## Suggested Solution to Homework 2

Yu Mei ${ }^{\dagger}$

P46, 7. If $(X, d)$ is complete, show that $(X, \tilde{d})$, where $\tilde{d}=d /(\underset{\tilde{d}}{1+d)}$, is complete.
Proof. Let $(X, d)$ be a complete metric space. Then, for $\tilde{d}=d /(1+d)$, it is clear that $\tilde{d}$ is nonnegative. Moreover, $\tilde{d}(x, y)=\frac{d(x, y)}{1+d(x, y)}=0$ if and only if $d(x, y)=0$, that is $x=y$, since $d$ is a metric. Now, we show that $\tilde{d}$ satisfies the triangle inequality, i.e.

$$
\tilde{d}(x, y) \leq \tilde{d}(x, z)+\tilde{d}(z, y), \quad \forall x, y, z \in X .
$$

Since $d$ is a metric, then $d(x, y) \leq d(x, z)+d(z, y)$. Note that the function $f(t)=\frac{t}{1+t}$ is increasing on $[0, \infty)$. Therefore,

$$
\tilde{d}(x, y)=\frac{d(x, y)}{1+d(x, y)} \leq \frac{d(x, z)}{1+d(x, z)}+\frac{d(x, z)}{1+d(x, z)}=\tilde{d}(x, z)+\tilde{d}(z, y) .
$$

It suffices to show that $(X, \tilde{d})$ is complete. Let $\left(x_{n}\right)$ is a Cauchy sequence in $(X, \tilde{d})$. Then, $\forall \epsilon>0, \exists N \in \mathbb{N}$ s.t. for all $m, n>N$,

$$
\tilde{d}\left(x_{n}, x_{m}\right)=\frac{d\left(x_{n}, x_{m}\right)}{1+d\left(x_{n}, x_{m}\right)}<\frac{\epsilon}{1+\epsilon},
$$

which implies

$$
d\left(x_{n}, x_{m}\right)<\epsilon
$$

Thus, $\left(x_{n}\right)$ is a Cauchy sequence in $(X, d)$.
By the completeness of $(X, d)$, there exists a $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$. That is, $\exists N^{\prime} \in \mathbb{N}$ s.t. for all $m>N^{\prime}, d\left(x_{m}, x\right)<\epsilon$.
Therefore, for all $n, m>\max \left\{N, N^{\prime}\right\}$,

$$
\tilde{d}\left(x_{n}, x\right) \leq \tilde{d}\left(x_{n}, x_{m}\right)+\tilde{d}\left(x_{m}, x\right)<\frac{\epsilon}{1+\epsilon}+\epsilon<2 \epsilon .
$$

So, $\tilde{d}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$. We conclude that $(X, \tilde{d})$ is complete.
P46, 8. Show that in Prob. 7, completeness of ( $X, \tilde{d}$ ) implies completeness of $(X, d)$.
Proof. Asuume $(X, \tilde{d})$ is complete. Let $\left(x_{n}\right)$ by a Cauchy sequence in $(X, d)$. Then $\forall \epsilon>0, \exists N \in \mathbb{N}$ s.t. $\forall n, m>N d\left(x_{n}, x_{m}\right)<\epsilon$. It yields that

$$
\tilde{d}\left(x_{n}, x_{m}\right)=\frac{d\left(x_{n}, x_{m}\right)}{1+d\left(x_{n}, x_{m}\right)}<\frac{\epsilon}{1+\epsilon}<\epsilon .
$$

