
Chapter 1

Fourier Series
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In this chapter we study Fourier series. Basic definitions and examples are given in Section
1. In Section 2 we prove the fundamental Riemann-Lebesgue lemma and discuss the
Fourier series from the mapping point of view. Pointwise and uniform convergence of the
Fourier series of a function to the function itself under various regularity assumptions are
studied in Section 3. In Section 1.5 we establish the L2-convergence of the Fourier series
without any additional regularity assumption. There are two applications. In Section
1.4 it is shown that every continuous function can be approximated by polynomials in a
uniform manner. In Section 1.6 a proof of the classical isoperimetric problem for plane
curves is presented. In the two appendices basic facts on series of functions and sets of
measure zero are present.

1.1 Definition and Examples

The concept of series of functions and their pointwise and uniform convergence were
discussed in Mathematical Analysis II. Power series and trigonometric series are the most
important classes of series of functions. We learned power series in Mathematical Analysis
II and now we discuss Fourier series. You are referred to Appendix I for basic definitions
of series and series of functions.

First of all, a trigonometric series on [−π, π] is a series of functions of the form

∞∑
n=0

(an cosnx+ bn sinnx), an, bn ∈ R.
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As cos 0x = 1 and sin 0x = 0, we always set b0 = 0 and express the series as

a0 +
∞∑
n=1

(an cosnx+ bn sinnx).

It is called a cosine series if all bn vanish and sine series if all an vanish. Trigonometric
series form an important class of series of functions. In Mathematical Analysis II, we
studied the convergence of the series of functions. We recall

• Uniform convergence implies pointwise convergence of a series of functions,

• Absolute convergence implies pointwise convergence of a series of functions,

• Weierstrass M-Test for uniform and absolute convergence (see Appendix I).

For instance, using the fact that | cosnx|, | sinnx| ≤ 1, Weierstrass M-Test tells us
that a trigonometric series is uniformly and absolutely convergent when its coefficients
satisfy

∑
n |an|,

∑
n |bn| < ∞, and this is the case when |an|, |bn| ≤ Cn−s,∀n ≥ 1, for

some constant C and s > 1. Since the partial sums are continuous functions and uniform
convergence preserves continuity, the infinite series

φ(x) ≡ a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

is a continuous function on [−2π, 2π]. φ is also of period 2π. For, by pointwise conver-
gence, we have

φ(x+ 2π) = lim
n→∞

n∑
k=0

(
ak cos(kx+ 2kπ) + bk sin(kx+ 2kπ)

)
= lim

n→∞

n∑
k=0

(ak cos kx+ bk sin kx)

= φ(x),

hence it is 2π-periodic.

In the literature there are many interesting convergence results concerning trigono-
metric series. Nevertheless, we will not go into this direction. Here our attention is on a
special class of trigonometric series called Fourier series. Each Fourier series is associated
with an integrable, periodic function.

Given a 2π-periodic function which is Riemann integrable function f on [−π, π], its
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Fourier series or Fourier expansion is the trigonometric series given by

an =
1

π

ˆ π

−π
f(y) cosny dy, n ≥ 1

bn =
1

π

ˆ π

−π
f(y) sinny dy, n ≥ 1 and

a0 =
1

2π

ˆ π

−π
f(y) dy.

(1.1)

Note that a0 is the average of the function over the interval. From this definition we gather
two basic information. First, the Fourier series of a function involves the integration of
the function over an interval, hence any modification of the values of the function over
a subinterval, not matter how small it is, may change the Fourier coefficients an and
bn. This is unlike power series which only depend on the local properties (derivatives
of all order at a designated point). We may say Fourier series depend on the global
information but power series only depend on local information. Second, recalling from
the theory of Riemann integral, we know that two integrable functions which are equal
almost everywhere have the same integral. (We will see the converse is also true, namely,
two functions with the same Fourier series are equal almost everywhere.) In Appendix II
we recall the concept of a measure zero set and some of its basic properties. Therefore,
the Fourier series of two such functions are the same. In particular, the Fourier series of a
function is completely determined with its value on the open interval (−π, π), regardless
its values at the endpoints.

The motivation of the Fourier series comes from the belief that for a “nice function”
of period 2π, its Fourier series converges to the function itself. In other words, we have

f(x) = a0 +
∞∑
n=1

(an cosnx+ bn sinnx) , ∀x ∈ R. (1.2)

When this holds, the coefficients an, bn are given by (1.1). To see this, we multiply (1.2)
by cosmx and then integrate over [−π, π]. Using the relations

ˆ π

−π
cosnx cosmxdx =

{
π, n = m
0, n 6= m

,

ˆ π

−π
cosnx sinmxdx = 0 (n,m ≥ 1), and

ˆ π

−π
cosnx dx =

{
2π, n = 0
0, n 6= 0

,

we formally arrive at the expression of an, n ≥ 0, in (1.2). Similarly, by multiplying (1.2)
by sinmx and then integrate over [−π, π], one obtain the expression of bn, n ≥ 1, in (1.2)
after using ˆ π

−π
sinnx sinmxdx =

{
π, n = m
0, n 6= m

.



4 CHAPTER 1. FOURIER SERIES

Of course, (1.2) arises from the hypothesis that every sufficiently nice function of period
2π is equal to its Fourier expansion. The study of under which “nice conditions” this
could happen is one of the main objects in the theory of Fourier series.

We can associate a Fourier series for any integrable function on [−2π, 2π]. Indeed, it
suffices to extend the function as a function of period 2π. The extension is straightforward;
simply let f̃(x) = f(x−(n+1)π) where n is the unique integer satisfying nπ < x ≤ (n+2)π.
It is clear that f̃ is equal to f on (−π, π]. As the function is defined on [−π, π], apparently
an extension in strict sense is possible only if f(−π) = f(π). Since the function value at
one point does not change the Fourier series, from now on it will be understood that the
extension of a function to a 2π-periodic function refers to the extension for the restriction
of this function on (−π, π]. Note that for the 2π-periodic extension of a continuous
function on [−π, π] has a jump discontinuity at ±π when f(π) 6= f(−π). It is is continuous
on R if and only if f(−π) = f(π). In the following we will not distinguish f with its
extension f̃ .

We will use

f(x) ∼ a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

to denote the fact that the right hand side of this expression is the Fourier series of f .

Example 1.1 We consider the function f1(x) = x. Its extension is a piecewise smooth
function with jump discontinuities at (2n+ 1)π, n ∈ Z. As f1 is odd and cosnx is even,

πan =

ˆ π

−π
x cosnx dx = 0, n ≥ 0,

and

πbn =

ˆ π

−π
x sinnx dx

= −x cosnx

n

∣∣∣π
−π

+

ˆ π

−π

cosnx

n
dx

= (−1)n+12π

n
.

Therefore,

f1(x) ∼ 2
∞∑
n=1

(−1)n+1

n
sinnx.

Since f1 is an odd function, it is reasonable to see that no cosine functions are involved in
its Fourier series. How about the convergence of this Fourier series? Although the terms
decay like O(1/n) as n → ∞, its convergence is not clear at this moment. On the other
hand, this Fourier series is equal to 0 at x = ±π but f1(±π) = π. So, one thing is sure,
namely, the Fourier series is not always equal to its function. It is worthwhile to observe
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that the bad points ±π are precisely the discontinuity points of f1.

Notation The big O and small ◦ notations are very convenient in analysis. We say a
sequence {xn} satisfies xn = O(ns) means that there exists a constant C independent of
n such that |xn| ≤ Cns as n→∞, in other words, the growth (resp. decay s ≥ 0) of {xn}
is not faster (resp. slower s < 0) the s-th power of n. On the other hand, xn = ◦(ns)
means |xn|n−s → 0 as n→∞.

Example 1.2 Next consider the function f2(x) = x2. Unlike the previous example,
its 2π-periodic extension is continuous on R. After performing integration by parts, the
Fourier series of f2 is seen to be

f2(x) ≡ x2 ∼ π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cosnx.

As f2 is an even function, this is a cosine series. The rate of decay of the Fourier series
is like O(1/n2). Using Weierstrass M-test, this series converges uniformly to a continuous
function. In fact, due to the following result, it converges uniformly to f2. Note that f2
is smooth on (nπ, (n+ 1)π), n ∈ Z.

Convergence Criterion. The Fourier series of a continuous, 2π-periodic function which
is C1-piecewise on [−π, π] converges to the function uniformly.

A function is called C1-piecewise on some interval I = [a, b] if there exists a partition
of I into subintervals {Ij}Nj=1 and there are C1-function fj defined on Ij such that f = fj
on each (aj, aj+1) where Ij = [aj, aj+1]. This convergence criterion is a special case of
Theorem 1.7 in Section 3.

We list more examples of Fourier series of functions and leave them for you to verify.

(a) f3(x) ≡ |x| ∼ π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x,

(b) f4(x) =

{
1, x ∈ [0, π]
−1, x ∈ (−π, 0)

∼ 4

π

∞∑
n=1

1

2n− 1
sin(2n− 1)x,

(c) f5(x) =

{
x(π − x), x ∈ [0, π)
x(π + x), x ∈ (−π, 0)

∼ 8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x.

Let {cn}∞−∞ be a bisequence of complex numbers. (A bisequence is a map from Z to
C.) A (complex) trigonometric series is the infinite series associated to the bisequence



6 CHAPTER 1. FOURIER SERIES

{cneinx}∞−∞ and is denoted by
∑∞
−∞ cne

inx. To be in line with the real case, it is said to
be convergent at x if

lim
n→∞

n∑
k=−n

cne
nix

exists. Now, a complex Fourier series can be associated to a complex-valued function.
Let f be a 2π-periodic complex-valued function which is integrable on [−π, π]. Its Fourier
series is given by the series

f(x) ∼
∞∑

n=−∞

cne
inx,

where the Fourier coefficients cn are given by

cn =
1

2π

ˆ π

−π
f(x)e−inxdx, n ∈ Z.

Here for a complex function f , its integration over some [a, b] is defined to be

ˆ b

a

f(x)dx =

ˆ b

a

f1(x)dx+ i

ˆ b

a

f2(x)dx,

where f1 and f2 are respectively the real and imaginary parts of f . It is called integrable
if both real and imaginary parts are integrable. The same as in the real case, formally
the expression of cn is obtained as in the real case by first multiplying the relation

f(x) =
∞∑

n=−∞

cne
inx

with eimx and then integrating over [−π, π] with the help from the relation

ˆ π

−π
eimxe−inx dx =

{
2π, n = m
0, n 6= m

.

When f is of real-valued, there are two Fourier series, that is, the real and the complex
ones. To relate them it is enough to observe the Euler’s formula eiθ = cos θ + i sin θ, so
for n ≥ 1

2πcn =

ˆ π

−π
f(x)e−nxdx

=

ˆ pi

−π
f(x) (cosnx+ i sinnx) dx

=

ˆ pi

−π
f(x) cosnxdx− i ∈π−π f(x) sinnxdx

= π(an − ibn) .
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we see that

cn =
1

2
(an − ibn), n ≥ 1, c0 = a0 .

By a similar computation, we have

cn =
1

2
(a−n + ib−n), n ≤ −1 .

It follows that c−n = cn for all n. In fact, the converse is true, that is, a complex Fourier
series is the Fourier series of a real-valued function if and only if c−n = cn holds for all n.
Indeed, letting

f(x) ∼
∞∑

n=−∞

cne
inx

be the Fourier series of f , it is straightforward to verify that

f(x) ∼
∞∑

n=−∞

dne
inx, dn = c−n .

Hence when f is real-valued, f = f so cn = c−n holds. The complex form of Fourier series
sometimes makes expressions and computations more elegant. We will use it whenever it
makes things simpler.

We have been working on the Fourier series of 2π-periodic functions. For functions
of 2T -period, their Fourier series are not the same. They can be found by a scaling
argument. Let f be 2T -periodic. The function g(x) = f(Tx/π) is a 2π-periodic function.
Thus,

f

(
Tx

π

)
= g(x) ∼ a0 +

∞∑
n=1

(an cosnx+ bn sinnx),

where a0, an, bn, n ≥ 1 are the Fourier coefficients of g. By a change of variables, we can
express everything inside the coefficients in terms of f , cosnπx/T and sinnπx/T . The
result is

f(x) ∼ a0 +
∞∑
n=1

(
an cos

nπ

T
x+ bn sin

nπ

T
x
)
,

where

an =
1

T

ˆ T

−T
f(y) cos

nπ

T
y dy,

bn =
1

T

ˆ T

−T
f(y) sin

nπ

T
y dy, n ≥ 1, and

a0 =
1

2T

ˆ T

−T
f(y) dy.

It reduces to (1.1) when T is equal to π.
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1.2 Riemann-Lebesgue Lemma

From the examples of Fourier series of functions in the previous section we see that the
coefficients decay to 0 eventually. We will show that this is generally true. This is the
content of the following result.

Theorem 1.1 (Riemann-Lebesgue Lemma). The Fourier coefficients of a 2π-periodic
function integrable on [−π, π] converge to 0 as n→∞.

We point out this theorem still holds when [−π, π] is replaced by any [a, b]. The proof
is essentially the same.

We will use R[−π, π] to denote the vector space of all integrable functions. To prepare
for the proof we study how to approximate an integrable function by step functions. Let
a0 = −π < a1 < · · · < aN = π be a partition of [−π, π]. A step function s satisfies
s(x) = sj, ∀x ∈ (aj, aj+1], ∀j ≥ 0. The value of s at −π is not important, but for
definiteness let’s set s(−π) = s0. We can express a step function in a better form by
introducing the characteristic function χE for a set E ⊂ R:

χE =

{
1, x ∈ E,
0, x /∈ E.

Then,

s(x) =
N−1∑
j=0

sjχIj , Ij = (aj, aj+1], j ≥ 1, I0 = [a0, a1].

Lemma 1.2. For every step function s in R[−π, π], there exists some constant C inde-
pendent of n such that

|an|, |bn| ≤
C

n
, ∀n ≥ 1,

where an, bn are the Fourier coefficients of s.

Proof. Let s(x) =
∑N−1

j=0 sjχIj . We have

πan =

ˆ π

−π

N−1∑
j=0

sjχIj cosnx dx

=
N−1∑
j=0

sj

ˆ aj+1

aj

cosnx dx

=
1

n

N−1∑
j=0

sj(sinnaj+1 − sinnaj).
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It follows that

|an| ≤
C

n
, ∀n ≥ 1, C =

2

π

N−1∑
j=0

|sj|.

Clearly a similar estimate holds for bn.

Lemma 1.3. Let f ∈ R[−π, π]. Given ε > 0, there exists a step function s such that
s ≤ f on [−π, π] and ˆ π

−π
(f − s) < ε.

Proof. As f is integrable, it can be approximated from below by its Darboux lower sums.
In other words, for ε > 0, we can find a partition −π = a0 < a1 < · · · < aN = π such that∣∣∣∣∣

ˆ π

−π
f −

N−1∑
j=0

mj(aj+1 − aj)

∣∣∣∣∣ < ε,

where mj = inf {f(x) : x ∈ [aj, aj+1]}. It follows that∣∣∣∣ˆ π

−π
(f − s)

∣∣∣∣ < ε

after setting

s(x) =
N−1∑
j=0

mjχIj , Ij = (aj, aj+1], j ≥ 1, I0 = [a0, a1].

Now we prove Theorem 1.1.

Proof. For ε > 0, we can find s as constructed in Lemma 1.3 such that 0 ≤ f − s andˆ π

−π
(f − s) < ε

2
.

Let a′n be the n-th Fourier coefficient of s. By Lemma 1.2,

|a′n| <
ε

2
,

for all n ≥ n0 = [2C/ε] + 1.

|π(an − a′n)| =

∣∣∣∣ˆ π

−π
(f − s) cosnx dx

∣∣∣∣
≤
ˆ π

−π
|f − s|

=

ˆ π

−π
(f − s)

<
ε

2
.
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It follows that for all n ≥ n0,

|an| ≤ |an − a′n|+ |a′n| <
ε

2π
+
ε

2
< ε.

The same argument applies to bn too.

It is useful to bring in a “mapping” point of view between functions and their Fourier
series. Let R2π be the collection of all 2π-periodic complex-valued functions integrable
on [−π, π] and C consisting of all complex-valued bisequences {cn} satisfying cn → 0 as
n→ ±∞. The Fourier series sets up a mapping Φ from R2π to C by sending f to {f̂(n)}
where, to make things clear, we have let f̂(n) = cn, the n-th Fourier coefficient of f . When
real-functions are considered, restricting to the subspace of C given by those satisfying
c−n = cn, Φ maps all real functions into this subspace. Perhaps the first question we ask
is: Is Φ one-to-one? Clearly the answer is no, for two functions which differ on a set of
measure zero have the same Fourier coefficients. However, we have the following result,
to be proved in Section 5.

Uniqueness Theorem. The Fourier series of two functions in R2π coincide if and only
if they are equal almost everywhere.

Thus Φ is essentially one-to-one. One can show that it is not onto. Despite of this,
we may still study how various structures on R2π and C are associated under Φ. Observe
that both R2π and C form vector spaces over C. In fact, there are obvious and surprising
ones. Some of them are listed below and more can be found in the exercise.

Property 1. Φ is a linear map. Observe that both R2π and C form vector spaces over
R or C. The linearity of Φ is clear from its definition.

Property 2. When f ∈ R2π is k-th differentiable and all derivatives up to k-th order

belong to R2π, f̂
k(n) = (in)kf̂(n) for all n ∈ Z. See Proposition 1.4 below for a proof.

This property shows that differentiation turns into the multiplication of a factor (in)k

under Φ. This is amazing!

Property 3. Every translation in R induces a “translation operation” on functions
defined on R. More specifically, for a ∈ R, set fa(x) = f(x + a), x ∈ R. Clearly
fa belongs to R2π. We have f̂a(n) = einaf̂(n). This property follows directly from the
definition. It shows that a translation in R2π turns into the multiplication of a factor eina

under Φ.

Proposition 1.4. Let f be a 2π-periodic function which is differentiable on [−π, π] with
f ′ ∈ R2π. If

f ′(x) ∼ a′0 +
∞∑
n=1

(
a′n cosnx+ b′n sinnx

)
,

then a′0 = 0, a′n = nbn, and b′n = −nan . In complex notations, f̂ ′(n) = inf̂(n).
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Proof. We compute

πa′n =

ˆ π

−π
f ′(y) cosny dy

= f(y) cosny|π−π −
ˆ π

−π
f(y)(−n sinny) dy

= n

ˆ π

−π
f(y) sinny dy

= πnan.

Similarly,

πb′n =

ˆ π

−π
f ′(y) sinny dy

= f(y) sinny|π−π −
ˆ π

−π
f(y)n cosny dy

= −n
ˆ π

−π
f(y) cosny dy

= −πnan.

Property 2 links the regularity of the function to the rate of decay of its Fourier
coefficients. This is an extremely important property. When f is a 2π-periodic function
whose derivatives up to k-th order belong to R2π, applying Riemann-Lebesgue lemma to

f (k) we know that ˆf (k)(n) = ◦(1) as n→∞. By Property 2 it follows that f̂(n) = ◦(n−k),
that is, the Fourier coefficients of f decay faster that n−k. Since

∑∞
n=1 n

−2 < ∞, an
application of Weierstrass M-test establishes the following result: The Fourier series of f
converges uniformly provided f, f ′ and f ′′ belong to R2π. Therefore, the function

g(x) = a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

is a continuous 2π-periodic function. Using its uniform convergence, we see that the
Fourier coefficients of g are given by an and bn, the same as f . By the Uniqueness
Theorem we conclude that g is equal to f , that is, the Fourier series of f is equal to f
provided f, f ′, f ′′ ∈ R2π. A more general result will be proved in the next section.

1.3 Convergence of Fourier Series

In this section we study the convergence of the Fourier series of a function to itself. Recall
that the series a0 +

∑∞
n=1(an cosnx+ bn sinnx), or

∑∞
n=−∞ cne

inx, where an, bn, cn are the
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Fourier coefficients of a function f converges to f at x means that the n-th partial sum

(Snf)(x) = a0 +
n∑
k=1

(ak cos kx+ bk sin kx)

or

(Snf)(x) =
n∑

k=−n

cke
ikx

converges to f(x) as n→∞.

We start by expressing the partial sums in closed form. Indeed,

(Snf)(x) = a0 +
n∑
k=1

(ak cos kx+ bk sin kx)

=
1

2π

ˆ π

−π
f +

n∑
k=1

1

π

ˆ π

−π
f(y)(cos ky cos kx+ sin ky sin ky) dy

=
1

π

ˆ π

−π

(1

2
+

n∑
k=1

cos k(y − x)
)
f(y) dy

=
1

π

ˆ x+π

x−π

(1

2
+

n∑
k=1

cos kz
)
f(x+ z) dz

=
1

π

ˆ π

−π

(1

2
+

n∑
k=1

cos kz
)
f(x+ z) dz ,

where in the last step we have used the fact that the integrals over any two periods are
the same. Using the elementary formula

cos θ + cos 2θ + · · ·+ cosnθ =
sin
(
n+ 1

2

)
θ − sin 1

2
θ

2 sin θ
2

, θ 6= 0,

we obtain
1

2
+

n∑
k=1

cos kθ =
sin(n+ 1

2
)θ

2 sin θ
2

.

