Solution to HW1

the solution is for reference only
1.

From the picture above, it's easy to see $z=3 x+4 y$ gets its maximal value at the point $\left(2, \frac{4}{3}\right)$, by direct computation $z_{\max }=\frac{34}{3}$.
2. The graph of the problem is:

The constraint set is shaded. The objective function, $y_{1}+y_{2}$, has slope -1 . As we move a line of slope -1 down, the last place it touches the constraint set is at the intersection of the two lines, $2 y_{1}+y_{2}=5$ and $y_{1}+2 y_{2}=3$. The point of intersection, namely $\left(\frac{7}{3}, \frac{1}{3}\right)$, is the optimal vector.
3. (a) By introducing the slack variables x_{4}, x_{5} we can transform the problem to the following standard LPP:
maximize $z=4 x_{1}+2 x_{2}+7 x_{3}$ subject to

$$
\begin{gathered}
2 x_{1}-x_{2}+4 x_{3}+x_{4}=18 \\
4 x_{1}+2 x_{2}+5 x_{3}+x_{5}=10
\end{gathered}
$$

where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0$.
(b) As in the above problem, we want to find the basic solutions of $A \mathbf{x}=b$, where $A=\left[\begin{array}{ccccc}2 & -1 & 4 & 1 & 0 \\ 4 & 2 & 5 & 0 & 1\end{array}\right], \mathbf{y}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}18 \\ 10\end{array}\right]$. The possible choices of B_{i} 's are listed as follows:

$$
\begin{aligned}
& B_{1}=\left[\begin{array}{cc}
2 & -1 \\
4 & 2
\end{array}\right], B_{2}=\left[\begin{array}{ll}
2 & 4 \\
4 & 5
\end{array}\right], B_{3}=\left[\begin{array}{ll}
2 & 1 \\
4 & 0
\end{array}\right], B_{4}=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right] \\
& B_{5}=\left[\begin{array}{cc}
-1 & 4 \\
2 & 5
\end{array}\right], B_{6}=\left[\begin{array}{cc}
-1 & 1 \\
2 & 0
\end{array}\right], B_{7}=\left[\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right], B_{8}=\left[\begin{array}{ll}
4 & 1 \\
5 & 0
\end{array}\right], \\
& B_{9}=\left[\begin{array}{ll}
4 & 0 \\
5 & 1
\end{array}\right], B_{10}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

From these it's easy to compute the basic solutions with respect to these B_{i} 's:

$$
\begin{gathered}
\mathbf{y}_{1}=\left[\begin{array}{c}
\frac{23}{4} \\
-\frac{13}{2} \\
0 \\
0 \\
0
\end{array}\right], \mathbf{y}_{2}=\left[\begin{array}{c}
-\frac{25}{3} \\
0 \\
\frac{26}{3} \\
0 \\
0
\end{array}\right], \mathbf{y}_{3}=\left[\begin{array}{c}
\frac{5}{2} \\
0 \\
0 \\
13 \\
0
\end{array}\right], \mathbf{y}_{4}=\left[\begin{array}{c}
9 \\
0 \\
0 \\
0 \\
-26
\end{array}\right], \mathbf{y}_{5}=\left[\begin{array}{c}
0 \\
0 \\
-\frac{50}{13} \\
\frac{46}{13} \\
0 \\
0
\end{array}\right], \\
\mathbf{y}_{6}=\left[\begin{array}{c}
0 \\
0 \\
23 \\
0
\end{array}\right], \mathbf{y}_{7}=\left[\begin{array}{c}
0 \\
-18 \\
0 \\
0 \\
46
\end{array}\right], \mathbf{y}_{8}=\left[\begin{array}{c}
0 \\
2 \\
9 \\
0
\end{array}\right], \mathbf{y}_{9}=\left[\begin{array}{c}
0 \\
0 \\
\frac{9}{2} \\
0 \\
-\frac{25}{2}
\end{array}\right], \mathbf{y}_{10}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
18 \\
10
\end{array}\right] .
\end{gathered}
$$

The basic variables are easily identified using the convention $\mathbf{y}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$.
(c) By the restriction $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0$, we only need to consider $y_{3}, y_{6}, y_{8}, y_{10}$. By direct computations we get (using the notations as in the above problem): $z_{3}=10, z_{6}=10, z_{8}=14, z_{10}=0$. Since the set S of feasible solutions is nonempty and bounded, by the extreme point theorem we get $z_{\max }=z_{4}=14$.
4. Use $\mathbf{x}_{1}^{*}, \cdots, \mathbf{x}_{n}^{*}$ to denote the exteme points for which the optimal value of the objective function z is attained. Since z is a linear combination of the entries of $\mathbf{x}=\left(x_{1}, \cdots, x_{k}\right)^{T}$, we can write $z=\mathbf{c} \cdot \mathbf{x}, c \in \mathbb{R}^{k}$ and $z_{\max }=\mathbf{c} \cdot \mathbf{x}_{i}^{*}$ for all i. Let $\mathbf{y}=\sum_{i=1}^{n} d_{i} \mathbf{x}_{i}^{*}$ be a convex combination of \mathbf{x}_{i}^{*} 's, then it's necessary that $\sum_{i=1}^{n} d_{i}=1$ and $d_{i} \geq 0$ for all i. We evaluate z at \mathbf{y} to get:

$$
z(\mathbf{y})=\mathbf{c} \cdot \mathbf{y}=\mathbf{c} \sum_{i=1}^{n} d_{i} \mathbf{x}_{i}^{*}=\sum_{i=1}^{n} d_{i} \mathbf{c} \cdot \mathbf{x}_{i}^{*}=\mathbf{c} \cdot \mathbf{x}_{i}^{*}=z_{\max }
$$

