Suggested Solution to Homework 4

Yu Mei ${ }^{\dagger}$

P101, 5. Show that the operator $T: \ell^{\infty} \rightarrow \ell^{\infty}$ defined by $y=\left(\eta_{j}\right)=T x, \eta_{j}=\frac{\xi_{j}}{j}, x=\left(\xi_{j}\right)$, is linear and bounded.

Proof. Let $x=\left(\xi_{j}\right), y=\left(\eta_{j}\right)$ be in ℓ^{∞}. For any $\alpha, \beta \in \mathbb{R}, \alpha x+\beta y=\left(\alpha \xi_{j}+\beta \eta_{j}\right)$. Then, by the definition of T,

$$
T(\alpha x+\beta y)=\frac{\alpha \xi_{j}+\beta \eta_{j}}{j}=\alpha \frac{\xi_{j}}{j}+\beta \frac{\eta_{j}}{j}=\alpha T x+\beta T y
$$

So, T is linear. Furthermore,

$$
\|T x\|=\sup _{j}\left|\frac{\xi_{j}}{j}\right| \leq \sup _{j}\left|\xi_{i}\right|=\|x\|
$$

So, T is bounded.
P101, 6.(Range) Show that the range $\mathscr{R}(T)$ of a bounded linear operator $T: X \rightarrow Y$ need not be closed in Y.

Proof. Let T be the linear bounded operator in Prob.5. We claim that $\mathscr{R}(T)$ is not closed. It sufficies to show that there exists a sequece $\left(y_{n}\right) \subset \mathscr{R}(T)$ which converges to some y, but $y \notin \mathscr{R}(T)$. Indeed, set $x_{n}=(1,2,3, \cdots, n, 0, \cdots 0, \cdots)$. Then $x_{n} \in \ell^{\infty}$ and $y_{n}=T x_{n}=(1,1, \cdots, 1,0, \cdots)$ with first n terms being 1 , others zero. It is clear that $y_{n} \in \mathscr{R}(T)$ and $y_{n} \rightarrow y=(1, \cdots, 1, \cdots)$. However, $y \notin \mathscr{R}(T)$, since $x=T^{-1} y=$ $(1,2,3, \cdots, n \cdots)$ is not in ℓ^{∞}.
P101, 7.(Inverse operator) Let T be a bounded linear opertator from a normed space X onto a normed space Y. If there is a positive b such that

$$
\|T x\| \geq b\|x\|, \quad \text { for all } \quad x \in X
$$

show that then $T^{-1}: Y \rightarrow X$ exists and is bounded.
Proof. Assume that $T x_{1}=T x_{2}$. Then

$$
0=\left\|T x_{1}-T x_{2}\right\| \geq b\left\|x_{1}-x_{2}\right\|
$$

which yields that $x_{1}=x_{2}$. So, T is injective. Since it is also onto, T is bijective. Thus, T^{-1} exists. Moreover,

$$
\left\|T^{-1} y\right\| \leq \frac{1}{b}\left\|T\left(T^{-1} y\right)\right\|=\|y\|
$$

Therefore, T is bounded.

[^0]
[^0]: \dagger Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

