
Solution to HW1
the solution is for reference only

1.

From the picture above, it’s easy to see z = 3x + 4y gets its maximal value at
the point (2, 43 ), by direct computation zmax = 34

3 .

2. The graph of the problem is:

The constraint set is shaded. The objective function, y1 + y2, has slope -1.
As we move a line of slope -1 down, the last place it touches the constraint set
is at the intersection of the two lines, 2y1 + y2 = 5 and y1 +2y2 = 3. The point
of intersection, namely ( 73 ,

1
3 ), is the optimal vector.
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3. (a) By introducing the slack variables x4, x5 we can transform the problem
to the following standard LPP:
maximize z = 4x1 + 2x2 + 7x3 subject to

2x1 − x2 + 4x3 + x4 = 18

4x1 + 2x2 + 5x3 + x5 = 10

where x1, x2, x3, x4, x5 ≥ 0.
(b) As in the above problem, we want to find the basic solutions of Ax = b,

where A =

[
2 −1 4 1 0
4 2 5 0 1

]
, y =


x1
x2
x3
x4
x5

 and b =

[
18
10

]
. The possible

choices of Bi’s are listed as follows:

B1 =

[
2 −1
4 2

]
, B2 =

[
2 4
4 5

]
, B3 =

[
2 1
4 0

]
, B4 =

[
2 0
4 1

]
,

B5 =

[
−1 4
2 5

]
, B6 =

[
−1 1
2 0

]
, B7 =

[
−1 0
2 1

]
, B8 =

[
4 1
5 0

]
,

B9 =

[
4 0
5 1

]
, B10 =

[
1 0
0 1

]
.

From these it’s easy to compute the basic solutions with respect to these Bi’s:

y1 =


23
4
− 13

2
0
0
0

, y2 =


− 25

3
0
26
3
0
0

, y3 =


5
2
0
0
13
0

, y4 =


9
0
0
0
−26

, y5 =


0
− 50

13
46
13
0
0

,

y6 =


0
5
0
23
0

, y7 =


0
−18
0
0
46

, y8 =


0
0
2
9
0

, y9 =


0
0
9
2
0
− 25

2

, y10 =


0
0
0
18
10

.

The basic variables are easily identified using the convention y =


x1
x2
x3
x4
x5

 .

(c) By the restriction x1, x2, x3, x4, x5 ≥ 0, we only need to consider y3, y6, y8, y10.
By direct computations we get (using the notations as in the above problem):
z3 = 10, z6 = 10, z8 = 14, z10 = 0. Since the set S of feasible solutions is
nonempty and bounded, by the extreme point theorem we get zmax = z4 = 14.
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4. Use x∗1, · · ·,x∗n to denote the exteme points for which the optimal value
of the objective function z is attained. Since z is a linear combination of the
entries of x = (x1, · · ·, xk)T , we can write z = c · x, c ∈ Rk and zmax = c·x∗i for
all i. Let y =

∑n
i=1 dix

∗
i be a convex combination of x∗i ’s, then it’s necessary

that
∑n

i=1 di = 1 and di ≥ 0 for all i. We evaluate z at y to get:

z(y) = c · y = c
∑n

i=1 dix
∗
i =

∑n
i=1 dic · x∗i = c · x∗i = zmax.

This completes the proof.

5. Proof. Suppose that x = (x1, · · ·, xn) ∈ S is an extreme point of the
canonical LPP. By adding slack variables y1, · · ·, ym we can transform the LPP
to its standard form, with the corresponding linear system given by Ax = b,
where x ∈ Rm+n. Consider (x, y1, · · ·, ym) ∈ Rm+n, by definition, there exists
y ∈ Rm such that (x,y) ∈ Rm+n satisfies the equation Ax = b, then it’s clear
that (x,y) ∈ S′. Then we only need to show that (x,y) is an extreme point
of S′. In fact, suppose this is not the case, then there exists λ ∈ (0, 1) such
that (x,y) = λp1 + (1 − λ)p2, where p1,p2 ∈ S′ are points different from
(x,y). From this it follows that there exists q1,q2 ∈ S distinct from x such
that x = λq1+(1−λ)q2 with λ ∈ (0, 1), which contradicts with the fact that x
is an extreme point of the canonical LPP. This shows that every extreme point
x ∈ S induces an extreme point (x,y) ∈ S′.
Conversely, suppose (x,y) ∈ Rm+n is an extreme point of the standard LPP, in
particular it satisfies the equation Ax = b. Since y ≥ 0 we deduce that Ax ≤ b,
so x ∈ S. We only need to show x is an extreme point of the canonical LPP
to complete the proof. Suppose on the contrary that x is not an extreme point
so that there exists λ ∈ (0, 1) such that x = λx1 + (1 − λ)x2 with x1,x2 ∈ S
different from x. This implies that (x,y) = λ(x1,y) + (1 − λ)(x2,y), which
contradicts with the fact that (x,y) ∈ S′ is an extreme point. So for every
extreme point (x,y) ∈ S′, its trucation x ∈ S is an extreme point.

6. Proof. We choose x1, x2 ∈ f(S) and λ ∈ [0, 1], then there exists y1, y2 ∈ S
such that f(yi) = xi for i = 1, 2. Using the linearity of f we get λx1+(1−λ)x2 =
λf(y1) + (1 − λ)f(y2) = f

(
λy1 + (1 − λ)

)
. By the convexity of S we have

λy1 + (1 − λ)y2 ∈ S, it follows that λx1 + (1 − λ)x2 ∈ f(S), which shows the
convexity of f(S).

7. (a) The first and third columns of A form the matrix B1 =

[
2 4
1 0

]
, so

the problem is to investigate the equation B1x = b. Since 2b gives the second
column of B1, it’s easy to see the basic solution exists, which is xB1

= (0, 12 )
T .
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So the corresponding basic solutions of Ax = b is x1 = (0, 0, 12 , 0, 0)
T , which is

degenerate by denition.

(b) Similarly, we have B2 =

[
3 4
0 1

]
. From the rst column of B2 it’s easy to

see the basic solution of B2x = b exists, and is given by xB2
= ( 23 , 0)

T . So the
corresponding basic solution of Ax = b is x2 = (0, 23 , 0, 0, 0)

T , which is easily
seen to be degenerate.

(c) B3 =

[
3 0
0 −2

]
, again from the rst column of B3 one sees that the basic

solution of B3x = b exists, which is again xB3
= xB2

= ( 23 , 0)
T . So the

corresponding basic solution to Ax = b is given by x3 = x2 = (0, 23 , 0, 0, 0)
T ,

which is easily seen to be degenerate.
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