Thus, $\left(x_{n}\right)$ is a Cauchy sequence in $(X, \tilde{d})$.
By the completeness of $\tilde{d}$, there exists a $x \in X$ such that $\tilde{d}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$. That is, $\exists N^{\prime} \in \mathbb{N}$ s.t. $\forall m>N^{\prime}, \tilde{d}\left(x_{m}, x\right)<\frac{\epsilon}{1+\epsilon}$. Therefore, for all $n, m>\max \left\{N, N^{\prime}\right\}$,

$$
d\left(x_{n}, x\right)<d\left(x_{n}, x_{m}\right)+d\left(x_{m}, x\right)=\frac{\tilde{d}\left(x_{n}, x_{m}\right)}{1-\tilde{d}\left(x_{n}, x_{m}\right)}+\frac{\tilde{d}\left(x_{m}, x\right)}{1-\tilde{d}\left(x_{m}, x\right)}<2 \frac{\frac{\epsilon}{1+\epsilon}}{1-\frac{\epsilon}{1+\epsilon}}=2 \epsilon
$$

[^0]So, $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$, which implies the completeness of $(X, d)$.
P46, 14 Does

$$
d(x, y)=\int_{a}^{b}|x(t)-y(t)| d t
$$

define a metric or pseudometric on $X$ if $X$ is $(i)$ the set of all real-valued continous functions on $[a, b],(i i)$ the set of all real-valued Riemann integrable functions on $[a, b]$ ?

Proof. For $d(x, y)=\int_{a}^{b}|x(t)-y(t)| d t$, it follws from the properties of Riemann integral that, whether $X$ be the set of all real-valued contions or Riemann integrable functions on $[a, b]$,
(a) $d(x, y)=\int_{a}^{b}|x(t)-y(t)| d t \geq 0, d(x, x)=\int_{a}^{b}|x(t)-x(t)| d t=0, \quad \forall x, y \in X ;$
(b) $d(x, y)=\int_{a}^{b}|x(t)-y(t)| d t=\int_{a}^{b}|y(t)-x(t)| d t=d(y, x), \quad \forall x, y \in X ;$
(c) $d(x, y)=\int_{a}^{b}|x(t)-y(t)| d t \leq \int_{a}^{b}|x(t)-z(t)| d t+\int_{a}^{b}|z(t)-y(t)| d t=d(x, z)+d(z, y), \quad \forall x, y, z \in X$.

## However,

(i) If $X=C[a, b]$ be the set of all real-valued continous functions on $[a, b]$, then $d(x, y)=0$ yields that $x=y$. Indeed, suppose not, that is, there exists at least a point $t_{0} \in[a, b]$ such that $x\left(t_{0}\right) \neq y\left(t_{0}\right)$, then there exists an interval $\left(t_{0}-\delta, t_{0}+\delta\right)$ such that $\left|x\left(t_{0}\right)-y\left(t_{0}\right)\right|>0$ since the function $|x(t)-y(t)|$ is continous. Therefore,

$$
d(x, y)=\int_{0}^{t}|x(t)-y(t)| d t \geq \int_{t_{0}-\delta}^{t_{0}+\delta}|x(t)-y(t)| d t>0
$$

which is a contradiction!
(ii) If $X=R[a, b]$ be the set of all real-valued Riemann integrable functions on $[a, b]$. Then $d(x, y)=0$ can not imply $x=y$. For example, define

$$
x(t)=\left\{\begin{array}{l}
1, x \in\left[a, \frac{a+b}{2}\right], \\
0, x \in\left(\frac{a+b}{2}, b\right] .
\end{array} \quad y(t)=\left\{\begin{array}{l}
1, x \in\left[a, \frac{a+b}{2}\right), \\
0, x \in\left[\frac{a+b}{2}, b\right] .
\end{array}\right.\right.
$$

It is clear that $x, y \in R[a, b]$ and $d(x, y)=\int_{a}^{b}|x(t)-y(t)|=0$. But $x\left(\frac{a+b}{2}\right)=1, y\left(\frac{a+b}{2}\right)=0$. They are not equal at the point $t=\frac{a+b}{2}$.
Therefore, we conclude that
(i) $d$ is a metric on $C[a, b]$.
(ii) $d$ is only a pseduometic on $R[a, b]$.


[^0]:    $\dagger$ Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