Noting that

lim
θ→0

sin(n+ 1
2
)θ

2 sin θ
2

=
2n+ 1

2
,

we introduce the Dirichlet kernel Dn by

Dn(z) =


sin
(
n+ 1

2

)
z

2π sin 1
2
z

, z 6= 0

2n+ 1

2π
, z = 0.
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It is a continuous, 2π-periodic function. We have successfully expressed the partial sums
of the Fourier series in the following closed form:

(Snf)(x) =

ˆ π

−π
Dn(z)f(x+ z) dy,

Taking f ≡ 1, we have Snf = 1 for all n. Hence

1 =

ˆ π

−π
Dn(z) dz.

Thus we can write

(Snf)(x)− f(x) =

ˆ π

−π
Dn(z)(f(x+ z)− f(x)) dz. (1.3)

In order to show Snf(x)→ f(x), it suffices to show the right hand side of (1.3) tends to
0 as n→∞.

Thus, the Dirichlet kernel plays a crucial role in the study of the convergence of Fourier
series. We list some of its properties as follows.

Property I. Dn(z) is an even, continuous, 2π-periodic function vanishing at z =
2kπ/(2n+ 1),−n ≤ k ≤ n, on [−π, π].

Property II. Dn attains its maximum value (2n+ 1)/2 at 0.

Property III.

ˆ π

−π
Dn(z)dz = 1

.

Property IV. For every δ > 0,

ˆ δ

0

|Dn(z)|dz →∞, as n→∞.

Only the last property needs a proof. Indeed, for each n we can fix an N such that
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πN ≤ (2n+ 1)δ/2 ≤ (N + 1)π, so N →∞ as n→∞. We compute

ˆ δ

0

|Dn(z)|dz =

ˆ δ

0

| sin(n+ 1
2
)z|

2π| sin z
2
|

dz

≥ 1

π

ˆ (n+ 1
2
)δ

0

| sin t|
t

dt

≥ 1

π

ˆ Nπ

0

| sin t|
t

dt

=
1

π

N∑
k=1

ˆ kπ

(k−1)π

| sin t|
t

dt

=
1

π

N∑
k=1

ˆ π

0

| sin s|
s+ (k − 1)π

ds

≥ 1

π

N∑
k=1

ˆ π

0

| sin s|
πk

ds

= c0

N∑
k=1

1

k
, c0 =

1

π2

ˆ π

0

| sin s|ds > 0,

→ ∞,

as N →∞.

To elucidate the effect of the kernel, we fix a small δ > 0 and split the integral into
two parts: ˆ π

−π
χA(z)Dn(z)(f(x+ z)− f(x)) dz,

and ˆ π

−π
χB(z)Dn(z)(f(x+ z)− f(x)) dz,

where A = (−δ, δ) and B = [−π, π] \ A. The second integral can be written as

ˆ π

−π

χB(z)(f(x+ z)− f(x))

2π sin z
2

sin
(
n+

1

2

)
z dz.

As |sin z/2| has a positive lower bound on B, the function

χB(z)(f(x+ z)− f(x))

2π sin z
2

belongs to R[−π, π] and the second integral tends to 0 as n → ∞ in view of Riemann-
Lebesgue lemma. The trouble lies on the first integral. It can be estimated by

ˆ δ

−δ
|Dn(z)||f(x+ z)− f(x)|dz.
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In view of Property IV, No matter how small δ is, this term may go to ∞ so it is not
clear how to estimate this integral.

The difficulty can be resolved by imposing a further regularity assumption on the func-
tion. First a definition. For a function f defined on [a, b] is called Lipschitz continuous
at x ∈ [a, b] if there exist L and δ such that

|f(y)− f(x)| ≤ L |y − x| , ∀y ∈ [a, b], |y − x| ≤ δ. (1.4)

Here both L and δ depend on x. We point out that if f ∈ C[a, b] is Lipschitz continuous
at x, there exists some L′ such that

|f(y)− f(x)| ≤ L′|y − x|, ∀y ∈ [a, b].

In fact, this comes from (1.4) if |y − x| ≤ δ. For y satisfying |y − x| > δ, we have

|f(y)− f(x)| ≤ |f(y)|+ |f(x)|
δ

|y − x|,

hence we could take

L′ = max

{
L,

2M

δ

}
,

where M = sup{|f(y)| : y ∈ [a, b]}.

Theorem 1.5. Let f be a 2π-periodic function integrable on [−π, π]. Suppose that f is
Lipschitz continuous at x. Then {Snf(x)} converges to f(x) as n→∞.

Proof. Let Φδ be a cut-off function satisfying (a) Φδ ∈ C(R), Φδ ≡ 0 outside (−δ, δ), (b)
Φδ ≥ 0 and (c) Φδ = 1 on (−δ/2, δ/2). We write

(Snf)(x)− f(x) =

ˆ π

−π
Dn(z)(f(x+ z)− f(x)) dz

=
1

2π

ˆ π

−π

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

=
1

2π

ˆ π

−π
Φδ(z)

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

+
1

π

ˆ π

−π
(1− Φδ(z))

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

≡ I + II .

By our assumption on f , there exists δ0 > 0 such that

|f(x+ z)− f(x)| ≤ L |z| , ∀ |z| < δ0.
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Using sin θ/θ → 1 as θ → 0, there exists δ1 such that 2| sin z/2| ≥ |z/2| for all z, |z| < δ1.
For z, |z| < δ ≡ min {δ0, δ1}, we have |f(x+ z)− f(x)|/| sin z/2| ≤ 4L and

|I| ≤ 1

2π

ˆ δ

−δ
Φδ(z)

∣∣sin(n+ 1
2
)z
∣∣∣∣sin z

2

∣∣ |f(x+ z)− f(x)| dz

≤ 1

2π

ˆ δ

−δ
4Ldz

=
4δL

π
.

(1.5)

For ε > 0, we fix δ so that
4δL

π
<
ε

2
. (1.6)

After fixing δ, we turn to the second integral

II =
1

2π

ˆ π

−π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

sin
(
n+

1

2

)
z dz

=
1

2π

ˆ π

−π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

(
cos

z

2
sinnz + sin

z

2
cosnz

)
dz

≡
ˆ
J

F1(x, z) sinnz dz +

ˆ
J

F2(x, z) cosnz dz.

As 1 − Φδ(z) = 0 on [−δ, δ], the domain of integration is in fact J ≡ [−π,−δ/2] ∪ [δ, π].
Now | sin z/2| has a positive lower bound on these two intervals, so F1 and F2 are integrable
on [−π,−δ] ∪ [δ, π]. By Riemann-Lebesgue Lemma, for ε > 0, there is some n0 such that∣∣∣∣ˆ

J

F1 sinnz dz

∣∣∣∣ , ∣∣∣∣ˆ
J

F2 cosnz dz

∣∣∣∣ < ε

4
, ∀n ≥ n0. (1.7)

Putting (1.5), (1.6) and (1.7) together,

|Snf(x)− f(x)| < ε

2
+
ε

4
+
ε

4
= ε, ∀n ≥ n0.

We have shown that Snf(x) tends to f(x) whenever f is Lipschitz continuous at x.

We leave some remarks concerning this proof. First, the cut-off function Φδ can be
replaced by χ[−δ,δ] without affecting the proof. (However, it will be needed in the proof
of Theorem 1.7.) Second, the regularity condition Lipschitz continuity is used to kill off
the growth of the kernel at x. Third, this method used in this proof is a standard one.
It will appear in many other places. For instance, a careful examination of it reveals a
convergence result for functions with jump discontinuity after using the evenness of the
Dirichlet kernel.
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Theorem 1.6. Let f be a 2π-periodic function integrable on [−π, π]. Suppose at some
x ∈ [−π, π], limy→x+ f(y) and limy→x− f(y) exist and there are δ > 0 and constant L such
that

|f(y)− f(x+)| ≤ L(y − x), ∀y, 0 < y − x < δ,

and
|f(y)− f(x−)| ≤ L(x− y), ∀y, 0 < x− y < δ.

Then {Snf(x)} converges to (f(x+) + f(x−))/2 as n→∞.

Here f(x+) and f(x−) stand for limy→x+ f(y) and limy→x− f(y) respectively. We leave the
proof of this theorem as an exercise.

A function f defined on [a, b] is called to satisfy the Lipschitz condition if there
exists an L such that

|f(x)− f(y)| ≤ L|x− y| , ∀x, y ∈ [a, b] .

(In some books this condition is called “a Lipschitz condition”. Frankly I don’t know
the difference.) When f satisfies the Lipschitz condition, it is Lipschitz continuous every-
where. The Lipschitz condition is some kind of “uniformly Lipschitz” condition. Every
continuously differentiable function on [a, b] satisfies the Lipschitz condition. In fact, by
the fundamental theorem of calculus, for x, y ∈ [a, b],

|f(y)− f(x)| =
∣∣∣ ˆ y

x

f ′(t)dt
∣∣∣

≤ M |y − x|,

where M = sup{|f ′(t)| : t ∈ [a, b]}. Similarly, every piecewise C1-function satisfies the
Lipschitz condition.

Now, we have a theorem on the uniform convergence of the Fourier series of a function
to the function itself.

Theorem 1.7. Let f a 2π-periodic function satisfying the Lipschitz condition. Its Fourier
series converges to f uniformly as n→∞.

Proof. Observe that when f is Lipschitz continuous on [−π, π], δ0 and δ1 can be chosen
independent of x and (1.5), (1.6) hold uniformly in x. In fact, δ0 only depends on L, the
constant appearing in the Lipschitz condition. Thus the theorem follows if n0 in (1.7) can
be chosen uniformly in x. This is the content of the lemma below. We apply it by taking
f(x, y) to be F1(x, z) or F2(x, z).

Lemma 1.8. Let f(x, y) be periodic in y and f ∈ C([−π, π]× [−π, π]). For any fixed x,

c(n, x) =
1

2π

ˆ π

−π
f(x, y)e−iny dy → 0

uniformly in x as n→∞.
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Proof. We need to show that for every ε > 0, there exists some n0 independent of x such
that

|c(n, x)| < ε, ∀n ≥ n0.

Observe that

2πc(n, x) =

ˆ π

−π
f(x, y)e−iny dy

=

ˆ π−π
n

−π−π
n

f
(
x, z +

π

n

)
e−in(z+

π
n
) dz y = z +

π

n
,

= −
ˆ π

−π
f
(
x, z +

π

n

)
e−inz dz (f is 2π-periodic).

We have

c(n, x) =
1

4π

ˆ π

−π

(
f(x, y)− f

(
x, y +

π

n

))
e−iny dy.

As f ∈ C([−π, π] × [−π, π]), it is uniformly continuous in [−π, π] × [−π, π]. For ε > 0,
there exists a δ such that

|f(x, y)− f(x′, y′)| < ε if |x− x′| , |y − y′| < δ.

We take n0 so large that π/n0 < δ. Then, using |e−iny| = 1,

|c(n, x)| ≤ 1

4π

ˆ π

−π

∣∣∣f(x, y)− f
(
x, y +

π

n

)∣∣∣ dy
≤ ε

4π

ˆ π

−π
dy =

ε

2

< ε, ∀n ≥ n0.

Example 1.3. We return to the functions discussed in Examples 1.1 and 1.2. Indeed,
f1(x) = x is smooth except at nπ. According to Theorem 1.5, the series

2
∞∑
n=1

(−1)n+1

n
sinnx

converges to x for every x ∈ (−π, π). On the other hand, we observed before that the series
tend to 0 at x = ±π. As f1(π+) = −π and f(π−) = π, we have f1(π+)+f(π−) = 0, which
is in consistency with Theorem 1.5. In the second example, f2(x) = x2 is continuous,
2π-periodic. By Theorem 1.7, its Fourier series

π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cosnx
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converges to x2 uniformly on [−π, π].

So far we have been working on the Fourier series of 2π-periodic functions. It is clear
that the same results apply to the Fourier series of 2T -periodic functions for arbitrary
positive T .

We have shown the convergence of the Fourier series under some additional regular-
ity assumptions on the function. But the basic question remains, that is, is the Fourier
series of a continuous, 2π-periodic function converges to itself? It turns out the answer
is negative. A not-so-explicit example can be found in Stein-Shakarchi and an explicit
but complicated one was given by Fejér (see Zygmund “Trigonometric Series”). You may
google for more. In fact, using the uniform boundedness principle in functional analysis,
one can even show that “most” continuous functions have divergent Fourier series. The
situation is very much like in the case of the real number system where transcendental
numbers are uncountable while algebraic numbers are countable despite the fact that it
is difficult to establish a specific number is transcendental.

We present another convergence result where is concerned with pointwise convergence.
It replaces regularity by monotonicity in the function under consideration. Theorem 1.9
and Proposition 1.10 are for optional reading.

Theorem 1.9. Let f be a 2π-periodic function integrable on [−π, π]. Suppose that it is
piecewise continuous and increasing near some point x. Its Fourier series converges to(
f(x+) + f(x−)

)
/2 at x.

Proof. In the following proof we will take x = 0 for simplicity. We first write, using the
evenness of Dn,

(Snf)(0) =

ˆ π

−π
Dn(z)f(z) dz

=

ˆ π

0

(f(z) + f(−z))Dn(z) dz.

So,

(Snf)(0)− 1

2
(f(0+) + f(0−)) =

ˆ π

0

(f(z)− f(0+) + f(−z)− f(0−))Dn(z) dz.

We will show that ˆ π

0

(f(z)− f(0+))Dn(z) dz → 0 (1.8)

and ˆ π

0

(f(−z)− f(0−))Dn(z) dz → 0 (1.9)
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as n→∞. Indeed, for a small h > 0, we consider

ˆ h

0

(f(z)− f(0+))
sin 2n+1

2
z

sin z
2

dz =

ˆ h

0

(f(z)− f(0+))
sin 2n+1

2
z

z
2

dz

+

ˆ h

0

(f(z)− f(0+))

(
sin 2n+1

2
z

sin z
2

−
sin 2n+1

2
z

z
2

)
dz.

Using L’Hospital’s rule,

1

sin z
2

− 1
z
2

=
z − 2 sin z

2

z sin z
2

→ 0 as z → 0.

Therefore, for ε > 0, we can find h1 such that

ˆ h1

0

∣∣f(z)− f(0+)
∣∣ ∣∣∣∣ 1

sin z
2

− 1
z
2

∣∣∣∣ ∣∣∣∣sin 2n+ 1

2
z

∣∣∣∣ dz
≤
ˆ h1

0

∣∣f(z)− f(0+)
∣∣ ∣∣∣∣ 1

sin z
2

− 1
z
2

∣∣∣∣ dz < ε

3
,

where h1 is independent of n. Next, by the second mean-value theorem for integral (see
below), ˆ h

0

(f(z)− f(0+))
sin 2n+1

2
z

z
2

dz = (f(h)− f(0+))

ˆ h

k

sin 2n+1
2
z

z
2

dz

for some k ∈ (0, h). As∣∣∣∣ˆ h

k

sin 2n+1
2
z

z
2

dz

∣∣∣∣ =

∣∣∣∣2 ˆ `h

`k

sin t

t
dt

∣∣∣∣ , ` =
2n+ 1

2

≤ 2

∣∣∣∣ˆ `h

0

sin t

t
dt

∣∣∣∣+ 2

∣∣∣∣ˆ `k

0

sin t

t
dt

∣∣∣∣
≤ 4 sup

T

∣∣∣∣ˆ T

0

sin t

t
dt

∣∣∣∣ ≡ 4L,

and we can find h2 ≤ h1 such that

4L
∣∣f(h)− f(0+)

∣∣ < ε

3
, ∀0 < h ≤ h2,

we have ∣∣∣∣ˆ h2

0

(f(z)− f(0+))
sin 2n+1

2
z

sin z
2

dz

∣∣∣∣ < ε

3
+
ε

3
=

2ε

3
.

Now, by Riemann-Lebesgue lemma, there exists some n0 such that∣∣∣∣ˆ π

h2

(f(z)− f(0+))
sin 2n+1

2
z

sin z
2

dz

∣∣∣∣ < ε

3
, ∀n ≥ n0.
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Putting things together,∣∣∣∣ˆ π

0

(f(z)− f(0+))
sin 2n+1

2
z

sin z
2

dz

∣∣∣∣ < 2ε

3
+
ε

3
= ε, ∀n ≥ n0.

We have shown that (1.8) holds. To prove (1.9), it suffices to apply (1.8) to the function
g(z) = f(−z).

Proposition 1.10 (Second Mean-Value Theorem). Let f ∈ R[a, b] and g be mono-
tone on [a, b] and satisfy g(a) = 0. There exists some c ∈ (a, b) such thatˆ b

a

f(x)g(x) dx = g(b)

ˆ b

c

f(x) dx.

Proof. Without loss of generality, we assume g is increasing. Let

a = x0 < x1 < · · · < xn = b

be a partition P on [a, b].ˆ b

a

fg =
n∑
j=1

g(xj)

ˆ xj

xj−1

f +
n∑
j=1

ˆ xj

xj−1

f(x)(g(x)− g(xj)) dy.

In case ‖P‖ → 0, it is not hard to show that the second integral tends to zero, soˆ b

a

fg = lim
‖P‖→0

n∑
j=1

g(xj)

ˆ xj

xj−1

f.

Letting F (x) =
´ b
x
f and using F (xn) = F (b) = 0, we have

n∑
j=1

g(xj)

ˆ xj

xj−1

f =
n∑
j=1

g(xj)(F (xj)− F (xj−1))

= g(x1)F (x0) +
n−1∑
j=1

(g(xj+1)− g(xj))F (xj).

Let m = inf [a,b] F and M = sup[a,b] F . As g is increasing,

mg(b) ≤ g(x1)F (x0) +
n−1∑
j=1

(g(xj+1)− g(xj))F (xj) ≤Mg(b).

Letting ‖P‖ → 0, we conclude that

mg(b) ≤
ˆ b

a

fg ≤Mg(b).

As c 7→
´ b
c
f is continuous and bounded between m and M , there is some c such that

1

g(b)

ˆ b

a

fg =

ˆ b

c

f.
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1.4 Weierstrass Approximation Theorem

As an application of Theorem 1.7, we prove a theorem of Weierstrass concerning the
approximation of continuous functions by polynomials. First we consider how to ap-
proximate a continuous function by continuous, piecewise linear functions. A continuous
function defined on [a, b] is piecewise linear if there exists a partition a = a0 < a1 <
· · · < an = b such that f is linear on each subinterval [aj, aj+1].

Proposition 1.11. Let f be a continuous function on [a, b]. For every ε > 0, there exists
a continuous, piecewise linear function g such that ‖f − g‖∞ < ε.

Recall that ‖f − g‖∞ = sup{|f(x)− g(x)| : x ∈ [a, b]}.

Proof. As f is uniformly continuous on [a, b], for every ε > 0, there exists some δ such
that |f(x)− f(y)| < ε/2 for x, y ∈ [a, b], |x− y| < δ. We partition [a, b] into subintervals
Ij = [aj, aj+1] whose length is less than δ and define g to be the piecewise linear function
satisfying g(aj) = f(aj) for all j. For x ∈ [aj, aj+1], g is given by

g(x) =
f(aj+1)− f(aj)

aj+1 − aj
(x− aj) + f(aj).

We have

|f(x)− g(x)| = |f(x)− f(aj+1)− f(aj)

aj+1 − aj
(x− aj) + f(aj)|

≤ |f(x)− f(aj)|+ |
f(aj+1)− f(aj)

aj+1 − aj
(x− aj)|

≤ |f(x)− f(aj)|+ |f(aj+1)− f(aj)|
< ε,

the result follows.

Next we study how to approximate a continuous function by trigonometric polynomials
(or, equivalently, finite Fourier series).

Proposition 1.12. Let f be a continuous function on [0, π]. For ε > 0, there exists a
trigonometric polynomial h such that ‖f − h‖∞ < ε.

Proof. First we extend f to [−π, π] by setting f(x) = f(−x) (using the same notation) to
obtain a continuous function on [−π, π] with f(−π) = f(π). By the previous proposition,
we can find a continuous, piecewise linear function g such that ‖f − g‖∞ < ε/2. Since
g(−π) = f(−π) = f(π) = g(π), g can be extended as the Lipschitz continuous, 2π-
periodic function. By Theorem 1.7, there exists some N such that ‖g − SNg‖∞ < ε/2.
Therefore, ‖f−SNg‖∞ ≤ ‖f−g‖∞+‖g−SNg‖∞ < ε/2+ε/2 = ε. The proposition follows
after noting that every finite Fourier series is a trigonometric polynomial (see Exercise
1).
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Theorem 1.13 (Weierstrass Approximation Theorem). Let f ∈ C[a, b]. Given
ε > 0, there exists a polynomial p such that ‖f − p‖∞ < ε.

