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4.1 Geometric Meanings

In this section, we will discuss the geometric implication of complex differentiability at a point

z0 ∈ Ω. All the results come from the additional special property of the differential matrix. For

convenience, we write

Df(x0,y0)
def
:==

(
ux uy
vx vy

)
(x0,y0)

=

(
p −q
q p

)
.

Note that this is a matrix of real numbers and the phenomenon only occurs at the point z0.

First, we will discuss why the function f takes perpendicularly intersecting curves to the same

situation. In fact, more generally, f always preserves the intersecting angle of curves.

Exercise 4.1. Try to justify the above paragraph mathematically.

Recall in Linear Algebra, a matrix A =

(
a b
c d

)
sends the vectors

(1, 0) 7→ (a, c), (0, 1) 7→ (b, d) .

The matrix D =

(
p −q
q p

)
has a determinant p2 + q2, which is zero if and only if p = q = 0.

Thus, either

D =

(
0 0
0 0

)
or D =

√
p2 + q2

(
cosα − sinα
sinα cosα

)
,

where cosα =
p√

p2 + q2
and sinα =

q√
p2 + q2

. Therefore, the action of D is simply a rotation

together with a change of length by a factor of
√
p2 + q2. In other words, for any pair of vectors

v⃗1, v⃗2, the length of their images D(v⃗1), D(v⃗2) may change, but the angle between them remains

the same.

Exercise 4.2. Apply the above facts in Linear Algebra to the differential matrix of (x, y) 7→
(u, v) to prove that the image curves will have the same intersecting angle of the original curves.

Finally, the matrix D =

(
p −q
q p

)
also has determinant equals p2 + q2 ≥ 0. Thus, except the

case that D = 0, the determinant is always positive. Suppose v⃗1 and v⃗2 are a pair of positively

oriented linearly independent vectors (e.g., e⃗1 and e⃗2). Then their image vectors D(v⃗1) and

D(v⃗2) are also positively oriented linearly independent. As a result, the following picture of

curve mappings will not occur. The first case corresponds to a nonzero differential matrix with

zero determinant; the second case is having negative determinant.

Exercise 4.3. Justify the above description mathematically.



neither
occur

f

4.2 Pointwise

We are considering f : Ω ⊂ C → C and looking at what happens at a point z0 ∈ Ω. Our

convention always denote z = x + iy and f(z) = u(x, y) + iv(x, y). We are assuming the

following statement.

Statement (I). The function f : Ω ⊂ C → C is complex differentiable at z0 ∈ Ω.

In such a setting, f is complex differentiable at z0 if and only if the function (x, y) 7→ (u, v) is

differentiable at (x0, y0) and the Cauchy-Riemann Equations are satisfied at (x0, y0), i.e.,[
ux uy
vx vy

]
(x0,y0)

=

[
ux uy
−uy ux

]
(x0,y0)

.

This is equivalent to the statement about R2 → R2.

Statement (Ia). The function (x, y) 7→ (u, v) is differentiable at the corresponding point (x0, y0)

and the Cauchy-Riemann Equations are satisfied at that point.

4.2.1 The Converse

At this moment, we also have a weaker statement which is only about f at a point.

Statement (II). All partial derivatives of the function (x, y) 7→ (u, v) exist at the corresponding

point (x0, y0) and the Cauchy-Riemann Equations are satisfied at that point.

In short, (I) ⇐⇒ (Ia) =⇒ (II). What about the converse? Recall that from multivariable

calculus, the converse is not true. However, there is a similar situation, in which an additional

condition of continuous partial derivatives implies differentiability.

Statement (IIa). All partial derivatives of the function (x, y) 7→ (u, v) exist on a neighborhood

B(z0, δ) and are continuous at the point (x0, y0) and the Cauchy-Riemann Equations are satisfied

at the point.
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Let us suppose (IIa) holds and look at the rough ideas behind. Then we write

u(x, y)− u(x0, y0) = u(x, y)− u(x0, y) + u(x0, y)− u(x0, y0)

=
∂u

∂x

∣∣∣∣
(x0,y)

(x− x0) + ε1 +
∂u

∂y

∣∣∣∣
(x0,y0)

(y − y0) + ε2 ,

where ε1, ε2 → 0 “fast enough” by existence of partial derivatives;

=

[
∂u

∂x

∣∣∣∣
(x0,y0)

+ ε3

]
(x− x0) + ε1 +

∂u

∂y

∣∣∣∣
(x0,y0)

(y − y0) + ε2 ,

where ε3 → 0 (may not fast) by continuity of partial derivatives;

=
∂u

∂x

∣∣∣∣
(x0,y0)

(x− x0) +
∂u

∂y

∣∣∣∣
(x0,y0)

(y − y0) + εu ,

where εu = ε1 + ε2 + ε3(x− x0) → 0 fast enough.

