Exercise 1. Evaluate the limit
\[\lim_{n \to \infty} \frac{5n^2 + 2n + 1}{3n^2 + n + 2} \]

Exercise 2. Let \(A \subset \mathbb{R} \), \(\sup(A) = \alpha \in \mathbb{R} \). Construct a monotone increasing sequence \((b_n)\) in \(A \) converging to \(\alpha \).

Exercise 3. Let \(a > 0 \), show that \(\lim_{n \to \infty} \frac{a^n}{n!} = 0 \).

Exercise 4. Let \(p \in \mathbb{N} \), and \(b \in \mathbb{R} \) satisfying \(0 < b < 1 \). Show that \(\lim_{n \to \infty} nb^n = 0 \).

Exercise 5. Let \((x_n)\) be a sequence of positive real numbers. Suppose \(\lim_{n \to \infty} \sqrt[n]{x_n} = L \), where \(L \) is a non-negative real number.

(a) If \(0 \leq L < 1 \), show that \(\lim_{n \to \infty} x_n = 0 \).

(b) If \(L > 1 \), show that \((x_n)\) is divergent.

(c) What happens if \(L = 1 \)?