Proof. Consider [a, b] = [0, π] first. Extend f to [−π, π] as before and, for ε > 0, fix a
trigonometric polynomial h such that ‖f−h‖∞ < ε/2. This is possible due to the previous
proposition. Now, we express h as a finite Fourier series a0 +

∑N
n=1(an cosnx+ bn sinnx).

Using the fact that

cos θ =
∞∑
n=0

(−1)nθ2n

(2n)!
, and sin θ =

∞∑
n=1

(−1)n−1θ2n−1

(2n− 1)!
,

where the convergence is uniform on [−π, π], each cosnx and sinnx, n = 1, · · · , N, can
be approximated by polynomials. Putting all these polynomials together we obtain a
polynomial p(x) satisfying ‖h− p‖∞ < ε/2. It follows that ‖f − p‖∞ ≤ ‖f − h‖∞ + ‖h−
p‖∞ < ε/2 + ε/2 = ε.

When f is continuous on [a, b], the function ϕ(t) = f( b−a
π
t+ a) is continuous on [0, π].

From the last paragraph, we can find a polynomial p(t) such that ‖ϕ− p‖∞ < ε on [0, π].
But then the polynomial q(x) = p( π

b−a(x − a)) satisfies ‖f − q‖∞ = ‖ϕ − p‖∞ < ε on
[a, b].

1.5 Mean Convergence of Fourier Series

In Section 2 we studied the uniform convergence of Fourier series. Since the limit of a
uniformly convergent series of continuous functions is again continuous, we do not expect
results like Theorem 1.6 applies to functions with jumps. In this section we will measure
the distance between functions by a norm weaker than the uniform norm. Under the new
L2-distance, you will see that every integrable function is equal to its Fourier expansion
almost everywhere.

Recall that there is an inner product defined on the n-dimensional Euclidean space
called the Euclidean metric

〈x, y〉2 =
n∑
j=1

xjyj, x, y ∈ Rn.

With this inner product, one can define the concept of orthogonality and angle between
two vectors. Likewise, we can also introduce a similar product on the space of integrable
functions. Specifically, for f, g ∈ R[−π, π], the L2-product is given by

〈f, g〉2 =

ˆ π

−π
f(x)g(x) dx.

The L2-product behaves like the Euclidean metric on Rn except at one aspect, namely, the
condition 〈f, f〉2 = 0 does not imply f ≡ 0. This is easy to see. In fact, when f is equal
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to zero except at finitely many points, then 〈f, f〉2 = 0. From Appendix II 〈f, f〉2 = 0 if
and only if f is equal to zero except on a set of measure zero. This minor difference with
the Euclidean inner product will not affect our discussion much, except more caution is
needed when we proceed. Parallel to the Euclidean case, we define the L2-norm of an
integrable function f to be

‖f‖2 =
√
〈f, f〉2,

and the L2-distance between two integrable functions f and g by ‖f − g‖2. (When f, g
are complex-valued, one should define the L2-product to be

〈f, g〉2 =

ˆ π

−π
f(x)g(x) dx ,

so that 〈f, f〉2 ≥ 0. We will be restricted to real functions in this section.) One can verify
that the triangle inequality

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2
holds. We can also talk about fn → f in L2-sense, i.e., ‖fn − f‖2 → 0, or equivalently,

lim
n→∞

ˆ π

−π
|fn − f |2 = 0, as n→∞ .

This is a convergence in an average sense. It is not hard to see that when {fn} tends to
f uniformly, {fn} must tend to f in L2-sense. In fact, we have the inequality

‖f‖22 ≤ 2π‖f‖2∞ ,

which means
‖f − g‖2 ≤

√
2π‖f − g‖∞ ,

so uniform convergence is stronger than L2-convergence. A moment’s reflection will show
that the converse is not always true. Hence convergence in L2-sense is weaker than uniform
convergence. We will discuss various metrics and norms in Chapter 2.

Our aim in this section is to show that the Fourier series of every integrable function
converges to the function in the L2-sense.

Just like the canonical basis {e1, . . . , en} in Rn, the functions{
1√
2π
,

1√
π

cosnx,
1√
π

sinnx

}∞
n=1

forms an “orthonormal basis” in R[−π, π], see Section 1.1. In the following we denote by

En =

〈
1√
2π
,

1√
π

cosnx,
1√
π

sinnx

〉n
j=1

the (2n+1)-dimensional vector space spanned by the first 2n+1 trigonometric functions.
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We start by considering the general situation. Let {φn}∞n=1 be an orthonormal set (not
neccessarily a basis) in R[a, b], i.e.,

ˆ b

a

φnφm = δnm, ∀n,m ≥ 1.

Let
Sn = 〈φ1, . . . , φn〉

be the n-dimensional subspace spanned by φ1, . . . , φn. For a general f ∈ R[a, b], we
consider the minimization problem

inf {‖f − g‖2 : g ∈ Sn} . (1.10)

From a geometric point of view, this infimum gives the L2-distance from f to the finite
dimensional subspace Sn.

Proposition 1.14. Let f ∈ R[a, b]. The followings hold:

(a)
‖f − h‖2 ≤ ‖f − g‖2 ∀g ∈ Sn ,

where h =
∑n

j=1 αjφj, αj = 〈f, φj〉, and equality holds only if g = h .

(b)
〈f, h〉 = ‖h‖22 .

Proof. To minimize ‖f − g‖2 is the same as to minimize ‖f − g‖22. Every g in Sn can be
written as g =

∑n
j=1 βjφj, βj ∈ R. We have

‖f − g‖22 =

ˆ π

−π

(
f −

n∑
j=1

βjφj

)2
=

ˆ π

−π
f 2 − 2

n∑
j=1

βjαj +
n∑
j=1

β2
j .

When g = h, we have

‖f − h‖22 =

ˆ π

−π
f 2 −

n∑
j=1

α2
j .

Therefore,
‖f − h‖22 ≤ ‖f − g‖22

is the same as ˆ π

−π
f 2 −

n∑
j=1

α2
j ≤
ˆ π

−π
f 2 − 2

n∑
j=1

βjαj +
n∑
j=1

β2
j .
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But this follows readily from the inequality

n∑
j=1

(βj − αj)2 ≥ 0 .

It is also clear that the equality holds if and only if βj = αj for all j, that is, g = h . (a)
is established.

To prove (b), we note that th ∈ Sn for all t ∈ R and the function λ(t) ≡ ‖f − th‖22
attains its minimum at t = 1. Therefore,

0 = λ′(1) = −2〈f, h〉+ 2‖h‖22 .

Given an orthonormal set {φn}∞n=1, one may define the “Fourier series” of an L2-
function f with respect to the orthnormal set {φn} to be the series

∑∞
n=1 〈f, φn〉 φn and

set Pnf =
∑n

j=1 〈f, φj〉 φj. Proposition 1.14 asserts that the distance between f and Sn
is equal to ‖f − Pnf‖2. The function Pnf is sometimes called the orthogonal projection
of f on Sn. Indeed, one can verify that it satisfies

〈f − Pnf, g〉2 = 0 , ∀g ∈ Sn ,

so f −Pnf is orthogonal to Sn. (Indeed, this inequality comes from Proposition 1.14 and
µ′(0) = 0 where µ(t) ≡ ‖Pnf − f + tg)‖22.)

As a special case, taking {φn} =
{

1/
√

2π, cosnx/
√
π, sinnx/

√
π
}

and S2n+1 = En, a
direct computation shows that P2n+1f = Snf , where Snf is the n-th partial sum of the
Fourier series of f . Thus we can rewrite Proposition 1.14 in this special case as

Corollary 1.15. For f ∈ R2π, for each n ≥ 1,

‖f − Snf‖2 ≤ ‖f − g‖2 ,

and
〈f, Snf〉 = ‖Snf‖22 ,

for all g of the form

g = c0 +
n∑
k=1

(cj cos kx+ dj sin kx), c0, ck, dk ∈ R.

Here is the main result of this section.

Theorem 1.16. For every f ∈ R2π,

lim
n→∞

‖Snf − f‖2 = 0.
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Proof. Let f ∈ R[−π, π]. We further assume f ≥ 0 . For ε > 0, we can find a step
function s ≥ 0 such that s ≤ f and

´ π
−π(f − s) < ε2/16M where M = supx f(x). Then

‖f − s‖2 ≤

√
M

ˆ π

−π
(f − s) =

ε

4
.

Next we modify s near its points of discontinuity to get a continuous, piecewise linear
function g1 satisfying

‖s− g1‖2 <
ε

4
.

In case g1(π) 6= g1(−π), we modify this function near π to get a new, piecewise linear
function g satisfying g(π) = g(−π) and

‖g − g1‖2 <
ε

4
.

Now g is a continuous, piecewise linear (hence piecewise C1-), 2π-periodic function. Ap-
pealing to Theorem 1.7, we can find some n1 such that

‖g − Sng‖∞ <
ε

4
√

2π
, ∀n ≥ n1 .

It implies

‖g − Sng‖2 ≤
√

2π‖g − Sng‖∞ <
ε

4
.

Putting things together, we have, for all n ≥ n1,

‖f − Snf‖2 ≤ ‖f − Sng‖2 (by Corollary 1.15)

≤ ‖f − s‖2 + ‖s− g1‖2 + ‖g1 − g‖2 + ‖g − Sng‖2
<

ε

4
+
ε

4
+
ε

4
+
ε

4
= ε .

We have proved the theorem for non-negative functions. In the general case, we use
the relation f = f+ − f− and the triangle inequality to get

‖f − Snf‖2 = ‖f+ − f− − Snf+ + Snf
−‖2

≤ ‖f+ − Snf+‖2 + ‖f− − Snf−‖2 .

Note that the use of Corollary 1.15 is the key to the proof in this theorem. As
an application we have the following result concerning the uniqueness of the Fourier
expansion.
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Corollary 1.17. (a) Suppose that f1 and f2 in R2π have the same Fourier series. Then
f1 and f2 are equal almost everywhere.

(b) Suppose that f1 and f2 in C2π have the same Fourier series. Then f1 is equal to f2
everywhere.

Proof. Let f = f2 − f1. The Fourier coefficients of f all vanish, hence Snf = 0, for all
n. By Theorem 1.16, ‖f‖2 = limn→∞ ‖f − Snf‖2 = 0. From Appendix II we know that
f 2, hence f , must vanish almost everywhere. In other words, f2 is equal to f1 almost
everywhere. (a) holds. To prove (b), letting f be continuous and assuming that it is not
equal to zero at some x0, by continuity it is non-zero for all points near x0. We can find
some small δ > 0 such that f 2(x) ≥ f 2(x0)/2 for all x ∈ (x0 − δ, x0 + δ). But thenˆ π

−π
f 2 ≥

ˆ x0+δ

x0−δ
f 2

≥ f 2(x0)

2
× 2δ > 0 ,

contradicting ‖f‖2 = 0. Hence f must vanish identically.

Another interesting consequence of Theorem 1.16 is the Parseval’s identity.

Corollary 1.18 (Parseval’s Identity). For every f ∈ R2π,

‖f‖22 = 2πa20 + π
∞∑
n=1

(
a2n + b2n

)
,

where an and bn are the Fourier coefficients of f .

Proof. Making use of Corollary 1.15 and the relations such as 〈f, cosnx/
√
π〉2 =

√
πan, n ≥

1,

〈f, Snf〉2 = ‖Snf‖22

= 2πa20 + π
n∑
j=1

(a2j + b2j).

By Theorem 1.16,

0 = lim
n→∞

‖f − Snf‖22 = lim
n→∞

(
‖f‖22 − 2〈f, Snf〉2 + ‖Snf‖22

)
= lim

n→∞

(
‖f‖22 − ‖Snf‖22

)
= ‖f‖22 − lim

n→∞
‖Snf‖22

= ‖f‖22 −
[
2πa20 + π

∞∑
n=1

(
a2n + b2n

) ]
.
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In general, an orthonormal set {φn} in R[a, b] is called complete if

‖f −
n∑
k=1

〈f, φk〉‖22 → 0, as n→∞ ,

for every f . Whevever this happens, the proof above shows that the general Parseval’s
Identity

‖f‖22 =
∞∑
n=1

〈f, φn〉2

holds. Our main theorem asserts that {1/
√

2π, cosnx/
√
π, sinnx/

√
π} forms a complete

orthonormal set in R[−π, π]. It plays the role like the canonical basis {e1, · · · , cn} in the
Eulcidean space Rn.

The norm of f can be regarded as the length of the “vector” f . Parseval’s Identity
shows that the square of the length of f is equal to the sum of the square of the length of
the orthogonal projection of f onto each one-dimensional subspace spanned by the sine
and cosine functions. This is an infinite dimensional version of the ancient Pythagoras
theorem. It is curious to see what really comes out when you plug in some specific
functions. For instance, we take f(x) = x and recall that its Fourier series is given by∑

2(−1)n+1/n sinnx. Therefore, an = 0, n ≥ 0 and bn = 2(−1)n+1/n and Parseval’s
identity yields Euler’s summation formula

π2

6
= 1 +

1

4
+

1

9
+

1

16
+ · · · .

You could find more interesting identities by applying the same idea to other functions.

The following result will be used in the next section.

Corollary 1.19 (Wirtinger’s Inequality). For every f ∈ R2π satisfying f ′ ∈ R2π,
ˆ π

−π
(f(x)− f)2dx ≤

ˆ π

−π
f ′2(x)dx ,

and equality holds if and only if f(x) = a0 + a1 cosx+ b1 sinx a.e..

Here

f =
1

2π

ˆ π

−π
f

is the average or mean of f over [−π, π].

Proof. Noting that f = a0,

f(x)− f ∼
∞∑
n=1

(an cosnx+ bn sinnx) .
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By Parseval’s identity,

ˆ π

−π
(f(x)− f)2dx = π

∞∑
n=1

(a2n + b2n) ,

and ˆ π

−π
(f(x)− f)′2dx =

ˆ π

−π
f ′(x)2dx = π

∞∑
n=1

n2(a2n + b2n).

Therefore, we have

ˆ π

−π
f ′(x)2dx−

ˆ π

−π
(f(x)− f)2dx = π

∞∑
n=1

(n2 − 1)(a2n + b2n) ,

and the result follows.

This inequality is also known as Poincaré’s Inequality.

1.6 The Isoperimetric Problem

The classical isoperimetric problem known to the ancient Greeks asserts that only the
circle maximizes the enclosed area among all simple, closed curves of the same perimeter.
In this section we will present a proof of this inequality by Fourier series. To formulate
this geometric problem in analytic terms, we need to recall some facts from advanced
calculus.

Indeed, a parametric C1-curve is a map γ from some interval [a, b] to R2 such that x
and y belong to C1[a, b] where γ(t) = (x(t), y(t)) and x

′2(t) + y
′2(t) > 0 for all t ∈ [a, b].

In the following a curve is always refereed to a parametric C1-curve. For such a curve, its
length is defined to be

L[γ] =

ˆ b

a

√
x′(t)2 + y′(t)2dt, γ = (x, y).

A curve is closed if γ(a) = γ(b) and simple if γ(t) 6= γ(s), ∀t 6= s in [a, b). The length of
a closed curve is called the perimeter of the curve.

When a closed, simple curve is given, the area it encloses is also fixed. Hence one
should be able to express this enclosed area by a formula involving γ only. Indeed, this
can be accomplished by the Green’s theorem. Recalling that the Green’s theorem states
that for every pair of C1-functions P and Q defined on the curve γ and the region enclosed
by the curve, we haveˆ

γ

Pdx+Qdy =

¨
D

(∂Q
∂x

(x, y)− ∂P

∂y
(x, y)

)
dxdy ,
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where the left hand side is the line integral along γ and D is the domain enclosed by γ
(see Fritzpatrick, p.543). Taking P ≡ 0 and Q = x, we obtain

¨
D

(∂Q
∂x
− ∂P

∂y

)
dxdy =

¨
D

1 = area of D,

so

A[γ] =

¨
D

1dxdy =

ˆ
γ

xdy =

ˆ b

a

x(t)y′(t)dt .

The classical isoperimetric problem is: Among all simple, closed curves with a fixed
perimeter, find the one whose enclosed area is the largest. We will see that the circle is
the only solution to this problem.

To proceed further, let us recall the concept of reparametrization. Indeed, a curve γ1
on [a1, b1] is called a reparametrization of the curve γ on [a, b] if there exists a C1-map ξ
from [a1, b1] to [a, b] with non-vanishing derivative so that γ1(t) = γ(ξ(t)), ∀t ∈ [a1, b1].
It is known that the length remains invariant under reparametrizations.

Another useful concept is the parametrization by arc-length. A curve γ = (x, y)
on [a, b] is called in arc-length parametrization if x

′2(t) + y
′2(t) = 1, ∀t ∈ [a, b]. We

know that every curve can be reparametrized in arc-length parametrization. Let γ(t) =
(x(t), y(t)), t ∈ [a, b], be a parametrization of a curve. We define a function ϕ by setting

ϕ(τ) =

ˆ τ

a

(
x
′2(t) + y

′2(t)
)1/2

dt,

it is readily checked that ϕ is a C1-map from [a, b] to [0, L] with positive derivative, and
γ1(s) = γ(ξ(s)), ξ = ϕ−1, is an arc-length reparametrization of γ on [0, L] where L is the
length of γ.

We now apply the Wirtinger’s Inequality to give a proof of the classical isoperimetric
problem.

Let γ : [a, b]→ R2 be a closed, simple C1-curve bounding a region D. Without loss of
generality we may assume that it is parametrized by arc-length. Assuming the perimeter
of γ is equal to 2π, we want to find the region that encloses the maximal area. The
perimeter is given by

L[γ] =

ˆ 2π

0

√
x′2(s) + y′2(s)ds = 2π ,

and the area is given by

A[γ] =

ˆ 2π

0

x(s)y′(s)ds .



32 CHAPTER 1. FOURIER SERIES

Extending γ1 and γ2 as 2π-periodic functions, we compute

2A[γ] =

ˆ π

−π
2x(s)y′(s)ds

=

ˆ π

−π
2(x(s)− x)y′(s)ds

≤
ˆ π

−π
(x(s)− x)2ds+

ˆ π

−π
y
′2(s)ds (by 2ab ≤ a2 + b2)

≤
ˆ π

−π
x
′2(s)ds+

ˆ π

−π
y
′2(s)ds (by Wirtinger’s Inequality)

=

ˆ π

−π

(
x
′2(s) + y

′2(s)
)
ds

= 2π, (use x′2(s) + y′2(s) = 1)

whence A[γ] ≤ π. We have shown that the enclosed area of a simple, closed C1-curve
with perimeter 2π cannot exceed π. As π is the area of the unit circle, the unit circle
solves the isoperimetric problem.

Now the uniqueness case. We need to examine the equality signs in our derivation.
We observe that the second equality holds if and only if an = bn = 0 for all n ≥ 2 in the
Fourier series of x(s). So, x(s) = a0 + a1 cos s+ b1 sin s, or

x(s) = a0 + r cos(s− x0),

where

r =
√
a21 + b21, cosx0 =

a1
r
.

(Note that (a1, b1) 6= (0, 0). For if a1 = b1 = 0, x(s) is constant and x
′2

+ y
′2 = 1 implies

y
′2(s) = ±s + b, and y can never be periodic.) Now we determine y. From the above

calculation, when the first equality holds (2ab = a2 + b2 means a− b = 0),

x− x− y′ = 0.

So y′(s) = x(s)− x = r cos(s− x0), which gives

y(s) = r sin(s− x0) + c0 , c0 constant.

It follows that γ describes a circle of radius r centered at (a0, c0). Using the fact that the
perimeter is 2π, we conclude that r = 1, so the maximum must be a unit circle.

For a general γ whose perimeter is not neccessarily 2π, the “normalized curve” c =
2π/Lγ where L is the perimeter of c has perimeter 2π. The area enclosed by γ, A, is
related to the area enclosed by c,A0 by A = (2π/L)2A0. In the previous paragraph, we
have shown that A0 ≤ π. Immediately, we deduce the isoperimetric inequality

A ≤ L2

4π
,
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and the equality sign holds if and only if γ is a circle.

Summarizing, we have the following solution to the classical isoperimetric problem.

Theorem 1.20. Among all closed, simple C1-curves of the same perimeter, only the circle
encloses the largest area.

The isoperimetric inequality can also be interpreted as, among all regions which en-
close the same area, only the circle has the shortest perimeter.

