Solution to HW2

the solution is for reference only

1. Let $D \subset \mathbb{R}^{2}$ denote the interior of the first quadrant in \mathbb{R}^{2}. More precisely,

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0\right\}
$$

Take $E=\mathbb{R}^{2} \backslash D$, then E is easily seen to be star shaped by taking the distinguished point x_{0} to be the origin. However, E is not convex, the reason is as follows. Consider the points $x_{1}=(0,1)$ and $x_{2}=(1,0)$, then we have $x_{1}, x_{2} \in E$. Let ℓ denote the line segment joining x_{1} and x_{2}, it's clear that $\ell \nsubseteq E$, which implies E is not convex.
2. (a) Suppose a bounded convex subset $S \subset \mathbb{R}^{n}$ has a direction \mathbf{v}, then by definition there exists some $x_{0} \in S$ such that

$$
R:=\left\{x_{0}+\lambda \mathbf{v} \mid \lambda \geq 0\right\} \subset S
$$

but notice that R is unbounded, which implies that S is unbounded, a contradiction.
(b) There are two directions of S, determined respectively by the vectors

$$
\mathbf{v}_{1}=(1,0), \mathbf{v}_{2}=(-1,0)
$$

(c) Consider $S=D$ with D being the first quadrant. Then S has a unique extreme point, which is the origin. Also notice that every $\mathbf{v}_{\alpha}=(1, \alpha)$ with $\alpha \geq 0$ is a direction of S.
3. We first show that S is a convex set. Take two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ S, by definition of S this is equivalent to $y_{1} \geq x_{1}^{2}$ and $y_{2} \geq x_{2}^{2}$. Consider the point $\lambda\left(x_{1}, y_{1}\right)+(1-\lambda)\left(x_{2}, y_{2}\right)$ with $0<\lambda<1$, which is just the point $\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda y_{1}+(1-\lambda) y_{2}\right) \in \mathbb{R}^{2}$. Since

$$
\begin{aligned}
\lambda y_{1}+(1-\lambda) y_{2} & \geq \lambda x_{1}^{2}+(1-\lambda) x_{2}^{2} \\
& \geq\left(\lambda x_{1}+(1-\lambda) x_{2}\right)^{2}
\end{aligned}
$$

by our assumption and elementary inequality, we see that $\lambda\left(x_{1}, y_{1}\right)+(1-$ $\lambda)\left(x_{2}, y_{2}\right) \in S$ for every $0<\lambda<1$. For every point $p \in \partial S$, consider the tangent line ℓ of ∂S passing through p, then it's clear by definition that ℓ is the supporting hyperplane of S at p. Since $x \geq 0$ and $y \geq 0$ for every point $(x, y) \in S, S$ is a set bounded from below. By Theorem 1.5 in the lecture notes, ℓ contains an extreme point of S. Because $\ell \cap S=\{p\}$, p must be an extreme point of S. Since that the above argument works for every point of ∂S, we conclude that every point of ∂S is an extreme point of S.
4. Let $y_{2}=-x_{2}$ and introduce slack variables y_{0} and y_{1} we get the following LPP of standard form.
Maximize $z=3 x_{1}-2 y_{2}-x_{3}+x_{4}$ subject to

$$
\begin{cases}x_{1}-2 y_{2}+x_{3}-x_{4}+y_{0} & =5 \\ -2 x_{1}+4 y_{2}+x_{3}+x_{4}+y_{1} & =-1 \\ x_{1}, x_{2}, x_{3}, x_{4} & \geq 0 \\ y_{0}, y_{1} & \geq 0\end{cases}
$$

5. Let $y_{3}=3-x_{3}$, then by the restriction that $x_{3} \leq 3$ we have $y_{3} \geq 0$. The canonical form of the LPP is given as follows.
Maximize $z=-3 x_{1}-2 y_{3}$ subject to

$$
\begin{cases}-x_{1}+2 x_{2}+y_{3} & \leq 2 \\ x_{1}-2 x_{2}-y_{3} & \leq-2 \\ -x_{1}-x_{2} & \leq-4 \\ x_{1}, x_{2}, y_{3} & \geq 0\end{cases}
$$

6. (a) Simply sketch the feasible region, we see that the feasible set is bounded by four boundary components.
(b) It's easy to see from the constraints that we can take x and y to be sufficiently large provided that $x \geq y$. This is because when x and y are suffiently large then the sencond condition $x+2 y \geq 2$ is automatically satisfied. Since $x \geq y$, the first condition is also satisfied because $-3 x+2 y \leq 0$. This shows that (x, y) with $x \geq y$ and $x, y \gg 0$ is always feasible. But such a choice will make z to be sufficiently large as the coefficients before x and y in z are both positive. This shows that there is no feasible solution of z.
7. (a) The extreme points are given by $(0,3),(0,1),(2,0) \in \mathbb{R}^{2}$.
(b) Let S be the feasible set of the given LPP, consider a closed subset E of S bounded by the x-axis, y-axis, $y=-\frac{1}{2} x+1$ and $3 x+5 y=15$. Then it's quite clear from the pircture that all points in $S \backslash E$ gives larger values of z than the points in E. Because of this, we can replace the unbounded feasible set S by the bounded set E. By the extreme point theorem, we only need to compute the values of z at all the extreme points and then compare them. When $(x, y)=(0,3), z=15$; when $(x, y)=(0,1), z=5$; when $(x, y)=(2,0), z=6$; when $(x, y)=(5,0), z=15$. From this we conclude that $z_{\min }=5$.
8. (a) Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}$ be the columns of A. Notice that

$$
\mathbf{a}_{1}+\mathbf{a}_{2}-\mathbf{a}_{3}-\mathbf{a}_{4}-2 \mathbf{a}_{5}=0
$$

so $\alpha_{1}=1, \alpha_{2}=1, \alpha_{3}=-1, \alpha_{4}=-1, \alpha_{5}=-2$. We compute

$$
\frac{x_{1}}{\alpha_{1}}=2, \frac{x_{2}}{\alpha_{2}}=3, \frac{x_{3}}{\alpha_{3}}=-2, \frac{x_{4}}{\alpha_{4}}=-3, \frac{x_{5}}{\alpha_{5}}=\frac{3}{2} .
$$

From this we see that $r=1$. By definition of the new solution \mathbf{x}^{\prime} we get

$$
\mathbf{x}^{\prime}=(0,1,4,5,7)^{T}
$$

Repeat the above process once again, we get a basic feasible solution

$$
\mathbf{x}_{1}=(0,0,4,6,8)^{T} .
$$

(b) Use the method of (a), we can move \mathbf{x}_{1} to the basic feasible solution

$$
\mathbf{x}_{2}=(0,4,6,0,4)^{T},
$$

which is adjacent to \mathbf{x}_{1} in the sense that it differs from \mathbf{x}_{1} by only one basic variable.

