MATH 2230 Complex Variables with Applications (2014-2015, Term 1) Homework 5

1. (SEC.33,No.4)

Show that $\log \left(i^{2}\right) \neq 2 \log i$ when the branch

$$
\log z=\ln r+i \theta \quad\left(r>0, \frac{3 \pi}{4}<\theta<\frac{11 \pi}{4}\right)
$$

is used.(Compare this with the example in Sec.33.)
2. (SEC.33,No.5)
(a)Show that the two square roots of i are

$$
e^{\frac{i \pi}{4}} \text { and } e^{\frac{i 5 \pi}{4}}
$$

Then show that

$$
\log \left(e^{\frac{i \pi}{4}}\right)=\left(2 n+\frac{1}{4}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

and

$$
\log \left(e^{\frac{i 5 \pi}{4}}\right)=\left[(2 n+1)+\frac{1}{4}\right] \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

Conclude that

$$
\log \left(i^{\frac{1}{2}}\right)=\left(n+\frac{1}{4}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

(b)Show that

$$
\log \left(i^{\frac{1}{2}}\right)=\frac{1}{2} \log i,
$$

as stated in Example 5,Sec.32, by finding the values on the right-hand side of this equation and then comparing them with the final result in part (a).
3. (SEC.33,No.9)

Suppose that the point $z=x+i y$ lies in the horizontal strip $\alpha<y<\alpha+2 \pi$. Show that when the branch $\log z=\ln r+i \theta(r>0, \alpha<\theta<\alpha+2 \pi)$ of the logarithmic function is used, $\log \left(e^{z}\right)=z$.[Compare with equation(5),Sec.31.]