Appendix I Series of Functions

This appendix serves to refresh your memory after the long, free summer.

A sequence is a mapping ϕ from N to R. For ϕ(n) = an, we usually denote the
sequence by {an} rather than ϕ. This is a convention. We say the sequence is convergent
if there exists a real number a satisfying, for every ε > 0, there exists some n0 such that
|an − a| < ε for all n, n ≥ n0. When this happens, we write a = limn→∞ an.

An (infinite) series is always associated with a sequence. Given a sequence {xn},
set sn =

∑n
k=1 xk and form another sequence {sn}. This sequence is the infinite series

associated to {xn} and is usually denoted by
∑∞

k=1 xk. The sequence {sn} is also called
the sequence of n-th partial sums of the infinite series. By definition, the infinite series
is convergent if {sn} is convergent. When this happens, we denote the limit of {sn} by∑∞

k=1 xk, in other words, we have

lim
n→∞

n∑
k=1

xk =
∞∑
k=1

xk.

So the notation
∑∞

k=1 xk has two meanings, first, it is the notation for an infinite series
and, second, the limit of its partial sums (whenever it exists).

When the target R is replaced by C, we obtain a sequence or a series of complex
numbers, and the above definitions apply to them after replacing the absolute value by
the complex absolute value or modulus.

Let {fn} be a sequence of real- or complex-valued functions defined on some non-
empty E on R. It is called convergent pointwisely to some function f defined on the
same E if for every x ∈ E, {fn(x)} converges to f(x) as n → ∞. Keep in mind that
{fn(x)} is sequence of real or complex numbers, so its convergence has a valid meaning.
A more important concept is the uniform convergence. The sequence {fn} is uniformly
convergent to f if, for every ε > 0, there exists some n0 such that |fn(x)− f(x)| < ε for
all n ≥ n0. Equivalently, uniform convergence holds if, for every ε > 0, there exists some
n1 such that ‖fn − f‖∞ < ε for all n ≥ n1. Here ‖f‖∞ denotes the sup-norm of f on E.
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An (infinite) series of functions is the infinite series given by
∑∞

k=1 fk(x) where fk are
defined on E. Its convergence and uniform convergence can be defined via its partial sums
sn(x) =

∑n
k=1 fk(x) as in the case of sequences of numbers.

Among several criteria for uniform convergence, the following test is very useful.

Weierstrass M-Test. Let {fk} be a sequence of functions defined on some E ⊂ R.
Suppose that there exists a sequence of non-negative numbers, {xk}, such that

1. |fk(x)| ≤ xk for all k ≥ 1, and

2.
∑∞

k=1 xk is convergent.

Then
∑∞

k=1 fk converges uniformly and absolutely on E.

Appendix II Sets of Measure Zero

Let E be a subset of R. It is called of measure zero, or sometimes called a null set,
if for every ε > 0, there exists a (finite or infinite) sequence of intervals {Ik} satisfying
(1) E ⊂ ∪∞k=1Ik and (2)

∑∞
k=1 |Ik| < ε. (When the intervals are finite, the upper limit of

the summation should be changed accordingly.) Here Ik could be an open, closed or any
other interval and its length |Ik| is defined to the b− a where a ≤ b are the endpoints of
Ik.

The empty set is a set of measure zero from this definition. Every finite set is also null.
For, let E = {x1, · · · , xN} be the set. For ε > 0, the intervals Ik = (x1 − ε/(4N), xk +
ε/(4N)) clearly satisfy (1) and (2) in the definition.

Next we claim that every countable set is also of measure zero. Let E = {x1, x2, · · · }
be a countable set. We choose

Ik =
(
xk −

ε

2k+2
, xk +

ε

2k+2

)
.

Clearly, E ⊂ ∪∞k=1Ik. On the other hand,

∞∑
k=1

|Ik| =
∞∑
k=1

ε

2k+1

=
ε

2
< ε .

We conclude that every countable set is a null set.
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There are uncountable sets of measure zero. For instance, the Cantor set which plays
an important role in analysis, is of measure zero. Here we will not go into this.

The same trick in the above proof can be applied to the following situation.

Proposition A.1. The union of countably many null sets is a null set.

Proof. Let Ek, k ≥ 1, be sets of measure zero. For ε > 0, there are intervals satisfying
{Ikj }, Ek ⊂ ∪jIkj , and

∑
j |Ikj | < ε/2k. It follows that E ≡ ∪kEk ⊂ ∪j,kIkj = ∪k ∪j Ikj and∑

k

∑
j

|Ikj | <
∑
k

ε

2k
= ε.

The concept of a null set comes up naturally in the theory of Riemann integration. A
theorem of Lebsegue asserts that a bounded function is Riemann integrable if and only if
its discontinuity set is null. (This result can be found in an appendix of Bartle-Sherbert
and also in my 2060 notes. It will be proved again in Real Analysis. Presently you may
simply take it for granted.) Let us prove the following result.

Proposition A.2. Let f be a non-negative integrable function on [a, b]. Then
´ b
a
f = 0

if and only if f is equal to 0 except on a null set. Consequently, two integrable functions
f, g satisfying ˆ b

a

|f − g| = 0,

if and only if f is equal to g except on a null set.

Proof. We set, for each k ≥ 1, Ak = {x ∈ [a, b] : f(x) > 1/k}. It is clear that

{x : f(x) > 0} =
∞⋃
k=1

Ak .

By Proposition A.1., it suffices to show that each Ak is null. Thus let us consider Ak0 for
a fixed k0. Recall from the definition of Riemann integral, for every ε > 0, there exists a
partition a = x1 < x2 < · · · < xn = b such that

0 ≤
n−1∑
k=1

f(zk)|Ik| =

∣∣∣∣∣
n−1∑
k=1

f(zk)|Ik| −
ˆ b

a

f

∣∣∣∣∣ < ε

k0
,

where Ik = [xk, xk+1] and zk is an arbitrary tag in [xj, xj+1]. Let {k1, · · · , km} be the
index set for which Ikj contains a point zkj from Ak0 . Choosing the tag point to be zkj ,
we have f(zkj) > 1/k0. Therefore,

1

k0

∑
kj

|Ikj | =
∑
kj

f(zkj)|Ikj | ≤
n−1∑
k=1

f(zk)|Ik| <
ε

k0
,
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so ∑
kj

|Ikj | < ε.

We have shown that Ak0 is of measure zero.

Conversely, let D be the set consisting of all discontinuity points of f . We claim that
A ⊂ D. Assuming this, the aforementioned Lebsegue’s theorem tells us that D is of
measure zero, so is A. To prove the claim, let us assume that there is a some x0 ∈ A
at which f is continuous. We have f(x0) > 0. Without loss of generality we may also
assume x0 is not one of the endpoints of the interval. By the definition of continuity,
there exists some small δ > 0 such that |f(x)− f(x0)| < f(x0)/2 for x ∈ (x0 − δ, x0 + δ).
Consequently, f(x) ≥ f(x0)− f(x0)/2 = f(x0)/2 for x in this interval. We have

0 =

ˆ b

a

f

=

ˆ x0−δ

a

f +

ˆ x0+δ

x0−δ
f +

ˆ b

x0+δ

f

≥
ˆ x0+δ

x0−δ
f

≥ f(x0)

2
× 2δ > 0,

contradiction holds.

A property holds almost everywhere if it holds except on a null set. For instance,
this proposition asserts that the integral of a non-negative function is equal to zero if and
only if it vanishes almost everywhere.

Comments on Chapter 1. Historically, the relation (1.2) comes from a study on the
one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2

where u(x, t) denote the displacement of a string at the position-time (x, t). Around 1750,
D’Alembert and Euler found that a general solution of this equation is given by

f(x− ct) + g(x+ ct)

where f and g are two arbitrary twice differentiable functions. However, D. Bernoulli
found that the solution could be represented by a trigonometric series. These two different
ways of representing the solutions led to a dispute among the mathematicians at that
time, and it was not settled until Fourier gave many convincing examples of representing
functions by trigonometric series in 1822. His motivation came from heat conduction.
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After that, trigonometric series have been studied extensively and people call it Fourier
series in honor of the contribution of Fourier. Nowadays, the study of Fourier series has
matured into a branch of mathematics called harmonic analysis. It has equal importance
in theoretical and applied mathematics, as well as other branches of natural sciences and
engineering.

The book by R.T. Seely, “An Introduction to Fourier Series and Integrals”, W.A.
Benjamin, New York, 1966, is good for further reading.

In some books the Fourier series of a function is written in the form

a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx),

instead of

a0 +
∞∑
n=1

(an cosnx+ bn sinnx),

so that the formula for a0 is the same as the other an’s (see (1.1)). However, our notation
has the advantage that a0 has a simple meaning, i.e., it is the average of the function over
a period.

Concerning the convergence of a Fourier series to its function, we point out that an
example of a continuous function whose Fourier series diverges at some point can be
found in Stein-Sharachi. More examples are available by googling. The classical book
by A. Zygmund, “Trigonometric Series” (1959) reprinted in 1993, contains most results
before 1960. After 1960, one could not miss to mention Carleson’s sensational work in
1966. His result implies that the Fourier series of every function in R2π converges to the
function itself almost everywhere.

There are several standard proofs of the Weierstrass approximation theorem, among
them Rudin’s proof in “Principles” by expanding an integral kernel and Bernstein’s proof
based on binomial expansion are both worth reading. Recently the original proof of
Weierstrass by the heat kernel is available on the web. It is nice to take a look too. In
Chapter 3 we will reproduce Rudin’s proof and then discuss Stone-Weierstrass theorem,
a far reaching generalization of Weierstrass approximation theorem.

The elegant proof of the Isoperimetric Inequality by Fourier series presented here is due
to Hurwitz (1859-1919). You may google under “proofs of the Isoperimetric Inequality” to
find several different proofs in the same spirit. The Isoperimetric Inequality has a higher
dimensional version which asserts that the ball has the largest volume among all domains
having the same surface area. Fourier series do not help in this aspect. The proof which
makes use of the calculus of variations is much more advanced.

The aim of this chapter is to give an introduction to Fourier series. It will serve the
purpose if your interest is aroused and now you consider to take our course on Fourier
analysis in the future. (This course will be offered in 2017/18.) Not expecting a thorough
study, I name Stein-Shakarchi as the only reference.
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Metric Spaces
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A metric space is a mathematical entity in which the distance between two points is
meaningful. Metric spaces constitute an important class of topological spaces. In Section
1 definition of a metric space is given and some examples are present. In Section 2
open and closed sets are defined and then used to describe the convergence of sequences
and continuity of functions. Relevant notions such as the boundary points, closure and
interior of a set are discussed in Section 3. Finally, Section 4 is mainly concerned with
the equivalence between sequentially compact and compact sets in a metric space.

2.1 Definitions and Examples

Throughout this chapter X always denotes a non-empty set. We would like to define a
concept of distance which assigns a positive number to every two points in X, that is, the
distance between them. In analysis the name metric is used instead of distance. (But “d”
not “m” is used in notation. I have no idea why it is so.) A metric on X is a function
from X ×X to [0,∞) which satisfies the following three conditions: ∀x, y, z ∈ X,

M1. d(x, y) ≥ 0 and equality holds if and only if x = y,

M2. d(x, y) = d(y, x), and

M3. d(x, y) ≤ d(x, z) + d(z, y).

The last condition, the triangle inequality, is a key property of a metric. M2 and M3
together imply another form of triangle inequality,

|d(x, y)− d(x, z)| ≤ d(y, z).

1
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The pair (X, d) is called a metric space. Let x ∈ X and r > 0, the metric ball (of
radius r centered at x) or simply the ball Br(x) is the set {y ∈ X : d(y, x) < r}.

Here are some examples of metric spaces.

Example 2.1. Let R be the set of all real numbers. For x, y ∈ R, we define d(x, y) = |x−y|
where |x| denotes the absolute value of x. It is easily seen that d(·, ·) satisfies M1-M3
above and so it defines a metric. In particular, M3 reduces to the usual triangle inequality.
Thus (R, d) is a metric space. From now on whenever we talk about R, it is understood
that it is a metric space endowed with this metric.

Example 2.2. More generally, let Rn be the n-dimensional real vector space consisting
of all n-tuples x = (x1, . . . , xn), xj ∈ R, j = 1, . . . , n. For x, y ∈ Rn, introduce the
Euclidean metric

d2(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

=
( n∑
j=1

(xj − yj)2
) 1

2 .

It reduces to Example 1 when n = 1. Apparently, M1 and M2 are fulfilled. To verify the
triangle inequality, letting u = x− z and v = x− y, M3 becomes

( n∑
1

(uj + vj)
2
)1/2 ≤ ( n∑

1

u2j
)1/2

+
( n∑

1

v2j
)1/2

.

Taking square, we see that it follows from Cauchy-Schwarz inequality∣∣∣ n∑
1

ujvj

∣∣∣ ≤ ( n∑
1

u2j
)1/2( n∑

1

v2j
)1/2

.

In case you do not recall its proof, look up a book. We need to use mathematics you
learned in all previous years. Take this as a chance to refresh them.

Example 2.3. It is possible to have more than one metrics on a set. Again consider Rn.
Instead of the Euclidean metric, we define

d1(x, y) =
n∑
j=1

|xj − yj|

and
d∞(x, y) = max {|x1 − y1| , . . . , |xn − yn|} .

It is not hard to verify that d1 and d∞ are also metrics on Rn. We denote the metric balls
in the Euclidean, d1 and d∞ metrics by Br(x), B1

r (x) and B∞r (x) respectively. Br(x) is
the standard ball of radius r centered at x and B∞r (x) is the cube of length r centered at
x. I let you draw and tell me what B1

r (x) looks like.
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Example 2.4. Let C[a, b] be the real vector space of all continuous, real-valued functions
on [a, b]. For f, g ∈ C[a, b], define

d∞(f, g) = ‖f − g‖∞ ≡ max {|f(x)− g(x)| : x ∈ [a, b]} .

It is easily checked that d∞ is a metric on C[a, b]. The metric ball Br(f) in the uniform
metric consists of all continuous functions sitting inside the “tube”

{(x, y) : |y − f(x)| < r, x ∈ [a, b]} .

Another metric defined on C[a, b] is given by

d1(f, g) =

ˆ b

a

|f − g|.

It is straightforward to verify M1-M3 are satisfied. In Section 1.5 we encountered the
L2-distance. Indeed,

d2(f, g) =

√ˆ b

a

|f − g|2,

really defines a metric on C[a, b]. The verification of M3 to similar to what we did in
Example 2.2, but Cauchy-Schwarz inequality is now in its integral form

ˆ b

a

∣∣fg∣∣ ≤
√ˆ b

a

f 2

√ˆ b

a

g2.

In passing we point out same notations such as d1 and d2 have been used to denote
different metrics. They arise in quite different context though. It should not cause
confusion.

Example 2.5. Let R[a, b] be the vector space of all Riemann integrable functions on [a, b]
and consider d1(f, g) as defined in the previous example. One can show that M2 and M3
are satisfied, but not M1. In fact,

ˆ b

a

|f − g| = 0

does not imply that f is equal to g. It tells us they differ on a set of measure zero. This
happens, for instance, they are equal except at finitely many points. To construct a metric
space out of d1, we introduce a relation on R[a, b] by setting f ∼ g if and only if f and g
differ on a set of measure zero. It is routine to verify that ∼ is an equivalence relation.
Let R̃[a, b] be the equivalence classes of R[a, b] under this relation. We define a metric on

R̃[a, b] by, ∀f, g ∈ R̃[a, b],

d̃1(f, g) = d1(f, g), f ∈ f, g ∈ g.

Then (R̃[a, b], d̃1) forms a metric space. I let you verify that d̃1 is well-defined, that is,

it is independent of the choices of f and g, and is a metric on (R̃[a, b], d̃1). A similar

consideration applies to the L2-distance to get a metric d̃2.
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A norm ‖ · ‖ is a function on a real vector space X to [0,∞) satisfying the following
three conditions, for all x, y ∈ X and α ∈ R,

N1. ‖x‖ ≥ 0 and “=” 0 if and only if x = 0

N2. ‖αx‖ = |α| ‖x‖, and

N3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The pair (X, ‖ · ‖) is called a normed space. There is always a metric associated to
a norm. Indeed, letting

d(x, y) = ‖x− y‖,

it is readily checked that d defines a metric on X. This metric is called the metric
induced by the norm. In all the five examples above the metrics are induced respectively
from norms. It is easy to see that the norms are given correspondingly by, in Rn,

‖x‖2 =

(
n∑
k=1

x2k

)1/2

, ‖x‖1 =
n∑
k=1

|xk| , ‖x‖∞ = max{|x1|, · · · , |xn|} ;

in C[a, b],

‖f‖∞ = max{|f(x)| : x ∈ [a, b]} , ‖f‖1 =

ˆ b

a

|f | , ‖f‖2 =

ˆ b

a

f 2 .

Normed spaces will be studied in MATH4010 Functional Analysis. In the following we
give two examples of metrics defined on a set without the structure of a vector space.
They are not metric spaces induced by normed spaces.

Example 2.6. Let X be a non-empty set. For x, y ∈ X, define

d(x, y) =

{
1, x 6= y,
0, x = y.

The metric d is called the discrete metric on X. The metric ball Br(x) consists of x
itself for all r ∈ (0, 1).

Example 2.7. Let H be the collection of all strings of words in n digits. For two strings
of words in H, a = a1 · · · an, b = b1 · · · bn, aj, bj ∈ {0, 1, 2, . . . , 9}. Define

dH(a, b) = the number of digits at which aj is not equal to bj.

By using a simple induction argument one can show that (H, dH) forms a metric space.
Indeed, the case n = 1 is straightforward. Let us assume it holds for n-strings and
show it for (n + 1)-strings. Let a = a1 · · · anan+1, b = b1 · · · bnbn+1, c = c1 · · · cncn+1, a

′ =
a1 · · · an, b′ = b1 · · · bn, and c′ = c1 · · · cn. There are four cases to consider, namely, (a)
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an+1 = bn+1 = cn+1, (b) an+1 = bn+1, bn+1 6= cn+1, (c) an+1 6= bn+1, bn+1 = cn+1, (d)
an+1 6= bn+1, bn+1 6= cn+1 . In Case (a), we have dH(a, b) = dH(a′, b′) ≤ dH(a′, c′) +
dH(c′, b′) = dH(a, c) + dH(c, b) by induction hypothesis. In Case (b), we have dH(a, b) =
dH(a′, b′) and dH(c, b) = dH(c′, b′) + 1, so dH(a, b) = dH(a′, b′) ≤ dH(a′, c′) + dH(c′, b′) ≤
dH(a, c) + dH(c, b) − 1 ≤ dH(a, c) + dH(c, b). In Case (c), dH(a, b) = dH(a′, b′) + 1. Since
bn+1 = cn+1, an+1 6= cn+1 so dH(a, c) = dH(a′, c′) + 1. We have dH(a, b) = dH(a′, b′) + 1 ≤
dH(a′, c′) + dH(c′, b′) + 1 ≤ dH(a, c) − 1 + dH(c, b) + 1 = dH(a, c) + dH(c, b). The last
case can be handled by a similar way and I leave it to you. The metric dH is called the
Hamming distance. It measures the error in a string during transmission.

Let Y be a non-empty subset of (X, d). Then (Y, d|Y×Y ) is again a metric space. It
is called a metric subspace of (X, d). The notation d|Y×Y is usually written as d for
simplicity. Every non-empty subset of a metric space forms a metric space under the
restriction of the metric. In the following we usually call a metric subspace a subspace for
simplicity. Note that a metric subspace of a normed space needs not be a normed space.
It is so only if the subset is also a vector subspace. For example, consider the subsets
E = {(x, y) : 2x + 3y = 0} and F = {(x, y) : xy = 1, x, y > 0} in R2. The restriction
of the Euclidean metric metric to these two sets make them metric spaces. The first one
is a one-dimensional vector subspace of R2 and the Euclidean norm is a norm defined in
E. It is quite clear that the restricted metric is induced by the the restricted Euclidean
norm. On the other hand, while the restriction of the Euclidean metric on F makes it a
metric space, it is no longer a metric induced from any norm. In fact, F is no longer a
vector space. Taking (1, 1) and (2, 1/2) from F , that the point (3, 2.5) = (1, 1) + (2, 1/2)
does not satisfy 3× 2.5 = 1 shows F does not inherit the vector space structure of R2.

Recall that convergence of sequences of real numbers and uniform convergence of
sequences of functions are main themes in Mathematical Analysis I and II and sequences
of vectors were considered in Advanced Calculus I and II. With a metric d on a set X,
it makes sense to talk about limits of sequences in a metric space. Indeed, a sequence
in (X, d) is a map ϕ from N to (X, d) and usually we write it in the form {xn} where
ϕ(n) = xn. We call {xn} converges to x if limn→∞ d(xn, x) = 0, that’s, for every ε > 0,
there exists n0 such that d(xn, x) < ε, for all n ≥ n0. When this happens, we write or
limn→∞ xn = x or xn → x in X.

