $y \notin \mathscr{R}(T)$. Indeed, set $x_n = (1, 2, 3, \dots, n, 0, \dots 0, \dots)$. Then $x_n \in \ell^{\infty}$ and $y_n = Tx_n = (1, 1, \dots, 1, 0, \dots)$ with first n terms being 1, others zero. It is clear that $y_n \in \mathscr{R}(T)$ and $y_n \to y = (1, \dots, 1, \dots)$. However, $y \notin \mathscr{R}(T)$, since $x = T^{-1}y = (1, 2, 3, \dots, n \dots)$ is not in ℓ^{∞} .

P101, 7.(Inverse operator) Let T be a bounded linear operator from a normed space X onto a normed space Y. If there is a positive b such that

$$|Tx|| \ge b||x||, \qquad \text{for all} \quad x \in X,$$

show that then $T^{-1}: Y \to X$ exists and is bounded.

Proof. Assume that $Tx_1 = Tx_2$. Then

$$0 = ||Tx_1 - Tx_2|| \ge b||x_1 - x_2|$$

which yields that $x_1 = x_2$. So, T is injective. Since it is also onto, T is bijective. Thus, T^{-1} exists. Moreover,

$$||T^{-1}y|| \le \frac{1}{b}||T(T^{-1}y)|| = ||y||.$$

Therefore, T is bounded.

[†] Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)