Suggested Solution to Homework 3

Yu Mei[†]

P71, 8. If in a normed space X, absolute convergence of any series always imolies convergence of that series, show that X is complete.

Proof. Let $\{x_n\}$ be a Cauchy sequence in X. To prove that X is complete, it suffices to show there exists a subsequence $\{x_{n_k}\}$ of the Cauchy sequence $\{x_n\}$ which converges. (Refer to P32, Q2. in HW1.)

Since $\{x_n\}$ is a Cauchy sequence, then for $\epsilon_k = \frac{1}{2^k}, \forall k \in \mathbb{N}$, there exists N_k such that

$$||x_n - x_m|| < \epsilon_k, \forall n, m > N_k$$

Thus, $\exists n_{k+1} > n_k > N_k$ s.t. $||x_{n_{k+1}} - x_{n_k}|| < \frac{1}{2^k}$.

Set $y_k = x_{n_k}$, then $\sum_{i=1}^{\infty} \|y_{i+1} - y_i\| = \sum_{i=1}^{\infty} \|x_{n_{i+1}} - x_{n_i}\| < \sum_{i=1}^{\infty} \frac{1}{2^i} = 1$. So $\{y_{i_1} - y_i\}$ is absolutely convergent which implies convergence of the series $\sum_{i=1}^{\infty} (y_{i+1} - y_i)$.

Therefore, $y_k = y_1 + \sum_{i=1}^k (y_{i+1} - y_i)$. converge, i.e. $\{x_{n_k}\}$ converge.

P71, 9. Show that in a Banach space, and absolutely convergent series is convergent.

Proof. Let X be a Banach space. Then for any $\{x_n\} \subset X$, $\|\sum_{k=n}^{m+n} x_k\| \leq \sum_{k=n}^{m+n} \|x_k\| \to 0$ as $n \to +\infty$. That is $\|s_{n+m} - s_n\| \to 0$ as $n \to +\infty$, where $s_n = \sum_{k=1}^n x_k$. Thus, s_n is a Cauchy sequence in X. By the completeness of X, s_n converges. So, $\sum_{k=1}^{\infty} x_k < +\infty$.

P76, 8. Show that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ in Prob. 8, Sec. 2.2, satisfy

$$\frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2 \le \|x\|_1.$$

Proof. Since

$$||x||_1^2 = (\sum_{i=1}^n |\xi_i|)^2 \ge \sum_{i=1}^n |\xi_i|^2 = ||x||_2^2,$$

then $||x||_1 \ge ||x||_2$.

On the other hand,

$$\frac{1}{\sqrt{n}} \|x\|_1 = \sum_{i=1}^n \frac{1}{\sqrt{n}} |\xi_i| \le (\sum_{i=1}^2 |\xi_i|^2)^{\frac{1}{2}} (\sum_{i=1}^n (\frac{1}{\sqrt{n}})^2)^{\frac{1}{2}} = \|x\|_2.$$

Therefore,

$$\frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2 \le \|x\|_1.$$

[†] Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)