Math 3210 Homework 2

Due Date: Oct. 13th, before 18:00. Please put your homework in the assignment box before the due time. The box is on the 2nd floor of Lady Shaw Building opposite to Rm 221 . The solution to the homework problems will be uploaded to the course homepage right after the due time. Because of this, any late homework submission will not be accepted.

1. A set S in the Euclidean space \mathbb{R}^{n} is called a star shaped domain if there exists a distinguished point $x_{0} \in S$ such that for all $x \in S$, the line segment from x_{0} to x lies in S. Construct a star-shaped domain S in \mathbb{R}^{2} so that S is not a convex set.
2. Given a convex set S in \mathbb{R}^{n}. A non-zero vector \mathbf{v} is called a direction of the set if for each point $x_{0} \in S$, the ray $\left\{x_{0}+\lambda \mathbf{v}\right\}$ belongs to S for all $\lambda \geq 0$.
(a) Show that a bounded convex set can't have a direction.
(b) Let S be the strip defined by $\{(x, y) \mid-1 \leq y \leq 1\}$ in \mathbb{R}^{2}, write down the directions of S.
(c) Find a convex set S in \mathbb{R}^{2} such that S has a unique extreme point and infinitely many directions.
3. Consider the curve C defined by $y=x^{2}$ in \mathbb{R}^{2}, which separate \mathbb{R}^{2} into two regions. Consider the region containing te point $(0,1) \in \mathbb{R}^{2}$, denote its closure by S. Show that every point on ∂S is an extreme point of S.
4. Convert the following LPP to its standard form: maximize $z=3 x_{1}+2 x_{2}-x_{3}+x_{4}$ subject to

$$
\begin{cases}x_{1}+2 x_{2}+x_{3}-x_{4} & \leq 5, \\ -2 x_{1}-4 x_{2}+x_{3}+x_{4} & \leq-1, \\ x_{1} & \geq 0, \\ x_{2} & \leq 0 .\end{cases}
$$

5. Convert the LPP below to canonical form.
minimize $z=3 x_{1}-2 x_{3}$ subject to

$$
\begin{cases}x_{1}-2 x_{2}+x_{3} & =1, \\ x_{1}+x_{2} & \geq 4, \\ x_{1}, x_{2} & \geq 0, \\ x_{3} & \leq 3\end{cases}
$$

6. Consider the following LPP:
maximize $z=2 x+5 y$ subject to

$$
\begin{cases}-3 x+2 y & \leq 6 \\ x+2 y & \geq 2 \\ x, y & \geq 0\end{cases}
$$

(a) Sketch the feasible set of the problem.
(b) Explain why this LPP does not have optimal solution.
7. Consider the following LPP:
minimize $z=3 x+5 y$ subject to

$$
\begin{cases}-3 x+2 y & \leq 6 \\ x+2 y & \geq 2 \\ x, y & \geq 0\end{cases}
$$

(a) Find all the extreme points of the feasible set.
(b) Solve the LPP by finding an optimal solution.
8. Let $A=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}4 \\ 6 \\ 8\end{array}\right]$, consider the linear system $A \mathbf{x}=\mathbf{b}$. Given a feasible solution $\mathbf{x}=(2,3,2,3,3)^{T}$,
(a) move it to a basic feasible solution $\mathbf{x}_{1}=(0,0,4,6,8)^{T}$,
(b) move from \mathbf{x}_{1} to another basic feasible that is different from \mathbf{x}_{1} by only one basic variable.