The last line is merely the differentiability of (x, y) 7→ u at the point (x0, y0). Similarly, we

obtain the differentiability of (x, y) 7→ v at the same point. So far, we have not used the

Cauchy-Riemann Equations. Let us further write

f(z)− f(z0) = u(x, y)− u(x0, y0) + i [v(x, y)− v(x0, y0)]

=

[
∂u

∂x

∣∣∣∣
(x0,y0)

+ i
∂v

∂x

∣∣∣∣
(x0,y0)

]
(x− x0) +

[
∂u

∂y

∣∣∣∣
(x0,y0)

+ i
∂v

∂y

∣∣∣∣
(x0,y0)

]
(y − y0) + ε

= [p+ iq] · [(x− x0) + i(y − y0)] + ε .

It is only at the last step that we need the Cauchy-Riemann Equations at (x0, y0) to get p, q.

Therefore, we have established (IIa)
=⇒
⇍=

(I)
=⇒
⇍=

(II). Note that the backward im-

plication cannot be concluded because (IIa) is not only about a point z0.

4.3 On a neighborhood

In the above, the converse does not work because (I) is only a pointwise statement while (IIa)

is not. What if we raise the level of (I) to a neighborhood?

Statement (Ic). The function f : Ω ⊂ C → C is complex differentiable on B(z0, δ) for

some δ > 0.

Immediately, by the same reason as (I) =⇒ (II), a consequence of (Ic) is: All partial derivatives

of (x, y) 7→ (u, v) exist on B(z0, δ) and the Cauchy-Riemann Equations are true on the neigh-

borhood. This conclusion is different from (IIa) and it is hard to say which one is stronger.

The strongest statement seems to be a total neighborhood version of (II), i.e.,

Statement (IIc). All partial derivatives of (x, y) 7→ (u, v) are defined and continuous onB(z0, δ)

and the Cauchy-Riemann Equations are satisfied on the neighborhood.

Clearly, (IIc) =⇒ (Ic). The first surprising fact is that (IIc) ⇐= (Ic).

In other words, on a neighborhood, the existence of complex derivative guarantees the continuity

of it. This certainly is not true for real functions. The second surprising fact is that the
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continuous derivative can be used to define second derivative . Thus we have chain effect,

f ′ exists =⇒ f ′′ exists =⇒ · · · =⇒ f (n) exists for all n.

For the moment, we have only mentioned the two surprising facts. The proofs of them form the

main content of this course. We will look at it from different points of view.

4.3.1 Analytic Functions

According to the above discussion, there is an important type of complex functions. These

functions are mainly the object of study in this course. A function f : Ω ⊂ C → C is analytic or

holomorphic at z0 ∈ Ω if there is δ > 0 such that f ′(z) exists for every z ∈ B(z0, δ). A function

is analytic on Ω if it is analytic at every z ∈ Ω.

Most of the functions that we come across are indeed analytic functions. But, at this stage, we

only know the definition of these functions as real functions. Therefore, we are only giving a

partial list of examples.

1. A polynomial in z is analytic on Ω = C.

We call an analytic function on C an entire function.

2. The function z 7→ 1/z is analytic on Ω = C \ {0}.

3. A rational function, z 7→ P (z)

Q(z)
, where P,Q are polynomials, is analytic on Ω = C \

{z ∈ C : Q(z) = 0}.

4. There are other well-known analytic functions, which we will define later. For example,

ez, sin z, cos z, are entire functions; other trigonometric functions or hyperbolic functions

are analytic on suitable domains; the function log z is special that needs more discussion.

4.3.2 Harmonic Conjugate

Let f = u+ iv : Ω ⊂ C → C be analytic on Ω and assume both u, v are of C∞ (later, this is a

consequence of analyticity). Then we have the Cauchy-Riemann Equations on Ω,

ux = vy and uy = −vx .

Futher differentiate the first wrt x and the second wrt y, we have

uxx = vyx and uyy = −vxy .

As a consequence of u, v are of C2, we have

△u
def
:== uxx + uyy ≡ 0 , △v

def
:== vxx + vyy ≡ 0 on Ω.

