Solution to HW4

November 23, 2014

1. Introduce artificial variables y_{1} and y_{2} we get the following auxiliary LPP: maximize $z=x_{1}-2 x_{2}-3 x_{3}-x_{4}-x_{5}+2 x_{6}-M y_{1}-M y_{2}$ subject to

$$
\begin{cases}x_{1}+2 x_{2}+2 x_{3}+x_{4}+x_{5}+y_{1} & =12 \\ x_{1}+2 x_{2}+x_{3}+x_{4}+2 x_{5}+x_{6} & =18 \\ 3 x_{1}+6 x_{2}+2 x_{3}+x_{4}+3 x_{5}+y_{2} & =24 \\ x_{1}, \cdots, x_{6}, y_{1}, y_{2} & \geq 0\end{cases}
$$

Using the above constraints to eliminate y_{1} and y_{2} in the expression of z we get
$z+(1-4 M) x_{1}+(6-8 M) x_{2}+(5-4 M) x_{3}+(3-2 M) x_{4}+(5-4 M) x_{5}=36-36 M$.
From this we can form the initial table:

y_{1}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	y_{1}	y_{2}	
	1	2	2	1	1	0	1	0	12
x_{6}	1	2	1	1	2	1	0	0	18
y_{2}	3	6	2	1	3	0	0	1	24
	$1-4 M$	$6-8 M$	$5-4 M$	$3-2 M$	$5-4 M$	0	0	0	$-36 \mathrm{M}$

Using standard simplex method we finally get the following table:

2. Introduce the slack variables x_{3} and x_{4} to convert the LPP to its standard form:
maximize $z=3 x_{1}+2 x_{2}$ subject to

$$
\begin{cases}2 x_{1}+x_{2}+x_{3} & =2 \\ 3 x_{1}+4 x_{2}-x_{4} & =12 \\ x_{1}, x_{2}, x_{3}, x_{4} & \geq 0\end{cases}
$$

Then we introduce the artificial variable x_{5} to get an auxiliary LPP: maximize $\widehat{z}=3 x_{1}+2 x_{2}-M x_{5}$ subject to

$$
\begin{cases}2 x_{1}+x_{2}+x_{3} & =2 \\ 3 x_{1}+4 x_{2}-x_{4}+x_{5} & =12 \\ x_{1}, \cdots, x_{5} & \geq 0\end{cases}
$$

Expressing \widehat{z} using $x_{1}, x_{2}, x_{3}, x_{4}$ we get

$$
\widehat{z}=(3 M+3) x_{1}+(4 M+2) x_{2}-M x_{4}-12 M
$$

From this we can form the initial table:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
x_{3}	2	1	1	0	0	2
x_{5}	3	4	0	-1	1	12
	$-3 M-3$	$-4 M-2$	0	M	0	$-12 M$

Applying standard simplex method, we get the following table:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
x_{2}	2	1	1	0	0	2
x_{5}	-5	0	-4	-1	1	4
	$5 M+1$	0	$4 M+2$	M	0	$-4 M+4$

Since the artificial variable x_{5} is still positive in the optimal solution, the original LPP does not admit any optimal solution.
3. Introduce slack variables x_{1} and x_{2} to convert the LPP to the following standard form:
maximize $z=2 x+3 y$ subject to

$$
\begin{cases}x+3 y+x_{1} & =9 \\ 2 x+3 y+x_{2} & =12 \\ x, y, x_{1}, y_{1} & \geq 0\end{cases}
$$

Form the initial tables as follows:

$y x_{1} x_{2}$					
x_{1}	1	3	1	0	9
x_{2}	2	3	0	1	12
	-2	-3	0	0	0

At this stage one should choose y as the entering variable, and the corresponding departing variable is x_{2}. By Gaussian elimination we get:

This table is the final one, so the solution is optimal. However, since $x_{1} \neq 0$, we see that the LPP admits infinitely many optimal solutions.
4. Maximize $z=3 x_{1}+8 x_{2}$ subject to

$$
\begin{cases}x_{1}+2 x_{2} & \leq 6 \\ 2 x_{1}+2 x_{2} & \leq 6 \\ x_{1}+4 x_{2} & \leq 8 \\ x_{1}+9 x_{2} & \geq 9 \\ x_{1}, x_{2} & \geq 0\end{cases}
$$

5. Minimize $z^{\prime}=\mathbf{b}^{T} \mathbf{w}$ subject to

$$
\begin{cases}A^{T} \mathbf{w} & \geq \mathbf{c} \\ B^{T} \mathbf{w} & =\mathbf{d} \\ \mathbf{w} & \geq 0\end{cases}
$$

6. This is a simple application of the duality theorem, which says that if the dual LPP admits an optimal solution, then so is the primal LPP. Moreover, the optimal solution to the primal LPP is given in terms of that of dual LPP by $z_{\max }=\mathbf{c}^{T} \mathbf{x}=\mathbf{b}^{T} \mathbf{w}$. Then we simply do the direct calculation

$$
\mathbf{b}^{T} \mathbf{w}=\left(\begin{array}{lllll}
12 & 21 & 8 & 2 & 5
\end{array}\right) \cdot\left(\begin{array}{lllll}
0 & 4 & 5 & 0 & 3
\end{array}\right)^{T}=139
$$

to see that the optimal solution to the primal LPP is 139 .
7. We check that $\mathbf{y}=\left(\frac{2}{3}, 0, \frac{14}{3}\right)$ and $\mathbf{x}=\left(0, \frac{1}{3}, \frac{2}{3}, 0\right)$ are feasible for their respective problems, and that they have the same value. Clearly, $\mathbf{y} \geq 0$ and $\mathbf{x} \geq 0$ Substituting \mathbf{y} into the main constraints of the LPP,
we find $\frac{2}{3}+\frac{14}{3} \geq 2,-\frac{2}{3}+\frac{14}{3} \geq 4, \frac{4}{3}+\frac{14}{3} \geq 6$, and $\frac{2}{3}+\frac{14}{3} \geq 2$, so \mathbf{y} is feasible. Similarly substituting x into the main constraints of the dual LPP, i.e. maximize $z=2 x_{1}+4 x_{2}+6 x_{3}+2 x_{4}$ subject to

$$
\begin{cases}x_{1}-x_{2}-2 x_{3}+x_{4} & \leq 1 \\ -2 x_{1}+x_{2}+x_{4} & \leq 2 \\ x_{1}+x_{2}+x_{3}+x_{4} & \leq 1 \\ x_{1}, x_{2}, x_{3}, x_{4} & \geq 0\end{cases}
$$

we find $-\frac{1}{3}+\frac{4}{3} \leq 1, \frac{1}{3} \leq 2$, and $\frac{1}{3}+\frac{2}{3} \leq 2$, so \mathbf{x} is feasible. The value of \mathbf{y} is $\frac{16}{3}$, and the value of \mathbf{x} is $\frac{16}{3}$. Since these are equal, both are optimal.