Convergence of sequences in (Rn, d2) reduces to the old definition we encountered be-
fore. From now on, we implicitly refer to the Euclidean metric whenever convergence of
sequences in Rn is considered. For sequences of functions in (C[a, b], d∞), it is simply the
uniform convergence of sequences of functions in C[a, b].

As there could be more than one metrics defined on the same set, it is natural to make
a comparison among these metrics. Let d and ρ be two metrics defined on X. We call ρ
is stronger than d, or d is weaker than ρ, if there exists a positive constant C such that
d(x, y) ≤ Cρ(x, y) for all x, y ∈ X. They are equivalent if d is stronger and weaker than
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ρ simultaneously, in other words,

d(x, y) ≤ C1ρ(x, y) ≤ C2d(x, y), ∀x, y ∈ X,

for some positive C1 and C2. When ρ is stronger than d, a sequence converging in ρ is
also convergent in d. When d and ρ are equivalent, a sequence is convergent in d if and
only if it is so in ρ.

Take d1, d2 and d∞ on Rn as an example. It is elementary to show that for all x, y ∈ Rn,

d2(x, y) ≤ n1/2d∞(x, y) ≤ n1/2d2(x, y),

and
d1(x, y) ≤ nd∞(x, y) ≤ nd1(x, y),

hence d1, d2 and d∞ are all equivalent. The convergence of a sequence in one metric
implies its convergence in other two metrics.

It is a basic result in functional analysis that every two induced metrics in a finite
dimensional normed space are equivalent. Consequently, examples of inequivalent metrics
can only be found when the underlying space is of infinite dimensional.

Let us display two inequivalent metrics on C[a, b]. For this purpose it suffices to
consider d1 and d∞. On one hand, clearly we have

d1(f, g) ≤ (b− a)d∞(f, g), ∀f, g ∈ C[a, b],

so d∞ is stronger than d1. But the converse is not true. Consider the sequence given by
(taking [a, b] = [0, 1] for simplicity)

fn(x) =

{
−n3x+ n, x ∈ [0, 1/n2],
0, x ∈ (1/n2, 1].

We have d1(fn, 0)→ 0 but d∞(fn, 0)→∞ as n→∞. Were d∞(fn, 0) ≤ Cd1(fn, 0) true
for some positive constant C, d1(fn, 0) must tend to ∞ as well. Now it tends to 0, so d1
cannot be stronger than d2 and these two metrics are not equivalent.

Now we define continuity in a metric space. Recalling that for a real-valued function
defined on some set E in R, there are two equivalent ways to define the continuity of the
function at a point. We could use either the behavior of sequences or the ε-δ formulation.
Specifically, the function f is continuous at x ∈ E if for every sequence {xn} ⊂ E
satisfying limn→∞ xn = x, limn→∞ f(xn) = f(x). Equivalently, for every ε > 0, there
exists some δ > 0 such that |f(y)−f(x)| < ε whenever y ∈ E, |y−x| < δ. Both definition
can be formulated on a metric space. Let (X, d) and (Y, ρ) be two metric spaces and
f : (X, d) → (Y, ρ). Let x ∈ X. We call f is continuous at x if f(xn) → f(x) in (Y, ρ)
whenever xn → x in (X, d). It is continuous on a set E ⊂ X if it is continuous at every
point of E.
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Proposition 2.1. Let f be a mapping from (X, d) to (Y, ρ) and x0 ∈ X. Then f is
continuous at x0 if and only if for every ε > 0, there exists some δ > 0 such that
ρ(f(x), f(x0)) < ε for all x, d(x, x0) < δ.

Proof. ⇐) Let ε be given and δ is chosen accordingly. For any {xn} → x0, given δ > 0,
there exists some n0 such that d(xn, x0) < δ , ∀n ≥ n0. It follows that ρ(f(xn), f(x0)) < ε
for all n ≥ n0, so f is continuous at x0.

⇒) Suppose that the implication is not valid. There exist some ε0 > 0 and {xk} ∈ X
satisfying d(f(xk), f(x0)) ≥ ε0 and d(xk, x0) < 1/k. However, the second condition tells
us that {xk} → x0, so by the continuity at x0 one should have d(f(xk), f(x0)) → 0,
contradiction holds.

We will shortly use open/closed sets to describe continuity in a metric space.

As usual, continuity of functions is closed under compositions of functions.

Proposition 2.2. Let f : (X, d)→ (Y, ρ) and g : (Y, ρ)→ (Z,m) be given.

(a) If f is continuous at x and g is continuous at f(x), then g ◦ f : (X, d)→ (Z,m) is
continuous at x.

(b) If f is continuous in X and g is continuous in Y , then g ◦ f is continuous in X.

Proof. It suffices to prove (a). Let xn → x. Then f(xn) → f(x) as f is continuous at x.
Then (g ◦ f)(xn) = g(f(xn))→ g(f(x)) = (g ◦ f)(x) as g is continuous at f(x).

To end this section, we consider the following question: Are there any continuous
functions in a metric space? Of course, constant functions are obviously continous. But
we want more complicated ones. It turns out we can construct many continuous function
starting from the distance function. Indeed, let A be a non-empty set in (X, d). We define
the distance from a point x to A by

ρA(x) = inf {d(y, x) : y ∈ A} .

We claim:

|ρA(x)− ρA(y)| ≤ d(x, y), ∀x, y ∈ X.

It shows that ρA is not only continuous but also “Lipschitz continuous”. To prove the
claim, let ε > 0, we pick z ∈ A such that ρA(y) + ε > d(y, z). The

ρA(x) ≤ d(x, z)

≤ d(x, y) + d(y, z)

≤ d(x, y) + ρA(y) + ε .
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Letting ε→ 0, we obtain ρA(x)− ρA(y) ≤ d(x, y), and the claim follows after noting that
the roles of x and y are exchangeable.

It is convenient to introduce the notations:

d(x, F ) = inf{d(x, y) : y ∈ F} ,

and
d(E,F ) = inf{d(x, y) : x ∈ E, y ∈ F} .

We can construct many continuous functions in a metric space from the distance func-
tion. For instance, let x1 and x2 be two distinct points in X. The continuous function ρx1
satisfies ρx1(x1) = 0 and ρx1(x2) = 0. We see there are continuous functions to separate
points. Further related results can be found in the exercise.

2.2 Open and Closed Sets

The existence of a metric on a set enables us to talk about the convergence of a sequence
and continuity of a map. It turns out that, in order to define continuity, a structure
less stringent then a metric structure is required. It suffices the set is endowed with a
topological structure. In a word, a metric induces a topological structure on the set but
not every topological structure comes from a metric. In a topological space, continuity
can no longer be defined via the convergence of sequences. Instead one uses the notion of
open and closed sets in the space. As a warm up for topology we discuss how to use the
language of open/closed sets to describe the convergence of sequences and the continuity
of functions in this section.

First the definition. Let (X, d) be a metric space. A set G ⊂ X is called an open
set if for each x ∈ G, there exists some ρ such that Bρ(x) ⊂ G. The number ρ may vary
depending on x. We also define the empty set φ to be an open set. Roughly speaking, an
open set is a subset in which all points are sitting in its interior.

Proposition 2.3. Let (X, d) be a metric space. We have

(a) X and φ are open sets.

(b) If
⋃
α∈AGα is an open set provided that all Gα, α ∈ A, are open where A is an

arbitrary index set.

(c) If G1, . . . , GN are open sets, then
⋂N
j=1Gj is an open set.

Note the union in (b) of this proposition is over an arbitrary collection of sets while
the intersection in (c) is a finite one.
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Proof. (a) Obvious.

(b) Let x ∈
⋃
α∈AGα. There exists some α1 such that x ∈ Gα1 . As Gα1 is open, there

is some Bρ(x) ⊂ Gα1 . But then Bρ(x) ⊂
⋃
α∈AGα, so

⋃
α∈AGα is open.

(c) Let x ∈
⋂N
j=1Gj. For each j, there exists Bρj(x) ⊂ Gj. Let ρ = min {ρ1, . . . , ρN}.

Then Bρ(x) ⊂
⋂N
j=1Gj, so

⋂N
j=1Gj is open.

The complement of an open set is called a closed set. Taking the complement of
Proposition 2.2, we have

Proposition 2.4. Let (X, d) be a metric space. We have

(a) X and φ are closed sets.

(b) If Fα, α ∈ A, are closed sets, then
⋂
α∈A Fα is a closed set.

(c) If F1, . . . , FN are closed sets, then
⋃N
j=1 Fj is a closed set.

Note that X and φ are both open and closed. The terminology of a closed set will be
made clear soon.

Example 2.8. Every ball in a metric space is an open set. Let Br(x) be a ball and
y ∈ Br(x). We claim that Bρ(y) ⊂ Br(x) where ρ = r − d(y, x) > 0. For, if z ∈ Bρ(y),

d(z, x) ≤ d(z, y) + d(y, x)

< ρ+ d(y, x)

= r ,

by the triangle inequality, so z ∈ Br(x) and Bρ(y) ⊂ Br(x) holds. Next, the set E = {y ∈
X : d(y, x) > r} for fixed x and r ≥ 0 is an open set. For, let y ∈ E, d(y, x) > r. We
claim Bρ(y) ⊂ E, ρ = d(y, x)− r > 0,. For, letting z ∈ Bρ(y),

d(z, x) ≥ d(y, x)− d(y, z)

> d(y, x)− ρ
= r,

shows that Bρ(y) ⊂ E, hence E is open. Finally, consider F = {x ∈ X : d(x, z) = r > 0}
where z and r are fixed. Observing that F is the complement of the two open sets Br(z)
and {x ∈ X : d(x, z) > r}, we conclude that F is a closed set.
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Example 2.9. In the real line every open interval (a, b), −∞ ≤ a ≤ b ≤ ∞, is an open
set. Other intervals such as [a, b), [a, b], (a, b], a, b ∈ R, are not open. It can be shown
that every open set G in R can be written as a disjoint union of open intervals. Letting
(an, bn) = (−1/n, 1/n),

∞⋂
n=1

(
− 1

n
,

1

n

)
= {0}

is not open. It shows that Proposition 2.3(c) does not hold when the intersection is over
infinite many sets. On the other hand, [a, b] is a closed set since it is the complement of
the open set R\ (−∞, a)∪ (a,∞). Setting a = b, {a} is closed, that is, a single point is al-
ways a closed set. Finally, some sets we encounter often are neither open nor closed. Take
the set of all rational numbers as example, as every open interval containing a rational
number also contains an irrational number, we see that Q is not open. The same reason-
ing shows that the set of all irrational numbers is not open, hence Q is also not a closed set.

Example 2.10. When we studied multiple integrals in Advanced Calculus II, we encoun-
tered many domains or regions as the domain of integration. These domains are bounded
by nice curves in the plane or by nice surfaces in the space. Without counting its bound-
ary points, the interior of these domains form open sets. The exterior of these domains,
again excluding the boundary points, are also open sets. Therefore, the set consisting of
all boundary points is a closed set as it is the complement of the union of two open sets,
namely, the interior and exterior of the domain.

Example 2.11. Consider the set E = {f ∈ C[a, b] : f(x) > 0, ∀x ∈ [a, b]} in C[a, b]. We
claim that it is open. For f ∈ E, it is positive everywhere on the closed, bounded interval
[a, b], hence it attains its minimum at some x0. It follows that f(x) ≥ m ≡ f(x0) > 0.
Letting r = m/2, for g ∈ Br(f), d∞(g, f) < r = m/2 implies

g(x) ≥ f(x)− |g(x)− f(x)|
> m− m

2

=
m

2
> 0,

for all x ∈ [a, b], hence g ∈ E which implies Br(f) ⊂ E, E is open. Likewise, sets like
{f : f(x) > α, ∀x}, {f : f(x) < α, ∀x} where α is a fixed number. On the other hand,
by taking complements of these open sets, we see that the sets {f : f(x) ≥ α, ∀x}, {f :
f(x) ≤ α, ∀x} are closed.

Example 2.12. Consider the extreme case where the spaceX is endowed with the discrete
metric. We claim that every set is open and closed. Clearly, it suffices to show that every
singleton set {x} is open. But, this is obvious because the ball B1/2(x) = {x} belongs to
{x}. It is also true that Br(x) = X once r > 1.
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We now use open sets to describe the convergence of sequences.

Proposition 2.5. Let (X, d) be a metric space. A sequence {xn} converges to x if and
only if for each open G containing x, there exists n0 such that xn ∈ G for all n ≥ n0.

Proof. Let G be an open set containing x. According to the definition of an open set,
we can find Bε(x) ⊂ G. It follows that there exists n0 such that d(xn, x) < ε for all
n ≥ n0, i.e., xn ∈ Bε(x) ⊂ G for all n ≥ n0. Conversely, taking G = Bε(x), we see that
xn → x.

From this proposition we deduce the following result which explains better the termi-
nology of a closed set.

Proposition 2.6. The set A is a closed set in (X, d) if and only if whenever {xn} ⊂ A
and xn → x as n→∞ implies that x belongs to A.

Proof. ⇒). Assume on the contrary that x does not belong to A. As X \ A is an open
set, we can find a ball Bε(x) ⊂ X \ A. However, as xn → x, there exists some n0 such
that xn ∈ Bε(x) for all n ≥ n0, contradicting the fact that xn ∈ A.

⇐). If X \A is not open, say, we could find a point x ∈ X \A such that B1/n(x)
⋂
A 6= φ

for all n. Pick xn ∈ B1/n(x)
⋂
A to form a sequence {xn}. Clearly {xn} converges to x.

By assumption, x ∈ A, contradiction holds. Hence X \ A must be open.

Now we use open sets to describe continuity.

Proposition 2.7. Let f : (X, d)→ (Y, ρ).

(a) f is continuous at x if and only if for every open set G containing f(x), f−1(G)
contains Bε(x) for some ε > 0.

(b) f is continuous in X if and only if for every open G in Y , f−1(G) is an open set in
X.

These statements are still valid when “open” is replaced by “closed”.

Proof. We consider (a) and (b) comes from (a) easily. Proposition 2.1 may be useful here,
but we start with the definition in the following proof.

⇒). Suppose there exists some open G such that f−1(G) does not contain B1/n(x) for all
n ≥ 1. Pick xn ∈ B1/n(x), xn /∈ f−1(G). Then xn → x but f(xn) does not converge to x,
contradicting the continuity of f .
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⇐). Let {xn} → x in X. Given any open set G containing f(x), we can find Br(x) ⊂
f−1(G). Thus, there exists n0 such that xn ∈ Br(x) for all n ≥ n0. It follows that
f(xn) ∈ G for all n ≥ n0. By Proposition 2.5, f is continuous at x.

This proposition shows in particular that for a continuous function F : (X, d) → R,
the sets F−1((a, b)) are open and F−1([a, b]),−∞ ≤ a < b ≤ ∞, are closed. This gives an
effective way to determine whether a set is open or closed.

Example 2.13. Consider Example 2.10 again. In R2, the domains are obtained as the
intersection of several curves. A curve may be described as the zero set of some function.
A typical description of a domain would be like

D =
{

(x, y) ∈ R2 : f(x, y) < g(x, y), x ∈ (a, b)
}

where f, g are continuous function from Rn to R. If we let A = {(x, y) : (g−f)(x, y) > 0}
and B = {(x, y) : x ∈ (a, b), y ∈ (−∞,∞)}. Both A and B are open, so D = A ∩ B is
also an open set.

Example 2.14. let A be a non-empty set in (X, d). The set Gρ = {x ∈ X : d(x,A) < ρ}
is open in view of the continuity of the distance function d(x,A). When A is closed,
we claim that A =

⋂
nG1/n, that is, every closed set can be expressed as the countable

intersection of open sets. To see this, it suffices to show
⋂
nG1/n ⊂ A, for the inclusion

from the other side is obvious. Let x belong to this countable intersection. For each n,
there is some xn ∈ A such that d(x, xn) < 1/n. In other words, xn → x, so x ∈ A since
A is closed.

2.3 Points in Metric Spaces

We describe some further useful notions associated to sets in a metric space.

Let E be a set in (X, d). A point x is called a boundary point of E if G ∩ E and
G \E are non-empty for every open set G containing x. Of course, it suffices to take G of
the form Bε(x) for all small ε or ε = 1/n, n ≥ 1. We denote the boundary of E by ∂E.
The closure of E, denoted by E, is defined to be E ∪ ∂E. Clearly ∂E = ∂(X \E). The
boundary of the ball Br(x) in Rn is the sphere Sr(x) = {y ∈ Rn : d2(y, x) = r}. Hence,
the closed ball Br(x) is given by Br(x)

⋃
Sr(x), which is precisely the closure of Br(x).

Example 2.15. Let E = [0, 1)× [0, 1) ⊂ R2. It is easy to see that ∂E = [0, 1]× {0, 1} ∪
{0, 1} × [0, 1]. Thus some points in ∂E belong to E and some do not. The closure of E,
E, is equal to [0, 1]× [0, 1].
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It can be seen from definition that the boundary of the empty set is the empty set.
Also, the boundary of a set is always a closed set. For, let {xn} be a sequence in ∂E
converging to some x. For any ball Br(x), we can find some xn in it, so the ball Bρ(xn), ρ =
r − d(xn, x) > 0, is contained in Br(x). As xn ∈ ∂E, Bρ(xn) has non-empty intersection
with E and X \E, so does Br(x) and x ∈ ∂E too. The following proposition characterizes
the closure of a set as the smallest closed set containing this set.

Proposition 2.8. Let E be a set in (X, d). We have

E =
⋂
{C : C is a closed set containing E}.

Proof. We first claim that E is a closed set. It suffices to show X \ E is open. Let
x ∈ X \ E. Since x is not a boundary point, there exists some Bρ(x) ⊂ X \ E. Let
y ∈ ∂E, we can find yn ∈ E, yn → y. Using d(yn, x) > ρ we see that y cannot belong to
Bρ/2(x). Thus Bρ/2(x) ⊂ X \ E and X \ E is open. Next we claim that E is contained
in any closed set C containing E. It suffices to show that ∂E ⊂ C. Indeed, if x ∈ ∂E,
every ball B1/n(x) would have non-empty intersection with E. By picking a point xn from
B1/n(x) ∩E, we obtain a sequence {xn} in E converging to x as n→∞. As C is closed,
x belongs to C by Proposition 2.6.

A point x is called an interior point of E if there exists an open set G such that
x ∈ G ⊂ E. It can be shown that all interior points of E form an open set call the
interior of E, denoted by Eo. It is not hard to see that E0 = E \ ∂E. The interior of
a set is related to its closure by the following relation: Eo = X \

(
X \ E

)
. Using this

relation, one can show that the interior of a set is the largest open set sitting inside E.
More precisely, G ⊂ E0 whenever G is an open set in E.

Example 2.16. Consider the set of all rational numbers E in [0, 1]. It has no interior point
since there are irrational numbers in every open interval containing a rational number, so
Io is the empty set. On the other hand, since every open interval contains some rational
numbers, the closure of E, E, is [0, 1]. It shows the interior and closure of a set could be
very different.

Example 2.17. In Example 2.10 we consider domains in R2 bounded by several pieces
of continuous curves. Let D be such a domain and the curves bounding it be S. It is
routine to verify that ∂D = S, that is, the set of all boundary points of D is precisely the
S and the closure of D, D, is D ∪ S. The interior of D is D.

Example 2.18. For any two sets E and F in the same space, it is not hard to show
E ∪ F = E ∪F . But (E ∪F )o may not always equal to Eo ∪F o. An extreme case is, take
E = Q and I in R. We have (Q ∪ I)0 = R0 = R, but Qo ∪ Io = φ ∪ φ = φ. In general, we
only have Eo ∪ F 0 ⊂ (E ∪ F )o.
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Example 2.19. Let S = {f ∈ C[0, 1]) : 1 < f(x) ≤ 5, x ∈ [0, 1]}. We have S = {f ∈
C[0, 1] : 1 ≤ f(x) ≤ 5, x ∈ [0, 1]}. For, denote this set by A. As we have A = f−1([1, 5]
where f is continuous, A is a closed set containing S. On the other hand, let f ∈ A, the
functions fn(x) = max{f(x), 1 + 1/n} ∈ S, n ≥ 1, and fn → f in sup-norm. (Recall the
fact that max{f, g} is continuous when f and g are continuous.) Hence every function
in A is the limit of some sequence in S, so A is contained in any closed set containing S.
We conclude that A is the smallest closed set containing S, that is, A = S. On the other
hand, the interior of S is given by So = {f ∈ C[0, 1] : 1 < f(x) < 5, x ∈ [0, 1]}. Denoting
this set by B, from B = f−1((1, 2)) we see that B is open set in S. On the other hand,
if g is an interior point of S, there is some δ > 0 such that Bδ(g) ⊂ S. In other words,
1 < h(x) ≤ 5 for all h, ‖h − g‖∞ < δ. In particular, g(x) < h(x) − δ ≤ 5 on [0, 1]. So g
belongs to B, that is, B is the largest open set in S.