This completes the proof.
5. Proof. Suppose that $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in S$ is an extreme point of the canonical LPP. By adding slack variables y_{1}, \cdots, y_{m} we can transform the LPP to its standard form, with the corresponding linear system given by $A \mathbf{x}=b$, where $\mathbf{x} \in \mathbb{R}^{m+n}$. Consider $\left(\mathbf{x}, y_{1}, \cdots, y_{m}\right) \in \mathbb{R}^{m+n}$, by definition, there exists $\mathbf{y} \in \mathbb{R}^{m}$ such that $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{m+n}$ satisfies the equation $A \mathbf{x}=b$, then it's clear that $(\mathbf{x}, \mathbf{y}) \in S^{\prime}$. Then we only need to show that (\mathbf{x}, \mathbf{y}) is an extreme point of S^{\prime}. In fact, suppose this is not the case, then there exists $\lambda \in(0,1)$ such that $(\mathbf{x}, \mathbf{y})=\lambda \mathbf{p}_{1}+(1-\lambda) \mathbf{p}_{2}$, where $\mathbf{p}_{1}, \mathbf{p}_{2} \in S^{\prime}$ are points different from (\mathbf{x}, \mathbf{y}). From this it follows that there exists $\mathbf{q}_{1}, \mathbf{q}_{2} \in S$ distinct from \mathbf{x} such that $\mathbf{x}=\lambda \mathbf{q}_{1}+(1-\lambda) \mathbf{q}_{2}$ with $\lambda \in(0,1)$, which contradicts with the fact that \mathbf{x} is an extreme point of the canonical LPP. This shows that every extreme point $\mathbf{x} \in S$ induces an extreme point $(\mathbf{x}, \mathbf{y}) \in S^{\prime}$.
Conversely, suppose $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{m+n}$ is an extreme point of the standard LPP, in particular it satisfies the equation $A \mathbf{x}=b$. Since $\mathbf{y} \geq 0$ we deduce that $A \mathbf{x} \leq b$, so $\mathbf{x} \in S$. We only need to show \mathbf{x} is an extreme point of the canonical LPP to complete the proof. Suppose on the contrary that \mathbf{x} is not an extreme point so that there exists $\lambda \in(0,1)$ such that $\mathbf{x}=\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}$ with $\mathbf{x}_{1}, \mathbf{x}_{2} \in S$ different from \mathbf{x}. This implies that $(\mathbf{x}, \mathbf{y})=\lambda\left(\mathbf{x}_{1}, \mathbf{y}\right)+(1-\lambda)\left(\mathbf{x}_{2}, \mathbf{y}\right)$, which contradicts with the fact that $(\mathbf{x}, \mathbf{y}) \in S^{\prime}$ is an extreme point. So for every extreme point $(\mathbf{x}, \mathbf{y}) \in S^{\prime}$, its trucation $\mathbf{x} \in S$ is an extreme point.
6. Proof. We choose $x_{1}, x_{2} \in f(S)$ and $\lambda \in[0,1]$, then there exists $y_{1}, y_{2} \in S$ such that $f\left(y_{i}\right)=x_{i}$ for $i=1,2$. Using the linearity of f we get $\lambda x_{1}+(1-\lambda) x_{2}=$ $\lambda f\left(y_{1}\right)+(1-\lambda) f\left(y_{2}\right)=f\left(\lambda y_{1}+(1-\lambda)\right)$. By the convexity of S we have $\lambda y_{1}+(1-\lambda) y_{2} \in S$, it follows that $\lambda x_{1}+(1-\lambda) x_{2} \in f(S)$, which shows the convexity of $f(S)$.
7. (a) The first and third columns of A form the matrix $B_{1}=\left[\begin{array}{ll}2 & 4 \\ 1 & 0\end{array}\right]$, so the problem is to investigate the equation $B_{1} \mathbf{x}=\mathbf{b}$. Since $2 \mathbf{b}$ gives the second column of B_{1}, it's easy to see the basic solution exists, which is $\mathbf{x}_{B_{1}}=\left(0, \frac{1}{2}\right)^{T}$.

So the corresponding basic solutions of $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}_{1}=\left(0,0, \frac{1}{2}, 0,0\right)^{T}$, which is degenerate by denition.
(b) Similarly, we have $B_{2}=\left[\begin{array}{ll}3 & 4 \\ 0 & 1\end{array}\right]$. From the rst column of B_{2} it's easy to see the basic solution of $B_{2} \mathbf{x}=\mathbf{b}$ exists, and is given by $\mathbf{x}_{B_{2}}=\left(\frac{2}{3}, 0\right)^{T}$. So the corresponding basic solution of $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}_{2}=\left(0, \frac{2}{3}, 0,0,0\right)^{T}$, which is easily seen to be degenerate.
(c) $B_{3}=\left[\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right]$, again from the rst column of B_{3} one sees that the basic solution of $B_{3} \mathbf{x}=\mathbf{b}$ exists, which is again $\mathbf{x}_{B_{3}}=\mathbf{x}_{B_{2}}=\left(\frac{2}{3}, 0\right)^{T}$. So the corresponding basic solution to $A \mathbf{x}=\mathbf{b}$ is given by $\mathbf{x}_{3}=\mathbf{x}_{2}=\left(0, \frac{2}{3}, 0,0,0\right)^{T}$, which is easily seen to be degenerate.

