
Solution to Midterm paper
1. Proof. It’s a trivial fact that x is an extreme point of Q implies x is an

extreme point of ∂Q.
Now assume x is an extreme point of ∂Q, we need to show that x cannot be
written as λx1 + (1 − λ)x2 with λ ∈ (0, 1). One can argue by contradiction.
Suppose x1, x2 ∈ ∂Q, then by assumption such a λ ∈ (0, 1) does not exist. Thus
at least one xi belongs to Qin, where Qin denotes the interior of Q. Without loss
of generality, we may assume that x1 ∈ Qin. We claim that this implies x ∈ Qin.
In fact, if x2 ∈ Qin, then by the convexity of Qin, x ∈ Qin. So we may assume
that x2 ∈ ∂Q. At this stage we appeal to the expression x = λx1 + (1 − λ)x2,
which implies that x1 can be written as a linear combination of x and x2. If
x ∈ ∂Q, this implies that x1 must lie on the line determined by x and x2. Since
Q is assumed to be a convex polytope, this is impossible. (Note that this is the
only place where we use the assumption that Q is a polytope)
Now we have proved the existence of a λ ∈ (0, 1) such that x = λx1 + (1− λ)x2
implies that x ∈ Qin, but this contradicts with the assumption that x is an
extreme point of ∂Q (so in particular x ∈ ∂Q). This completes the proof.

2. (a) To convert the LPP to its standard form, we introduce the slack
variables x4 and x5, use x2− 9 to replace the original x2, and use −z to replace
the original z. The answer is as follows.
Maximize z = −3x1 − 8x2 − 4x3 subject to

x1 + x2 − x4 = −1,
−2x1 + 3x2 − x5 = 27,

x1, x2, x3, x4, x5 ≥ 0.

(b) We simply need to use x2 − 9 to replace the original x2.
Minimize z = 3x1 + 8x2 + 4x3 subject to

−x1 − x2 ≤ 1,

2x1 − 3x2 ≤ −27,
x1, x2, x3 ≥ 0.

3. We construct the LPP following the hint. The two rays `1, `2 are simply
taken to be y = 2x and y = 1

2x with x ≥ 0. The feasible region F is bounded
by `1 and `2 and taken to be

F =

{
(x, y) ∈ R2|1

2
x ≤ y ≤ 2x, x ≥ 0

}
.
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This determines the constraints of our LPP:
2x− y ≥ 0,

2y − x ≥ 0,

x ≥ 0,

y ≥ 0.

It’s easy to see the optimizer can be taken to be z = x+ y, because the vector
v = (1, 1) is a direction of the unbounded convex set F . So we end up with the
following LPP, which does not admit an optimal solution.
Maximize z = x+ y subject to 

2x− y ≥ 0,

2y − x ≥ 0,

x ≥ 0,

y ≥ 0.

4. Let a1,a2,a3 denote the colums of the matrix
[

2 1 4
3 1 5

]
, then we see

that
a1 + 2a2 − a3 = 0,

i.e. α1 = 1, α2 = 2, α3 = −1. We compute

x1
α1

= 1,
x2
α2

=
1

2
,

from which we deduce r = 2. It then follows that

x̂1 = x1 − x2
α1

α2
= 1− 1 · 1

2
=

1

2
.

x̂2 = 0,

x̂3 = x3 − x2
α3

α2
= 2 + 1 · 1

2
=

5

2
.

So x̂ = ( 12 , 0,
5
2 )

T .

5. First we convert it to a standard LPP by adding the slack variables
x4, x5, x6. The resulting LPP is:
maximize z = 8x1 + 9x2 + 5x3 subject to

x1 + x2 + 2x3 + x4 = 2,

2x1 + 3x2 + 4x3 + x5 = 3,

6x1 + 6x2 + 2x3 + x6 = 8,

x1, x2, x3, x4, x5, x6 ≥ 0.

The initial table is
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x1 x2 x3 x4 x5 x6
x4 1 1 2 1 0 0 2
x5 2 3 4 0 1 0 3
x6 6 6 2 0 0 1 8

-8 -9 -5 0 0 0 0

It’s clear from the table that the entering variable is x2, and after computing the
θ-ratios we see that the departing variable is x5. Applying Gaussian elimination
we get:

x1 x2 x3 x4 x5 x6
x4

1
3 0 2

3 1 - 13 0 1
x2

2
3 1 4

3 0 1
3 0 1

x6 2 0 -6 0 -2 1 2
-2 0 7 0 3 0 9

At this stage we should choose x1 as the entering variable. Again by computing
θ-ratios we see that the corresponding departing variable is x6. Using Gaussian
elimination we get the following table.

x1 x2 x3 x4 x5 x6
x4 0 0 5

3 1 0 - 16
2
3

x2 0 1 10
3 0 1 - 13

1
3

x1 1 0 -3 0 -1 1
2 1

0 0 1 0 1 1 11

It’s clear that this is the final table, so zmax = 11 and the optimal solution is

(x1, x2, x3, x4, x5, x6) = (1,
1

3
, 0,

2

3
, 0, 0).

6. (i) We have

aij = Byij =

n∑
k=1

yk,ijaik .

Since ai1 , · · ·, aim are linearly independent, we have

yj,ij = 1 and yk,ij = 0 whenever j 6= k,

which implies that (y1,ij , · · ·, ym,ij )
T are columns of I.

(ii) We argue by induction. Denote by B′ and Y ′ the matrices corresponding
to B and Y at the i+ 1-th step, then we have

y′rk =
yrk
yrj

,∀k = 1, · · ·, n.

And for each i 6= r,

y′ik = yik − yij ·
yrk
yrj

, k = 1, · · ·, n.

3



Using the above one can compute

B′Y ′ = yk,

which is the k-th column of BY . Since the initial step of the induction is trivial,
we are done.
(iii) This can again by argued by induction. With the same notation conventions
as above, we have

x′ir =
xir
yrj

,

and for any k 6= r,
x′ik = xik − ykj ·

xir
yrj

.

Use this we have

Ax′
i = x′

ir · ar +
∑
k 6=r

x′
ik · ak

= b.

Since for the initial table, we trivially have Axi = b, the proof is complete.
(iv) Since

dj = cj − zj
= cj − cTB · yj ,

for 1 ≤ j ≤ m we have

dij = cjj − cTB · yij

= cij − cij
= 0.
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