2.4 Sequentially Compactness and Compactness

We start by reviewing the classical Bolzano-Weierstrass theorem.

Bolzano-Weierstrass Theorem (Old Version). Every bounded sequence in R has a
convergent subsequence.

This is a fundamental theorem in MATH2050, and the proof in fact works in Rn for any
n ≥ 1. I leave you as an exercise to prove it again. This theorem can be reformulated as
the property of a set rather than that of a sequence. A set E in Rn is called sequentially
compact if every sequence in E contains a convergent subsequence with limit in E. We
have

Bolzano-Weierstrass Theorem. A set in Rn is sequentially compact if and only if it
is closed and bounded.

The proof runs as follows. Let {xn} ⊂ E, xn → x0. When E is sequentially compact,
there is a subsequence {xnk

} converging to some z ∈ E. By the uniqueness of limit,
x0 = z ∈ E, hence E is a closed set. On the other hand, there is some {yn} ⊂ E, |yn| → ∞,
when E is not bounded. Obviously this sequence cannot have any convergent subsequence.
This conflict shows that a sequentially compact set must be bounded too. Conversely,
when E is bounded, any sequence in it is a bounded sequence. By the old version of
Bolzano-Weierstrass theorem, it has a convergent subsequence. Since E is closed, the
limit of this subsequence must belong to E. Thus E is sequentially compact.

A less known result is the Heine-Borel theorem. This theorem, which can be found
in an appendix of Bartle-Sherbert, was mentioned in MATH2050. To state it we need
to some new notions. Let E be a set in Rn. A collection of open sets, finite or infinite,
{Gα}, α ∈ A, is called an open cover of E if E ⊂

⋃
αGα. A finite subcover is a finite

subset of {Gα}, {Gα1 , · · · , GαN
} such that E ⊂

⋃N
k=1Gαk

. A set in E is called compact
if every open cover of E admits a finite subcover. We will call this property the finite
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cover property. A set is compact if and only if it satisfies the finite cover property. Now
we can state

Heine-Borel Theorem. A set in Rn is compact if and only if it is closed and bounded.

I will leave the proof of this theorem as exercise.

Combining the two theorems, we see that a set E in the Euclidean space is sequentially
compact if and only if it is compact. This looks unnatural at first sight. Sequential
compactness is concerned with the behavior of sequences and yet compactness asserts
some so-called rather unmotivated finite cover property. It will take some time to get
used to it.

The notion of a sequentially compact and compact sets makes perfect sense in a general
metric space. Sequences and subsequences, open/closed sets, bounded sets, etc are all
well-defined. To make it formal, let us call a set E in (X, d) sequentially compact if
every sequence in E contains a subsequence with limit in E and compact if every open
cover of E admits a finite subcover. We also define the empty set to be sequentially
compact and compact.

We will show shortly that these two notions are equivalent. First of all, we observe

Proposition 2.9. Every sequentially compact/compact set in a metric space is closed and
bounded.

Proof. Let K be a sequentially compact set. To show that it is closed, let {xn} ⊂ K and
xn → x0. We need to show that x0 ∈ K. As K is compact, there exists a subsequence
{xnj
} ⊂ K converging to some z in K. By the uniqueness of limit, we have x0 = z ∈ K, so

x0 ∈ K and K is closed. Next, we show that K is bounded. If on the contrary it is not, for
a fixed point w, K is not contained in the balls Bn(w) for all n. Picking xn ∈ K \Bn(w),
we obtain a sequence {xn} satisfying d(xn, w) → ∞ as n → ∞. By the compactness of
K, there is a subsequence {xnj

} converging to some z in K. Therefore, for all sufficiently
large nj, xnj

∈ B1(z). By the triangle inequality,

d(xnj
, w) ≤ d(xnj

, w) + d(w, z)

≤ 1 + d(x1, z) <∞ ,

contradicting d(xnj
, w)→∞ as nj →∞. Hence K must be bounded.

Let F be a compact set. Fix a point z ∈ X. The sets {Bn(z)}, n ≥ 1, form an open
cover of F , so there is a finite subcover {B1(z), · · · , BN(z)}. It follows that

E ⊂
N⋃
k=1

Bk(z) = BN(z)

is bounded. Next, let z ∈ X \ F . The sets {Ok}, k ≥ 1, where Ok = {x : d(x, z) > 1/k}
form an open cover of F . Let Ok1 , · · · , OkN , k1 ≤ k2 · · · ≤ kN , be a finite subcover of F .
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Then F ⊂ OkN , which implies

B1/kN (z) =
N⋂
j=1

B1/kj(z) ⊂ X \ F .

We conclude that X \ F is open and so F is closed.

Are there closed and bounded sets which are not compact or sequentially compact in
a metric space? To describe an example we need to go beyond Rn where we can be free
of the binding of Bolzano-Weierstrass Theorem and Heine-Borel Theorem.

Example 2.20. Let S be the vector space of all bounded sequences endowed with the
metric d(a, b) = supk≥1 |ak − bk|. Let E = {a ∈ S : 0 ≤ ak ≤ 1, a = {ak}} . It is clear
that E is closed and bounded. Now, the sequence {an} given by ank = 0 if k 6= n and
equal to 1 if k = n is a sequence in E without any convergent subsequence. It is because
d(an, am) = 1 for all distinct n,m.

Example 2.21. Consider C[0, 1] under the supnorm and the set

S = {f ∈ C[0, 1] : 0 ≤ f(x) ≤ 1} .

Clearly it is closed and bounded in C[0, 1]. We claim that it is not sequentially compact.
For, consider the sequence {fn} in (C[0, 1], d∞) given by

fn(x) =

{
nx, x ∈ [0, 1

n
]

1, x ∈ [ 1
n
, 1].

{fn(x)} converges pointwisely to the function f(x) = 1, x ∈ (0, 1] and f(0) = 0 which is
discontinuous at x = 0, that is, f does not belong to C[0, 1]. If {fn} has a convergent
subsequences, then it must converge uniformly to f . But this is impossible because the
uniform limit of a sequence of continuous functions must be continuous. Hence S cannot
be sequentially compact.

Our aim is to show the equivalence between sequential compactness and compactness.
In order to do this we need to introduce more terminologies. A set E in (X, d) satisfies
the finite intersection property if whenever a collection of closed sets {Fα}, α ∈ A,
satisfies

⋂
αk
Fαk
∩E 6= φ for any finite subcollection,

⋂
α Fα 6= φ. A set E is called totally

bounded if, for every ρ > 0, there exist finitely many balls Bρ(x1), · · · , Bρ(xn) forming
an open cover of E.

Proposition 2.10. A set is compact if and only if it satisfies the finite intersection
property.
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Proof. Let E be set in (X, d). The finite intersection property can be reformulated as, if
{Fα} is a collection of closed sets satisfying

⋂
α Fα ∩E = φ, there is a finite subcollection

{Fαj
, · · · , FαN

} satisfying
⋂
j Fαj

∩E = φ. If now E satisfies the finite cover property and⋂
α Fα ∩ E = φ, the collection {Gα = X \ Fα} forms an open cover of E. So E admits

a finite cover {Gα1 , · · · , GαN
}. But then E ⊂

⋃
j Gαj

implies
⋂
j Fαj

∩ E = φ. So E
satisfies the finite intersection property. Reversing the reasoning, we see that the finite
intersection property implies the finite cover property.

Proposition 2.11. Every sequentially compact set is totally bounded.

Proof. Let E be compact. Pick Bα(x1) for some x1 ∈ E. Suppose E \ Bα(x1) 6= φ. We
can find x2 /∈ Bα(x1) so that d(x2, x1) ≥ α. Suppose E \

(
Bα(x1)

⋃
Bα(x2)

)
is non-empty.

We can find x3 /∈ Bα(x1)
⋃
Bα(x2) so that d(xj, x3) ≥ α, j = 1, 2. Keeping this procedure,

we obtain a sequence {xn} in E such that

E \
n⋃
j=1

Bα(xj) 6= φ and d(xj, xn) ≥ α, j = 1, 2, . . . , n− 1.

By the compactness of E, there exists
{
xnj

}
and x ∈ E such that xnj

→ x as j → ∞.
But then d(xnj

, xnk
) < d(xnj

, x)+d(xnk
, x)→ 0, contradicting d(xj, xn) ≥ α for all j < n.

Hence one must have E \
⋃N
j=1Bα(xj) = φ for some finite N .

The following is the main result in this section.

Theorem 2.12. Let E be a set in (X, d). The followings are equivalent:

(a) E is sequentially compact;

(b) E is compact ; and

(c) E satisfies the finite intersection property.

Proof. The equivalence between (b) and (c) has been established in Proposition 2.10.

(a)⇒ (b). Let {Gα} be an open cover of E without finite subcover and we will draw a
contradiction. By Proposition 2.11, for each k ≥ 1, there are finitely many balls of radius
1/k covering E. We can find a set B1/k ∩E (suppress the irrelevant center) which cannot
be covered by finitely many members in {Gα}. Pick xk ∈ B1/k∩E to form a sequence. By
the sequential compactness of E, we can extract a subsequence {xkj} such that xkj → x0
for some x0 ∈ E. Since {Gα} covers E, there must be some Gα1 that contains x0. As Gα1

is open and the radius of B1/kj tends to 0, we deduce that, for all sufficiently large kj,
B1/kj ∩ E is contained in Gα1 . In other words, Gα1 forms a single subcover of B1/kj ∩ E,
contradicting our choice of B1/kj ∩ E. Hence (b) must be valid.
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(b), (c)⇒ (a). Let {xn} be a sequence in E. Without loss of generality we may assume
that it contains infinitely many distinct points, otherwise the conclusion is obvious. Let A
be the set consisting of all points in this sequence. All balls of radius 1 cover E and hence
A. By the finite cover property there is a finite cover of A. We can pick one B1 such that
B1 ∩A contains infinitely many points from A. Next, all balls of radius 1/2 cover E and
in particular B1∩A. By the same reasoning, we let B1/2 be a ball of radius 1/2 such that
B1/2∩B1∩A contains infinitely many points from A. By repeating this process, we obtain
a sequence of balls, {B1/k}, one of each of radius 1/k, such that there are infinitely many
points of A inside Ck = B1/k ∩B1/(k−1) · · · ∩B1 ∩A. Pick a point from each Ck to form a
subsequence {zk} of {xn}. (Here we use the fact that there are infinitely many points of
A in Ck to guarantee the existence of this subsequence.) Observing that Ck is descending
and enjoys the finite intersection property,

⋂
k Ck is non-empty. Let z be a point in this

common intersection. (In fact, there is exactly one point in this common intersection, but
we do not need this fact.) As the radius of B1/k tending to 0, {zk} converges to z. By
Proposition 2.9, z ∈ E. We have shown that E is sequentially compact.

We present two properties of a compact set below. In each result two proofs will be
given. The first one is based on its sequential compactness and the second one on its
compactness.

Proposition 2.13. Let K be a compact set and G be an open set, K ⊂ G, in the metric
space (X, d). Then

d(K, ∂G) > 0,

where d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

We point out that this proposition no longer holds when K is replaced by a closed set.
For example, take X = R2 and G = {(x, y) : x, y > 0}. The closed set F = {(x, y) : xy ≥
1, x, y > 0} is contained in G, disjoint from ∂G but d(F, ∂G) = 0.

Proof. First proof: Suppose on the contrary that d(K, ∂G) = 0. By the definition of
the distance between two sets, there are {xn} ⊂ K and {yn} ⊂ ∂G, d(xn, yn) → 0. By
the compactness of K, there exists a subsequence {xnj

} and x∗ ∈ K such that xnj
→ x∗.

From d(x∗, ynj
) ≤ d(xnj

, ynj
) + d(x∗, xnj

)→ 0 we see that x∗ ∈ ∂G (the boundary of a set
is always closed). But then G ∩ ∂G is non-empty, which is impossible as G is open. So
d(K, ∂G) > 0.

Second proof: For x ∈ K, we claim that d(x, ∂G) > 0. For, if d(x, ∂G) = 0, there
exists {yn} ⊂ ∂G, d(x, yn) → 0, but then x belongs to ∂G. As the boundary of a
set is always a closed set, x ∈ ∂G contradicting x ∈ G. So d(x, ∂G) > 0. Due the
continuity of x 7→ d(x, ∂G), we can find a small number ρx > 0 such that d(y, ∂G) ≥
d(x, ∂G)/2 > 0 for all y ∈ Bρx(x). That is, d(Bρx(x), ∂G) ≥ d(x, ∂G)/2. The collection
of all balls Bρx(x), x ∈ K, forms an open cover of K. Since K is compact, there exist
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x1, · · · , xN , such that Bρxj
(xj), j = 1, · · · , N, form a finite subcover of K. Taking δ =

min{d(x1, ∂G)/2, · · · , d(xN , ∂G)/2}, we conclude d(K, ∂G) ≥ d(∪jBρj(xj), ∂G) ≥ δ > 0.

Proposition 2.14. A continuous map from a compact set K in (X, d) to (Z, ρ) is uni-
formly continuous.

Uniform continuity in a metric space can be defined similarly as it is in Rn simply by
replacing the Euclidean metric by a general metric.

Proof. First Proof: Let f be such a map. If on the contrary there are some ε0 > 0,
xn, yn, n ≥ 1, such that

ρ(f(xn), f(yn)) ≥ ε0, d(xn, yn)→ 0, as n→∞.

Passing to a subsequence, we may assume xnk
→ z for some z in K. From d(xnk

, ynk
)→ 0

we also know ynk
→ z too. By continuity we have

ε0 ≤ ρ(f(xnk
), f(ynk

)) ≤ ρ(f(xnk
), f(z)) + ρ(f(z), f(ynk

))→ 0,

as nk →∞, contradiction holds.

Second Proof: The function f is continuous everywhere in K. For each x ∈ K, there exists
Bδx(x) such that ρ(f(x), f(y)) < ε/2 for all y ∈ Bδx(x). The balls Bδx/2(x) form an open
cover of K . By the compactness of K, there is a finite subcover {Bδxj /2

}, j = 1, · · · , N .

Let x, y ∈ K satisfying d(x, y) < δ = min{δx1/2, · · · , δxN/2}, there must be some k
such that x ∈ Bδxk/2

(xk), that is, d(x, xk) < δxk/2. Thus ρ(f(x), f(xk)) < ε/2. On
the other hand, d(y, xk) ≤ d(y, x) + d(x, xk) < δ + δxk/2 < δxk , so ρ(f(y), f(x)) ≤
ρ(f(y), f(xk)) + ρ(f(xk), f(x)) < ε/2 + ε/2 = ε.

Although the second proof is longer in these two propositions, it shows clearly how
local information can be pasted to global information when the set is compact.

A property that is preserved under a continuous map is called a topological property.
For instance, a convergent sequence is mapped under a continuous map to another con-
vergent sequence, so convergence of a sequence is a topological property. On the other
hand, a continuous map may send an open set to a non-open set. A simple example is the
constant map f : R → R that sends the open set (−∞,∞) to a single point. Therefore,
the openness of a set is not a topological property. (However, it is preserved when the
inverse map exists and is also continuous.) In the following we show that compactness of
a set is topological.

Proposition 2.15. Let E be a compact set in (X, d) and F : (X, d)→ (Y, ρ) be continu-
ous. Then f(E) is a compact set in (Y, ρ).
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Proof. Let {yn} be a sequence in f(E) and let {xn} be in E satisfying f(xn) = yn for all
n. By the compactness of E, there exist some {xnj

} and x in E such that xnj
→ x as

j → ∞. By the continuity of f , we have ynj
= f(xnj

) → f(x) in f(E). Hence f(E) is
compact.

Some theorems which hold for continuous functions defined on a closed, bounded set
in the Euclidean space may no longer hold on arbitrary closed, bounded sets in a general
metric space. Nevertheless, they continue to hold when the sets are strengthened to
compact ones.

Comments on Chapter 2. A topology on a set X is a collection of sets τ consisting
the empty set and X itself which is closed under arbitrary union and finite intersection.
Each set in τ is called an open set. The pair (X, τ) is called a topological space. From
Proposition 2.2 we see that the collection of all open sets in a metric space (X, d) forms
a topology on X. This is the topological space induced by the metric. Metric spaces
constitute a large class of topological spaces, but not every topological space comes from
a metric. However, from the discussions in Section 2 we know that continuity can be de-
fined solely in terms of open sets. It follows that continuity can be defined for topological
spaces, and this is crucial for many further developments. In the past, metric spaces were
covered in Introduction to Topology. Feeling that the notion of a metric space should be
learned by every math major, we move it here.

Wiki gives a nice summary of metric spaces under “metric space”. Bolzano-Weierstrass
Theorem states that every sequence in a closed, bounded set in Rn has a convergent sub-
sequence. Heine-Borel Theorem says every open cover of a closed, bounded set in Rn

admits a finite subcover. Bolzano-Weierstrass Theorem has motivated our definition of
a sequentially compact set in a metric space, and yet Theorem 2.13 shows that one can
also use the description in Heine-Borel Theorem to define compactness.

Although it is shown in Theorem 2.13 that a set in a metric space is sequentially com-
pact if and only if it is compact. This theorem no longer holds in a general topological
space. Indeed, a compact set may not be even closed in some topological spaces.

Many theorems in finite dimensional space are extended to infinite dimensional normed
spaces when the underlying closed, bounded set is replaced by a compact set. Thus it is
extremely important to study compact sets in a metric space. We will study compact sets
in C[a, b] in Chapter 3. A theorem of Arzela-Ascoli provides a complete characterization
of compact sets in the space C[a, b].
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Although metric space is a standard topic, I found it difficult to fix upon a single
reference book. Rudin’s Principles covers some metric spaces, but his attention is mainly
on the Euclidean space. Moreover, for a devoted student, this book should have been
studied in a previous summer. Finally, I decide to list Dieudonne’s old book “Foundation
of Modern Analysis” as the only reference. This is the book from which I learned the
subject, but it seems a bit out-dated and not easy to follow. Basic things on metric
spaces have not changed at all in these years (despite delicate analysis on the convergence
in metric spaces has become a hot research topic lately). Another good reference which is
more comprehensible but contains less content is G.F. Simmons “Introduction to Topology
and Modern Analysis”. The chapters on metric and topological spaces are highly readable.



Chapter 3

The Contraction Mapping Principle
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In a complete metric space every Cauchy sequence converges. Completeness is introduced
in Section 1 where it is shown that every metric space can be enlarged to a complete one
without further condition. The importance of complete metric spaces partly lies on the
Contraction Mapping Principle, which is proved in Section 2. Two major applications
of the Contraction Mapping Principle are subsequently given, first a proof of the Inverse
Function Theorem in Section 3 and, second, a proof of the fundamental existence and
uniqueness theorem for the initial value problem of differential equations in Section 4.

3.1 Complete Metric Spaces

In Rn a basic property is that every Cauchy sequence converges. This property is called
the completeness of the Euclidean space. The notion of a Cauchy sequence is well-defined
in a metric space. Indeed, a sequence {xn} in (X, d) is a Cauchy sequence if for ev-
ery ε > 0, there exists some n0 such that d(xn, xm) < ε, for all n,m ≥ n0. A metric
space (X, d) is complete if every Cauchy sequence converges. A subset E is complete if
(E, d

∣∣
E×E) is complete, or, equivalently, every Cauchy sequence in E converges with limit

in E.

Proposition 3.1. Let (X, d) be a metric space.

(a) Every closed set in X is complete provided X is complete.

(b) Every complete set in X is closed.

(c) Every compact set in X is complete.

1
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Proof. (a) Let (X, d) be complete and E a closed subset of X. Every Cauchy sequence
{xn} in E is also a Cauchy sequence in X. By the completeness of X, there is some x
in X to which {xn} converges. However, as E is closed, x also belongs to E. So every
Cauchy sequence in E has a limit in E.

(b) Let E ⊂ X be complete and {xn} a sequence converging to some x in X. Since every
convergent sequence is a Cauchy sequence, {xn} must converge to some z in E. By the
uniqueness of limit, we must have x = z ∈ C, so C is closed.

(c) Let {xn} be a Cauchy sequence in the compact set K and let {xnj} be a convergent
subsequence with limit z. Given ε > 0, d(z, xnj) < ε/2 for all nj ≥ nj1 . On the other
hand, there is some n1 such that d(xn, xm) < ε/2 for all n,m ≥ n1. Choosing nj1 ≥ n1,
we have d(xn, z) ≤ d(xn, xn1) + d(xn1 , z) < ε, for all n ≥ n1.

