
Solution to HW4

November 23, 2014

1. Introduce artificial variables y1 and y2 we get the following auxiliary LPP:
maximize z = x1 − 2x2 − 3x3 − x4 − x5 + 2x6 −My1 −My2 subject to

x1 + 2x2 + 2x3 + x4 + x5 + y1 = 12,

x1 + 2x2 + x3 + x4 + 2x5 + x6 = 18,

3x1 + 6x2 + 2x3 + x4 + 3x5 + y2 = 24,

x1, · · ·, x6, y1, y2 ≥ 0.

Using the above constraints to eliminate y1 and y2 in the expression of z we get

z+(1−4M)x1+(6−8M)x2+(5−4M)x3+(3−2M)x4+(5−4M)x5 = 36−36M.

From this we can form the initial table:

x1 x2 x3 x4 x5 x6 y1 y2
y1 1 2 2 1 1 0 1 0 12
x6 1 2 1 1 2 1 0 0 18
y2 3 6 2 1 3 0 0 1 24

1− 4M 6− 8M 5− 4M 3− 2M 5− 4M 0 0 0 −36M

Using standard simplex method we finally get the following table:

x1 x2 x3 x4 x5 x6 y1 y2
x3 ? ? ? ? ? ? ? ? 3
x6 ? ? ? ? ? ? ? ? 9
x1 ? ? ? ? ? ? ? ? 6

0 4 0 1
2 4 0 M − 13

4 M + 3
4 15

2. Introduce the slack variables x3 and x4 to convert the LPP to its standard
form:
maximize z = 3x1 + 2x2 subject to

2x1 + x2 + x3 = 2,

3x1 + 4x2 − x4 = 12,

x1, x2, x3, x4 ≥ 0.
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Then we introduce the artificial variable x5 to get an auxiliary LPP:
maximize ẑ = 3x1 + 2x2 −Mx5 subject to

2x1 + x2 + x3 = 2,

3x1 + 4x2 − x4 + x5 = 12,

x1, · · ·, x5 ≥ 0.

Expressing ẑ using x1, x2, x3, x4 we get

ẑ = (3M + 3)x1 + (4M + 2)x2 −Mx4 − 12M.

From this we can form the initial table:

x1 x2 x3 x4 x5

x3 2 1 1 0 0 2
x5 3 4 0 -1 1 12

−3M − 3 −4M − 2 0 M 0 −12M

Applying standard simplex method, we get the following table:

x1 x2 x3 x4 x5

x2 2 1 1 0 0 2
x5 -5 0 -4 -1 1 4

5M + 1 0 4M + 2 M 0 −4M + 4

Since the artificial variable x5 is still positive in the optimal solution, the original
LPP does not admit any optimal solution.

3. Introduce slack variables x1 and x2 to convert the LPP to the following
standard form:
maximize z = 2x+ 3y subject to

x+ 3y + x1 = 9,

2x+ 3y + x2 = 12,

x, y, x1, y1 ≥ 0.

Form the initial tables as follows:

x y x1 x2

x1 1 3 1 0 9
x2 2 3 0 1 12

-2 -3 0 0 0

At this stage one should choose y as the entering variable, and the corresponding
departing variable is x2. By Gaussian elimination we get:
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x y x1 x2

x1
1
3 0 1 - 13 5

y 2
3 1 0 1

3 4
0 0 0 1 12

This table is the final one, so the solution is optimal. However, since x1 6= 0,
we see that the LPP admits infinitely many optimal solutions.

4. Maximize z = 3x1 + 8x2 subject to

x1 + 2x2 ≤ 6,

2x1 + 2x2 ≤ 6,

x1 + 4x2 ≤ 8,

x1 + 9x2 ≥ 9,

x1, x2 ≥ 0.

5. Minimize z′ = bTw subject to
ATw ≥ c,

BTw = d,

w ≥ 0.

6. This is a simple application of the duality theorem, which says that if the
dual LPP admits an optimal solution, then so is the primal LPP. Moreover, the
optimal solution to the primal LPP is given in terms of that of dual LPP by
zmax = cTx = bTw. Then we simply do the direct calculation

bTw =
(
12 21 8 2 5

)
·
(
0 4 5 0 3

)T
= 139

to see that the optimal solution to the primal LPP is 139.

7. We check that y =
(
2
3 , 0,

14
3

)
and x =

(
0, 1

3 ,
2
3 , 0
)
are feasible for their

respective problems, and that they have the same value. Clearly, y ≥ 0 and
x ≥ 0 Substituting y into the main constraints of the LPP,
we find 2

3 + 14
3 ≥ 2, − 2

3 + 14
3 ≥ 4, 4

3 + 14
3 ≥ 6, and 2

3 + 14
3 ≥ 2, so y is feasible.

Similarly substituting x into the main constraints of the dual LPP, i.e. maximize
z = 2x1 + 4x2 + 6x3 + 2x4 subject to

x1 − x2 − 2x3 + x4 ≤ 1,

−2x1 + x2 + x4 ≤ 2,

x1 + x2 + x3 + x4 ≤ 1,

x1, x2, x3, x4 ≥ 0,
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we find − 1
3 + 4

3 ≤ 1, 1
3 ≤ 2, and 1

3 + 2
3 ≤ 2, so x is feasible. The value of y is

16
3 , and the value of x is 16

3 . Since these are equal, both are optimal.
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