Both u, v are called harmonic functions on Ω. Moreover, v (and in fact, v + c) is a harmonic

conjugate of u. Note that u is NOT a harmonic conjugate of v because v + iu does not satisfy

the Cauchy-Riemann Equations.
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Exercise 4.4. Show that −u is a harmonic conjugate of v.

Question. Given a harmonic function u, is there a method to find its harmonic conjugate v?

In the following, we will show by an example of how to find a harmonic conjugate v from a

given u. Then afterwards, we will discuss the rationale behind the method and whether it is

always valid. Let u(x, y) = x3 − 3xy2 − 2xy on Ω = C. It is easy to verify that △u ≡ 0.

According to the Cauchy-Riemann Equations,

vy = ux = 3x2 − 3y2 − 2y .

Therefore, for a fixed point (x0, y0), we may integrate wrt y to have

v(x, y)− v(x, y0) =

∫ y

y0

vy(x, t) dt =

∫ y

y0

(
3x2 − 3t2 − 2t

)
dt

= 3x2 (y − y0)−
(
y3 − y30

)
−

(
y2 − y20

)
.

For simplicity, we group all the terms v(x, y0) and terms involving y0 into φ(x),

v(x, y) = 3x2y − y3 − y2 + φ(x) .

Using the other one of Cauchy-Riemann Equations,

vx(x, y) = 6xy − 0− 0 + φ′(x) = −uy = − (0− 6xy − 2x) .

Thus, integrating writ x, we have

φ(x)− φ(x0) =

∫ x

x0

φ′(t) dt =

∫ x

x0

2t dt = x2 − x20 .

By grouping φ(x0) and x20 as a constant, we have

v(x, y) = 3x2y − y3 − y2 + x2 + C , where C is constant depending on (x0, y0).

The method seems straight forward, but there is a rationale behind the method.

4.3.3 Integration rationale

In the above example, there are two major integration steps,

• Integrating vy wrt y and get a formula of v(x, y) involving φ(x). Note that in this step,

φ(x) actually contains the term v(x, y0).

• Integrating φ′(x) wrt x and get a formula of φ(x) involving a constant C. This C actually

contains information at the point (x0, y0).

In principle, the second step corresponds to integration from (x0, y0) to (x, y0) along the hor-

izontal line in the picture below; and the first step corresponds to that from (x, y0) to (x, y)

along the vertical line.
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Exercise 4.5. Try to use vx = −uy first and then vy = ux to work on the above example. This

corresponds to integrating along the dotted lines. Show that the answers are the same.

However, this method works in the above because the function u is defined on the whole C.
Therefore, no matter where (x, y) is, the horizontal and vertical lines from (x0, y0) to (x, y)

always stay inside Ω. If Ω is more complicated, then part of the lines may go outside of Ω where

u is not defined, as in the left-hand picture below.

x0 y x(    ,    ) (    ,    )0y

(   ,   )y

0

x

y00x

(   ,   )y

(    ,    )

x

For such a situation, we need to use a sequence of horizontal and vertical lines, such as the right-

hand picture above to get v(x, y). But, this leads to another question: which path should we

choose? Is the expression of v(x, y) independent of the choice and only depends on information

at (x0, y0)?

Exercise 4.6. Consider u(x, y) =
x

x2 + y2
defined on Ω = C \ {0} and take z0 = −1− i. Show

that the value of v(x, y) by two different horizontal and vertical lines can still be the same.

However, the situation for u(x, y) = log
√

x2 + y2 on Ω = C \ {0} is different. Observe that

ux =
x

x2 + y2
, uy =

y

x2 + y2
.

Then, one may use the Cauchy-Riemann Equations to do the following integration,

v(1, 1)− v(−1, 1) =

∫ 1

−1
vx(s, 1) ds =

∫ 1

−1
−uy(s, 1) ds =

∫ 1

−1

−(1) ds

s2 + 1
= −A

v(−1, 1)− v(−1,−1) =

∫ 1

−1
vy(−1, t) dt =

∫ 1

−1
ux(−1, t) ds =

∫ 1

−1

(−1) ds

(−1)2 + t2
= −A

So, we have v(1, 1)− v(−1,−1) = −2A.

Note that in the above calculation, we first find v(1, 1)−v(−1, 1), which is the difference when x

varies from −1 to 1. Then we get v(−1, 1)− v(−1,−1), which is varying y from −1 to 1.

Exercise 4.7. Show that the result is different along the other paths. That is, if one finds

v(1, 1)− v(1,−1) and v(1,−1)− v(−1,−1), the result is v(1, 1)− v(−1,−1) = 2A.

From this example, one sees that the method must be used carefully. There is a theory behind,

which will be discussed later.
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