Example 3.1. The space R is complete. Therefore, as the closed subsets in R, the in-
tervals [a, b], (−∞, b] and [a,∞) are all complete sets. In contrast, the set [a, b), b ∈ R,
is not complete. For, simply observe that the sequence {b − 1/k}, k ≥ k0 for some large
k0, is a Cauchy sequence in [a, b) and yet it does not have a limit in [a, b) (the limit is b,
which lies outside [a, b)). The set of all rational numbers, Q, is also not complete. Every
irrational number is the limit of some sequence in Q, and these sequence are Cauchy
sequences whose limits lie outside Q.

Example 3.2. In Mathematical Analysis II we learned that every Cauchy sequence in
C[a, b] with respect to the sup-norm implies that it converges uniformly, so the limit is
again continuous and C[a, b] is a complete space. The subset E = {f : f(x) ≥ 0, ∀x}
is also complete. Let {fn} be a Cauchy sequence in E, it is also a Cauchy sequence in
C[a, b] and hence there exists some f ∈ C[a, b] such that {fn} converges to f uniformly.
As uniform convergence implies pointwise convergence, f(x) = limn→∞ fn(x) ≥ 0, so f
belongs to E and E is complete. Next, let P [a, b] be the collection of all restriction of
polynomials on [a, b]. It is not complete. Taking the sequence hn(x) given by

hn(x) =
n∑
k=0

xk

k!
,

{hn} is a Cauchy sequence in P [a, b] which converges to ex. As ex is not a polynomial,
P [a, b] is not a complete.

To obtain a typical non-complete set, we consider the interval [0, 1] in R which is
complete and, in fact, compact. Take away one point z from it to form E = [a, b]\{z}. E
is not complete, since every sequence in E converging to z is a Cauchy sequence which does
not converge in E. In general, you may think of sets with “holes” being non-complete ones.
Now, given a non-complete metric space, can we make it into a complete metric space
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by filling out all the holes? The answer turns out to affirmative. We can always enlarge
a non-complete metric space into a complete one by putting in some ideal points. The
process of achieving this goal was long invented by Cantor (1845–1918) in his construction
of the real numbers from rational numbers. We start with some formalities.

A metric space (X, d) is called isometrically embedded in (Y, ρ) if there is a map-
ping Φ : X → Y such that d(x, y) = ρ(Φ(x),Φ(y)). The mapping Φ is sometimes called a
metric preserving map. Note that it must be 1-1 and continuous. We call the metric
space (Y, ρ) a completion of (X, d) if it is complete, (X, d) is embedded in (Y, ρ) and
Φ(X) = Y . The latter condition is a minimality condition; (X, d) is enlarged merely to
accommodate those ideal points to make the space complete. When X is isometrically
embedded in Y , we may identify X with its image Φ(X) and d with ρ. Or, we can image
X being enlarged to a larger set Y where d is also extended to some ρ on Y which makes
Y complete.

Theorem 3.2. Every metric space has a completion.

Before the proof we briefly describe the idea. When (X, d) is not complete, we need
to invent ideal points and add them to X to make it complete. The idea goes back
to Cantor’s construction of the real numbers from rational numbers. Suppose now we
have only rational numbers and we want to add irrationals. First we identify Q with a
proper subset in a larger set as follows. Let C be the collection of all Cauchy sequences
of rational numbers. Every point in C is of the form (x1, x2, · · · ) where {xn}, xn ∈ Q,
forms a Cauchy sequence. A rational number x is identified with the constant sequence
(x, x, x, . . . ) or any Cauchy sequence which converges to x. For instance, 1 is identi-
fied with (1, 1, 1, . . . ), (0.9, 0.99, 0.999, . . . ) or (1.01, 1.001, 1.0001, . . . ). Clearly, there are
Cauchy sequences which cannot be identified with rational numbers. For instance, there
is no rational number corresponding to (3, 3.1, 3.14, 3.141, 3.1415, . . . ), as we know, its
correspondent should be the irrational number π. Similar situation holds for the sequence
(1, 1.4, 1.41, 1.414, · · · ) which should correspond to

√
2. Since the correspondence is not

injective, we make it into one by introducing an equivalence relation on C Indeed, {xn}
and {yn} are said to be equivalent if |xn − yn| → 0 as n → ∞. The equivalence relation

∼ forms the quotient C/ ∼ which is denoted by C̃. Then x 7→ x̃ sends Q injectively into

C̃. It can be shown that C̃ carries the structure of the real numbers. In particular, those
points not in the image of Q are exactly all irrational numbers. Now, for a metric space
the situation is similar. We let C̃ be the quotient space of all Cauchy sequence in X under
the relation {xn} ∼ {yn} if and only if d(xn, yn)→ 0. Define d̃(x̃, ỹ) = limn→∞ d(xn, yn),

for x ∈ x̃, y ∈ ỹ. We have the embedding (X, d)→ (X̃, d̃), and we can further show that
it is a completion of (X, d).

The following proof is for optional reading. In the exercise we will present a simpler
but less instructive proof.
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Proof of Theorem 2.16. Let C be the collection of all Cauchy sequences in (M,d). We
introduce a relation ∼ on C by x ∼ y if and only if d(xn, yn) → 0 as n → ∞. It is

routine to verify that ∼ is an equivalence relation on C. Let X̃ = C/ ∼ and define a map:

X̃ × X̃ 7→ [0,∞) by

d̃(x̃, ỹ) = lim
n→∞

d(xn, yn)

where x = (x1, x2, x3, · · · ) and y = (y1, y2, y3, · · · ) are respective representatives of x̃ and
ỹ. We note that the limit in the definition always exists: For

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

and, after switching m and n,

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(ym, yn).

As x and y are Cauchy sequences, d(xn, xm) and d(ym, yn) → 0 as n,m → ∞, and so
{d(xn, yn)} is a Cauchy sequence of real numbers.

Step 1. (well-definedness of d̃) To show that d̃(x̃, ỹ) is independent of their representatives,
let x ∼ x′ and y ∼ y′. We have

d(xn, yn) ≤ d(xn, x
′
n) + d(x′n, y

′
n) + d(y′n, yn).

After switching x and x′, and y and y′,

|d(xn, yn)− d(x′n, y
′
n)| ≤ d(xn, x

′
n) + d(yn, y

′
n).

As x ∼ x′ and y ∼ y′, the right hand side of this inequality tends to 0 as n→∞. Hence
limn→∞ d(xn, yn) = limn→∞ d(x′n, y

′
n).

Step 2. (d̃ is a metric). Let {xn}, {yn} and {zn} represent x̃, ỹ and z̃ respectively. We
have

d̃(x̃, z̃) = lim
n→∞

(
d(xn, zn)

≤ lim
n→∞

(
d(xn, yn) + d(yn, zn)

)
= lim

n→∞
d(xn, yn) + lim

n→∞
d(yn, zn)

= d̃(x̃, ỹ) + d̃(ỹ, z̃)

Step 3. We claim that there is a metric preserving map Φ : X 7→ X̃ satisfying Φ(X) = X̃.

Given any x in X, the “constant sequence” (x, x, x, · · · ) is clearly a Cauchy sequence.

Let x̃ be its equivalence class in C. Then Φx = x̃ defines a map from X to X̃. Clearly

d̃(Φ(x),Φ(y)) = lim
n→∞

d(xn, yn) = d(x, y)
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since xn = x and yn = y for all n, so Φ is metric preserving and it is injective in particular.

To show that the closure of Φ(X) is X̃, we observe that any x̃ in X̃ is represented by a
Cauchy sequence x = (x1, x2, x3, · · · ). Consider the constant sequence xn = (xn, xn, xn, · · · )
in Φ(X). We have

d̃(x̃, x̃n) = lim
m→∞

d(xm, xn).

Given ε > 0, there exists an n0 such that d(xm, xn) < ε/2 for all m,n ≥ n0. Hence

d̃(x̃, x̃n) = limm→∞ d(xm, xn) < ε for n ≥ n0. That is x̃n → x̃ as n→∞, so the closure of
Φ(M) is precisely M .

Step 4. We claim that (X̃, d̃) is a complete metric space. Let {x̃n} be a Cauchy sequence

in X̃. As Φ(X) is equal to M̃ , for each n we can find a ỹ in Φ(X) such that

d̃(x̃n, ỹn) <
1

n
.

So {ỹn} is also a Cauchy sequence in d̃. Let yn be the point in X so that yn =
(yn, yn, yn, · · · ) represents ỹn. Since Φ is metric preserving, and {ỹn} is a Cauchy se-

quence in d̃, {yn} is a Cauchy sequence in X. Let (y1, y2, y3, · · · ) ∈ ỹ in X̃. We claim that

ỹ = limn→∞ x̃n in X̃. For, we have

d̃(x̃n, ỹ) ≤ d̃(x̃n, ỹn) + d̃(ỹn, ỹ)

≤ 1

n
+ lim

m→∞
d(yn, ym)→ 0

as n→∞. We have shown that d̃ is a complete metric on X̃.

Completion of a metric space is unique once we have clarified the meaning of unique-
ness. Indeed, call two metric spaces (X, d) and (X ′, d′) isometric if there exists a bijective
embedding from (X, d) onto (X ′, d′). Since a metric preserving map is always one-to-one,
the inverse of of this mapping exists and is a metric preserving mapping from (X ′, d′) to
(X, d). So two spaces are isometric provided there is a metric preserving map from one
onto the other. Two metric spaces will be regarded as the same if they are isometric,
since then they cannot be distinguish after identifying a point in X with its image in
X ′ under the metric preserving mapping. With this understanding, the completion of a
metric space is unique in the following sense: If (Y, ρ) and (Y ′, ρ′) are two completions of
(X, d), then (Y, ρ) and (Y ′, ρ′) are isometric. We will not go into the proof of this fact,
but instead leave it to the interested reader. In any case, now it makes sense to use “the
completion” of X to replace “a completion” of X.

3.2 The Contraction Mapping Principle

Solving an equation f(x) = 0, where f is a function from Rn to itself frequently comes
up in application. This problem can be turned into a problem for fixed points. Literally,
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a fixed point of a mapping is a point which becomes unchanged under this mapping. By
introducing the function g(x) = f(x) + x, solving the equation f(x) = 0 is equivalent to
finding a fixed point for g. This general observation underlines the importance of finding
fixed points. In this section we prove the Contraction Mapping Principle, one of the oldest
fixed point theorems and perhaps the most well-known one. As we will see, it has a wide
range of applications.

A map T : (X, d) → (X, d) is called a contraction if there is a constant γ ∈ (0, 1)
such that d(Tx, Ty) ≤ γd(x, y), ∀x, y ∈ X. A point x is called a fixed point of T if
Tx = x. Usually we write Tx instead of T (x).

Theorem 3.3 (Contraction Mapping Principle). Every contraction in a complete
metric space admit a unique fixed point.

This theorem is also called Banach’s Fixed Point Theorem.

Proof. Let T be a contraction in the complete metric space (X, d). Pick an arbitrary
x0 ∈ X and define a sequence {xn} by setting xn = Txn−1 = T nx0, ∀n ≥ 1. We claim
that {xn} forms a Cauchy sequence in X. First of all, by iteration we have

d(T nx0, T
n−1x0) ≤ γd(T n−1x0, T

n−2x0)

·
·
≤ γn−1d(Tx0, x0).

(3.1)

Next, for n ≥ N where N is to be specified in a moment,

d(xn, xN) = d(T nx0, T
Nx0)

≤ γd(T n−1x0, T
N−1x0)

≤ γNd(T n−Nx0, x0).

By the triangle inequality and (3.1),

d(xn, xN) ≤ γN
n−N∑
j=1

d(T n−N−j+1x0, T
n−N−jx0)

≤ γN
n−N∑
j=1

γn−N−jd(Tx0, x0)

<
d(Tx0, x0)

1− γ
γN .

(3.2)

For ε > 0, choose N so large that d(Tx0, x0)γ
N/(1− γ) < ε/2. Then for n,m ≥ N ,

d(xn, xm) ≤ d(xn, xN) + d(xN , xm)

<
2d(Tx0, x0)

1− γ
γN

< ε,
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thus {xn} forms a Cauchy sequence. As X is complete, x = limn→∞ xn exists. By the
continuity of T , limn→∞ Txn = Tx. But on the other hand, limn→∞ Txn = limn→∞ xn+1 =
x. We conclude that Tx = x.

Suppose there is another fixed point y ∈ X. From

d(x, y) = d(Tx, Ty)

≤ γd(x, y),

and γ ∈ (0, 1), we conclude that d(x, y) = 0, i.e., x = y.

Incidentally, we point out that this proof is a constructive one. It tells you how to
find the fixed point starting from an arbitrary point. In fact, letting n → ∞ in (3.2)
and then replacing N by n, we obtain an error estimate between the fixed point and the
approximating sequence {xn}:

d(x, xn) ≤ d(Tx0, x0)

1− γ
γn, n ≥ 1.

Example 3.3. Let us take X to be R. Then T is nothing but a real-valued function
on R. Denoting the identity map x 7→ x by I. A point on the graph of T is given by
(x, Tx) and a point on the graph of I is (x, x). So every intersection point of both graphs
(x, Tx) = (x, x) is a fixed point of T . From this point of view we can see functions may
or may not have fixed points. For instance, the function Tx = x + ex does not have any
fixed point. By drawing graphs one is convinced that there are functions with graphs
lying below the diagonal line and yet whose slope is always less than one but tends to 1 at
infinity (see exercise for a concrete one). It shows the necessity of γ ∈ (0, 1). On the other
hand, functions like Sx = x(x− 1)(x+ 2) whose graph intersects the diagonal line three
times, so it has three fixed points. The insight of Banach’s Fixed Point Theorem is to
single out a class of functions which admits one and only one fixed point. The contractive
condition can be expressed as ∣∣∣∣Tx− Tyx− y

∣∣∣∣ < γ, ∀x, y.

It means that the slope of T is always bounded by γ ∈ (0, 1). Let (x, Tx) be a point of
the graph of T and consider the cone emitting from this point bounded by two lines of
slopes ±γ. When T is a contraction, it is clear that its graph lies within this cone. A
moment’s reflection tells us that it must hit the diagonal line exactly once.

Example 3.4. Let f : [0, 1] → [0, 1] be a continuously differentiable function satisfying
|f ′(x)| < 1 on [0, 1]. We claim that f admits a fixed point. For, by the mean value
theorem, for x, y ∈ [0, 1] there exists some z ∈ (0, 1) such that f(y)− f(x) = f ′(z)(y−x).
Therefore,

|f(y)− f(x)| = |f ′(z)||y − x|
≤ γ|y − x|,



8 CHAPTER 3. THE CONTRACTION MAPPING PRINCIPLE

where γ = supt∈[0,1] |f ′(t)| < 1 (Why?). We see that f is a contraction. By the Contrac-
tion Mapping Principle, it has a fixed point. In fact, by using the mean-value theorem
one can show that every continuous function from [0, 1] to itself admits at least one fixed
point. This is a general fact. According to Brouwer’s Fixed Point Theorem, every contin-
uous maps from a compact convex set in Rn to itself admits one fixed point. This theorem
surely includes the present case. However, when the set has “non-trivial topology”, fixed
points may not exist. For instance, take X to be A = {(x, y) : 1 ≤ x2 + y2 ≤ 4} and T
to be a rotation. It is clear that T has no fixed point in A. This is due to the topology
of A, namely, it has a hole.

3.3 The Inverse Function Theorem

The Inverse Function Theorem and Implicit Function Theorem play a fundamental role in
analysis and geometry. They illustrate the principle of linearization which is ubiquitous
in mathematics. We learned these theorems in advanced calculus but the proofs were not
emphasized. Now we fill out the gap. Adapting the notations in advanced calculus, a
point x = (x1, x2, · · · , xn) ∈ Rn is sometimes called a vector and we use |x| instead of
‖x‖2 to denote its Euclidean norm in this section.

All is about linearization. Recall that a real-valued function on an open interval I is
differentiable at some x0 ∈ I if there exists some a ∈ R such that

lim
x→x0

∣∣∣f(x)− f(x0)− a(x− x0)
x− x0

∣∣∣ = 0.

In fact, the value a is equal to f ′(x0), the derivative of f at x0. We can rewrite the limit
above using the little o notation:

f(x0 + z)− f(x0) = f ′(x0)z + ◦(z), as z → 0.

Here ◦(z) denotes a quantity satisfying limz→0 ◦(z)/|z| = 0. The same situation carries
over to a real-valued function f in some open set in Rn. A function f is called differentiable
at p0 in this open set if there exists a vector a = (a1, · · · , an) such that

f(p0 + z)− f(p0) =
n∑
j=1

ajzj + ◦(z) as z → 0.

Again one can show that the vector a is uniquely given by the gradient vector of f at p0

∇f(p0) =

(
∂f

∂x1
(p0), · · · ,

∂f

∂xn
(p0)

)
.

More generally, a map F from an open set in Rn to Rm is called differentiable at a point
p0 in this open set if each component of F = (f 1, · · · , fm) is differentiable. We can write
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the differentiability condition collectively in the following form

F (p0 + z)− F (p0) = DF (p0)z + o(z), (3.3)

where DF (p0) is the linear map from Rn to Rm given by

(DF (p0)z)i =
n∑
j=1

aij(p0)xj, i = 1, · · · ,m,

where
(
aij
)

=
(
∂f i/∂xj

)
is the Jabocian matrix of f . (3.3) shows near p0, that is, when

z is small, the function F is well-approximated by the linear map DF (p0) up to the
constant F (p0) as long as DF (p0) is nonsingular. It suggests that the local information
of a map at a differentiable point could be retrieved from its a linear map, which is much
easier to analyse. This principle, called linearization, is widely used in analysis. The
Inverse Function Theorem is a typical result of linearization. It asserts that a map is
locally invertible if its linearization is invertible. Therefore, local bijectivity of the map is
ensured by the invertibility of its linearization. When DF (p0) is not invertible, the first
term on the right hand side of (3.3) may degenerate in some or even all direction so that
DF (p0)z cannot control the error term ◦(z). In this case the local behavior of F may be
different from its linearization.

Theorem 3.4 (Inverse Function Theorem). Let F : U → Rn be a C1-map where U is
open in Rn and p0 ∈ U . Suppose that DF (p0) is invertible. There exist open sets V and
W containing p0 and F (p0) respectively such that the restriction of F on V is a bijection
onto W with a C1-inverse. Moreover, the inverse is Ck when F is Ck, 1 ≤ k ≤ ∞, in U .

Example 3.5. The Inverse Function Theorem asserts a local invertibility. Even if the
linearization is non-singular everywhere, we cannot assert global invertibility. Let us
consider the switching between the cartesian and polar coordinates in the plane:

x = r cos θ, y = r sin θ .

The function F : (0,∞) × (−∞,∞) → R2 given by F (r, θ) = (x, y) is a continuously
differentiable function whose Jacobian matrix is non-singular except (0, 0). However, it
is clear that F is not bijective, for instance, all points (r, θ + 2nπ), n ∈ Z, have the same
image under F .

Example 3.6. An exceptional case is dimension one where a global result is available.
Indeed, in Mathematical Analysis II we learned that if f is continuously differentiable on
(a, b) with non-vanishing f ′, it is either strictly increasing or decreasing so that its global
inverse exists and is again continuously differentiable.

Example 3.7. Consider the map F : R2 → R2 given by F (x, y) = (x2, y). Its Jacobian
matrix is singular at (0, 0). In fact, for any point (a, b), a > 0, F (±

√
a, b) = (a, b). We

cannot find any open set, no matter how small is, at (0, 0) so that F is injective. On the
other hand, the map H(x, y) = (x3, y) is bijective with inverse given by J(x, y) = (x1/3, y).
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However, as the non-degeneracy condition does not hold at (0, 0) so it is not differentiable
there. In these cases the Jacobian matrix is singular, so the nondegeneracy condition does
not hold. We will see that in order the inverse map to be differentiable, the nondegeneracy
condition must hold.

A map from some open set in Rn to Rm is Ck, 1 ≤ k ≤ ∞ if all its components belong
to Ck. It is called a C∞-map or a smooth map if its components are C∞.

The condition that DF (p0) is invertible, or equivalently the non-vanishing of the
determinant of the Jacobian matrix, is called the nondegeneracy condition. Without
this condition, the map may or may not be local invertible, see the examples below.
Nevertheless, it is necessary for the differentiability of the local inverse. At this point, let
us recall the general chain rule.

Let G : Rn → Rm and F : Rm → Rl be C1 and their composition H = F ◦ G :
Rn → Rl is also C1. We compute the first partial derivatives of H in terms of the partial
derivatives of F and G. Letting G = (g1, · · · , gm), F = (f1, · · · , fl) and H = (h1, · · · , hl).
From

hk(x1, · · · , xn) = fk(g1(x), · · · , gm(x)), k = 1, · · · , l,
we have

∂hk
∂yi

=
n∑
i=1

∂fk
∂xi

∂gi
∂xj

.

Writing it in matrix form we have

DF (G(x))DG(x) = DH(x).

For, when the inverse is differentiable, we may apply this chain rule to differentiate
the relation F−1(F (x)) = x to obtain

DF−1(q0) DF (p0) = I , q0 = F (p0),

where I is the identity map. We conclude that

DF−1(q0) =
(
DF (p0)

)−1
,

in other words, the matrix of the derivative of the inverse map is precisely the inverse
matrix of the derivative of the map. So when the inverse map is C1, DF (p0) must be
invertible.

Lemma 3.1. Let L be a linear map from Rn to itself given by

(Lz)i =
n∑
j=1

aijzj, i = 1, · · ·n.

Then
|Lz| ≤ ‖L‖ |z|, ∀z ∈ Rn,

where ‖L‖ =
√∑

i,j a
2
ij.
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Proof. By Cauchy-Schwarz inequality,

|Lz|2 =
∑
i

(Lz)2i

=
∑
i

(∑
j

aijzj
)2

≤
∑
i

(∑
j

a2ij
)(∑

j

z2j
)

= ‖L‖2 |z|2 .

Now we prove Theorem 2.19. We may take p0 = F (p0) = 0, for otherwise we could look at
the new function F (x) = F (x+p0)−F (p0) instead of F (x), after noting DF (0) = DF (p0).
First we would like to show that there is a unique solution for the equation F (x) = y for
y near 0. We will use the Contraction Mapping Principle to achieve our goal. After a
further restriction on the size of U , we may assume that F is C1 with DF (x) invertible
at all x ∈ U . For a fixed y, define the map in U by

T (x) = L−1 (Lx− F (x) + y)

where L = DF (0). It is clear that any fixed point of T is a solution to F (x) = y. By the
lemma,

|T (x)| 6 ‖L−1‖ |F (x)− Lx− y|
6 ‖L−1| (|F (x)− Lx|+ |y|)

≤ ‖L−1‖
(∣∣∣∣ˆ 1

0

(DF (tx)−DF (0))dt x

∣∣∣∣+ |y|
)
,

where we have used the formula

F (x)−DF (0)x =

ˆ 1

0

d

dt
F (tx)dt−DF (0) =

ˆ 1

0

(
DF (tx)−DF (0)

)
dt x,

after using the chain rule to get

d

dt
F (tx) = DF (tx) · x.

By the continuity of DF at 0, we can find a small ρ0 such that

‖L−1‖‖DF (x)−DF (0)‖ ≤ 1

2
, ∀x, |x| ≤ ρ0. (3.4)

Then for for each y in BR(0), where R is chosen to satisfy ‖L−1‖R ≤ ρ0/2, we have

|T (x)| ≤ ‖L−1‖
(ˆ 1

0

‖(DF (tx)−DF (0))dt‖|x|+ |y|
)

≤ 1

2
|x|+ ‖L−1‖|y|

≤ 1

2
ρ0 +

1

2
ρ0 = ρ0,
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for all x ∈ Bρ0(0). We conclude that T maps Bρ0(0) to itself. Moreover, for x1, x2 in
Bρ0(0), we have

|T (x2)− T (x1)| =
∣∣L−1 (F (x2)− Lx2 − y)− L−1 (F (x1)− Lx1 − y)

∣∣
6 ‖L−1 ‖ |F (x2)− F (x1)−DF (0)(x2 − x1)|

6 ‖L−1‖
∣∣∣∣ˆ 1

0

DF (x1 + t(x2 − x1)) (x2 − x1)dt−DF (0)(x2 − x1)
∣∣∣∣ ,

where we have used

F (x2)− F (x1) =

ˆ 1

0

d

dt
F (x1 + t(x2 − x1))dt

=

ˆ 1

0

DF (x1 + t(x2 − x1))(x2 − x1)dt.

Consequently,

|T (x2)− T (x1)| ≤
1

2
|x2 − x1|.

We have shown that T : Bρ0(0)→ Bρ0(0) is a contraction. By the Contraction Mapping
Principle, there is a unique fixed point for T , in other words, for each y in the ball BR(0)
there is a unique point x in Bρ0(0) solving F (x) = y. Defining G : BR(0)→ Bρ0(0) ⊂ X
by setting G(y) = x, G is inverse to F .

Next, we claim that G is continuous. In fact, for G(yi) = xi, i = 1, 2, (not to be mixed
up with the xi above),

|G(y2)−G(y1)| = |x2 − x1|
= |T (x2)− T (x1)|
≤ ‖L−1‖ (|F (x2)− F (x1)− L(x2 − x1)|+ |y2 − y1|)

≤ ‖L−1‖
(∣∣∣∣ˆ 1

0

(
DF ((1− t)x1 + tx2)−DF (0)

)
dt(x2 − x1)

∣∣∣∣+ |y2 − y1|
)

≤ 1

2
|x2 − x1|+ ‖L−1‖|y2 − y1|

=
1

2
|G(y2)−G(y1)|+ ‖L−1‖|y2 − y1|,

where (4.2) has been used. We deduce

|G(y2)−G(y1)| 6 2‖L−1‖|y2 − y1| , (3.5)

that’s, G is continuous on BR(0).

Finally, let’s show that G is a C1-map in BR(0). In fact, for y1, y1 + y in BR(0), using

y = F (G(y1 + y))− F (G(y1))

=

ˆ 1

0

DF (G(y1) + t(G(y1 + y)−G(y1))dt (G(y1 + y)−G(y1)),
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we have

G(y1 + y)−G(y1) = DF−1(G(y1))y +R,

where R is given by

DF−1(G(y1))

ˆ 1

0

(
DF (G(y1))−DF (G(y1) + t(G(y1 + y)−G(y1))

)
(G(y1 + y)−G(y1))dt.

As G is continuous and F is C1, we have

G(y1 + y)−G(y1)−DF−1(G(y1))y = ◦(1)(G(y1 + y)−G(y1))

for small y. Using (3.5), we see that

G(y1 + y)−G(y1)−DF−1(G(y1))y = ◦(‖y‖) ,

as ‖y‖ → 0. We conclude that G is differentiable with derivative equal to DF−1(G(y1)).

After we have proved the differentiability of G, from the formula DF (G(y))DG(y) = I
where I is the identity matrix we see that

DF−1(y) = (DF (F−1(y)))−1, ∀y ∈ BR(0).

From linear algebra we know that DF−1(y) can be expressed as a rational function of
the entries of the matrix of DF (F−1(y). Consequently, F−1 is Ck in y if F is Ck in x for
1 ≤ k ≤ ∞.

The proof of the Inverse Function Theorem is completed by taking W = BR(0) and
V = F−1(W ).

Remark 2.1. It is worthwhile to keep tracking and see how ρ0 and R are determined.
Indeed, let

MDF (ρ) = sup
x∈Bρ(0)

‖DF (x)−DF (0)‖

be the modules of continuity of DF at 0. We have MDF (ρ) ↓ 0 as ρ→ 0. From this proof
we see that ρ0 and R can be chosen as

MDF (ρ0) ≤
1

2‖L−1‖
, and R ≤ ρ0

2‖L−1‖
.

Example 3.8. Consider the system of equations{
x− y2 = a,
x2 + y + y3 = b.
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We know that x = y = 0 is a solution when (a, b) = (a, b). Can we find the range of
(a, b) so that this system is solvable? Well, let F (x, y) = (x − y2, x2 + y + y3). We have
F (0, 0) = (0, 0) and DF is given by the matrix 1 −2y

2x 1 + 3y2

 ,

which is nonsingular at (0, 0). In fact the inverse matrix of DF ((0, 0)) is given by the
identity matrix, hence ‖L−1‖ = 1 in this case. A good ρ0 could be found by solving
MDF (ρ0) = 1/2. We have ‖DF ((x, y))−DF ((0, 0))‖ = 4y2 + 4x2 + 9y2, which, in terms
of the polar coordinates, is equal to 4r2 + 9 sin4 θ. Hence the maximal value is given by
4r2 + 9r4, and so ρ0 could be chosen to be any point satisfying 4ρ20 + 9ρ40 ≤ 1/2. A simple
choice is ρ0 =

√
1/26. Then R is given by

√
26/52. We conclude that whenever a, b satisfy

a2 + b2 ≤ 1/104, this system is uniquely solvable in the ball Bρ0((0, 0)).

Example 3.9. Determine all points where the function F (x, y) = (xy2 − sin πx, y2 −
25x2 + 1) has a local inverse and find the partial derivatives of the inverse. Well, the
Jacobian matrix of F is given by

 y2 − π cos πx 2xy

−50x 2y

 .

Hence, F admits a local inverse at points (x, y) satisfying

2y(y2 − π cosπx) + 100x2y 6= 0 .

Derivatives of the inverse function, denoted by G = (g1, g2), can be obtained by implicit
differentiation of the relation

(u, v) = F (G(u, v)) = (g1g
2
2 − sin πg1, g

2
2 − 25g21 + 1),

where g1, g2 are functions of (u, v). We have

∂g1
∂u

g22 + 2g1g2
∂g2
∂u
− π cos πg1

∂g1
∂u

= 1,

2g2
∂g2
∂u
− 50g1

∂g1
∂u

= 0,

∂g1
∂v

g22 + 2g1g2
∂g2
∂v
− π cos πg1

∂g1
∂v

= 0,

2g2
∂g2
∂v
− 50g1

∂g1
∂v

= 1.

The first and the second equations form a linear system for ∂gi/∂u, i = 1, 2, and the third
and the fourth equations form a linear system for ∂gi/∂v, i = 1, 2. By solving it (the
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solvability is ensured by the invertibility of the Jacobian matrix) we obtain the partial
derivatives of the inverse function G. Nevertheless, it is too tedious to carry it out here.
An alternative way is to find the inverse matrix of the Jacobian DF . In principle we could
obtain all partial derivatives of G by implicit differentiation and solving linear systems.

Inverse Function Theorem may be rephrased in the following form.

A Ck-map F between open sets V and W is a “Ck-diffeomorphism” if F−1 exists and is
also Ck. Let f1, f2, · · · , fn be Ck-functions defined in some open set in Rn whose Jacobian
matrix of the map F = (f1, · · · , fn) is non-singular at some point p0 in this open set. By
Theorem 4.1 F is a Ck-diffeomorphism between some open sets V and W containing p0
and F (p0) respectively. To every function Φ defined in W , there corresponds a function
defined in V given by Ψ(x) = Φ(F (x)), and the converse situation holds. Thus every
Ck-diffeomorphism gives rise to a “local change of coordinates”.

Next we deduce Implicit Function Theorem from Inverse Function Theorem.

Theorem 3.5 (Implicit Function Theorem). Consider C1-map F : U → Rm where
U is an open set in Rn × Rm. Suppose that (p0, q0) ∈ U satisfies F (p0, q0) = 0 and
DyF (p0, q0) is invertible in Rm. There exist an open set V1 × V2 in U containing (p0, q0)
and a C1-map ϕ : V1 → V2, ϕ(p0) = q0, such that

F (x, ϕ(x)) = 0 , ∀x ∈ V1 .

The map ϕ belongs to Ck when F is Ck, 1 ≤ k ≤ ∞, in U . Moreover, if ψ is another
C1-map in some open set containing p0 to V2 satisfying F (x, ψ(x)) = 0 and ψ(p0) = q0,
then ψ coincides with ϕ in their common set of definition.

The notation DyF (p0, q0) stands for the linear map associated to the Jocabian matrix
(∂Fi/∂yj(p0, q0))i,j=1,··· ,m where p0 is fixed.

Proof. Consider Φ : U → Rn ×Rm given by

Φ(x, y) = (x, F (x, y)).

It is evident that DΦ(x, y) is invertible in Rn × Rm when DyF (x, y) is invertible in Rm.
By the Inverse Function Theorem, there exists a C1-inverse Ψ = (Ψ1,Ψ2) from some open
W in Rn × Rm containing Φ(p0, q0) to an open subset of U . By restricting W further we
may assume Ψ(W ) is of the form V1 × V2. For every (x, z) ∈ W , we have

Φ(Ψ1(x, z),Ψ2(x, z)) = (x, z),

which, in view of the definition of Φ, yields

Ψ1(x, z) = x, and F ((Ψ1(x, z),Ψ2(x, z)) = z.
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In other words, F (x,Ψ2(x, z)) = z holds. In particular, taking z = 0 gives

F (x,Ψ2(x, 0)) = 0, ∀x ∈ V1 ,

so the function ϕ(x) ≡ Ψ2(x, 0) satisfies our requirement.

By restricting V1 and V2 further if necessary, we may assume the matrix

ˆ 1

0

DyF (x, y1 + t(y2 − y1)dt

is nonsingular for (x, y1), (x, y2) ∈ V1 × V2. Now, suppose ψ is a C1-map defined near x0
satisfying ψ(p0) = q0 and F (x, ψ(x)) = 0. We have

0 = F (x, ψ(x))− F (x, ϕ(x))

=

ˆ 1

0

DyF (x, ϕ(x) + t(ψ(x)− ϕ(x))dt(ψ(x)− ϕ(x)),

for all x in the common open set they are defined. This identity forces that ψ coincides
with ϕ in this open set. The proof of the implicit function is completed, once we observe
that the regularity of ϕ follows from Inverse Function Theorem.

Example 3.10. Let F : R5 → R2 be given by F (x, y, z, u, v) = (xy2 + xzu + yv2 −
3, u3yz + 2xv − u2v2 − 2). We have F (1, 1, 1, 1, 1) = (0, 0). Show that there are functions
f(x, y, z), g(x, y, z) satisfying f(1, 1, 1) = g(1, 1, 1) = 1 and F (x, y, z, f(x, y, z), g(x, y, z)) =
(0, 0) for (x, y, z) near (1, 1, 1). We compute the “partial” Jacobian matrix of F in (u, v): xz 2yv

3u2yz − 2uv2 2x− 2u2v

 .

Its determinant at (1, 1, 1, 1, 1) is equal to −2, so we can apply Implicit Function Theorem
to get the desired result. The partial derivatives of f and g can be obtained by implicit
differentiations. For instance, to find ∂f/∂y and ∂g/∂y we differentiate the relation

(xy2 + xzf + yg2 − 3, f 3yz + 2xg − f 2g2 − 2) = (0, 0)

to get

2xy + xz
∂f

∂y
+ g2 + 2yg

∂g

∂y
= 0,

and

f 3z + 3f 2yz
∂f

∂y
+ 2x

∂g

∂y
− 2fg2

∂f

∂y
− 2f 2g

∂g

∂y
= 0.

By solving this linear system we can express ∂f/∂y and ∂g/∂y in terms of x, y, z, f and
g. Similarly we can do it for the other partial derivatives.
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It is interesting to note that the Inverse Function Theorem can be deduced from
Implicit Function Theorem. Thus they are equivalent. To see this, keeping the notations
used in Theorem 2.19. Define a map F̃ : U × Rn → Rn by

F̃ (x, y) = F (x)− y.

Then F̃ (p0, q0) = 0, q0 = F (p0), and DF̃ (p0, q0) is invertible. By Theorem 2.20, there

exists a C1-function ϕ from near q0 satisfying ϕ(q0) = p0 and F̃ (ϕ(y), y) = F (ϕ(y))− y =
0, hence ϕ is the local inverse of F .

3.4 Picard-Lindelöf Theorem for Differential Equa-

tions

In this section we discuss the fundamental existence and uniqueness theorem for differ-
ential equations. I assume that you learned the skills of solving ordinary differential
equations already so we will focus on the theoretical aspects.

Most differential equations cannot be solved explicitly, in other words, they cannot
be expressed as the composition of elementary functions. Nevertheless, there are two
exceptional classes which come up very often. Let us review them before going into the
theory. The first one is linear equation.

dx

dt
= a(t)x+ b(t),

where a and b are continuous functions defined on some interval I. The general solution
of this linear equation is given by the formula

x(t) = eA(t)
(
x0 +

ˆ t

t0

e−A(s)b(s)ds

)
, A(t) =

ˆ t

t0

a(s)ds,

where t0 ∈ I, x0 ∈ R, are arbitrary. The second class is the so-called separable equation

dx

dt
=
f(t)

g(x)
,

where f and g 6= 0 are continuous functions on intervals I and J respectively. Then the
solution can be obtained by an integration

ˆ x

x0

g(z)dz =

ˆ t

t0

f(s)ds, t0 ∈ I, x0 ∈ J.

The resulting relation, written as G(x) = F (t), can be converted into x = G−1F (t), a
solution to the equation as immediately verified by the chain rule. These two classes of
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equations are sufficient for our purpose. More interesting explicitly solvable equations can
be found in texts on ODE’s.

Well, let us consider the general situation. Numerous problems in natural sciences and
engineering led to the initial value problem of differential equations. Let f be a function
defined in the rectangle R = [t0 − a, t0 + a] × [x0 − b, x0 + b] where (t0, x0) ∈ R2 and
a, b > 0. We consider the initial value problem or Cauchy Problem

dx

dt
= f(t, x),

x(t0) = x0.

(3.6)

(In some books the independent variable t is replaced by x and the dependent variable
x is replaced by y. We prefer to use t instead of x as the independent variable in many
cases is the time.) To solve the Cauchy Problem it means to find a function x(t) defined
in a perhaps smaller rectangle, that is, x : [t0 − a′, t0 + a′] → [x0 − b, x0 + b], which is
differentiable and satisfies x(t0) = x0 and x′(t) = f(t, x(t)), ∀t ∈ [t0 − a′, t0 + a′], for
some 0 < a′ ≤ a. In general, no matter how nice f is, we do not expect there is always a
solution on the entire [t0 − a, t0 + a]. Let us look at the following example.

Example 3.11. Consider the Cauchy Problem{
dx

dt
= 1 + x2,

x(0) = 0.

The function f(t, x) = 1 + x2 is smooth on [−a, a] × [−b, b] for every a, b > 0. However,
the solution, as one can verify immediately, is given by x(t) = tan t which is only defined
on (−π/2, π/2). It shows that even when f is very nice, a′ could be strictly less than a.

The Picard-Lindelöf theorem, sometimes referred to as the fundamental theorem of
existence and uniqueness of differential equations, gives a clean condition on f ensuring
the unique solvability of the Cauchy Problem (3.6). This condition imposes a further
regularity condition on f reminding what we did in the convergence of Fourier series.
Specifically, a function f defined in R satisfies the Lipschitz condition (uniform in t) if
there exists some L > 0 such that ∀(t, xi) ∈ R ≡ [t0− a, t0 + a]× [x0− b, x0 + b], i = 1, 2,

|f(t, x1)− f(t, x2)| ≤ L |x1 − x2| .

Note that in particular means for each fixed t, f is Lipschitz continuous in x. The constant
L is called a Lipschitz constant. Obviously if L is a Lipschitz constant for f , any
number greater than L is also a Lipschitz constant. Not all continuous functions satisfy
the Lipschitz condition. An example is given by the function f(t, x) = tx1/2 is continuous.
I let you verify that it does not satisfy the Lipschitz condition on any rectangle containing
the origin.
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In application, most functions satisfying the Lipschitz condition arise in the following
manner. A C1-function f(t, x) in a closed rectangle automatically satisfies the Lipschitz
condition. For, by the mean-value theorem, for some z lying on the segment between x1
and x2,

f(t, x2)− f(t, x1) =
∂f

∂x
(t, z)(x2 − x1).

Letting

L = max
{ ∣∣∣∣∂f∂x (t, x)

∣∣∣∣ : (t, x) ∈ R
}
,

(L is a finite number because ∂f/∂y is continuous on R and hence bounded), we have

|f(t, x2)− f(t, x1)| ≤ L|x2 − x1|, ∀(t, xi) ∈ R, i = 1, 2.

Theorem 3.6 (Picard-Lindelöf Theorem). Consider (3.6) where f ∈ C(R) satisfies
the Lipschitz condition on R = [t0− a, t0 + a]× [x0− b, x0 + b]. There exist a′ ∈ (0, a) and
x ∈ C1[t0 − a′, t0 + a′], x0 − b ≤ x(t) ≤ x0 + b for all t ∈ [t0 − a′, t0 + a′], solving (3.6).
Furthermore, x is the unique solution in [t0 − a′, t0 + a′].

From the proof one will see that a′ ∈ (0, a) can be taken to be any number satisfying

0 < a′ < min

{
a,

b

M
,

1

L

}
,

where M = sup{|f(t, x)| : (t, x) ∈ R}. In fact, the term 1/L can be removed in the above
expression, see exercise.

To prove Pircard-Lindelöf Theorem, we first convert (3.6) into a single integral equa-
tion.

Proposition 3.7. Setting as in Theorem 3.21, every solution x of (3.6) from [t0−a′, t0+a′]
to [x0 − b, x0 + b] satisfies the equation

x(t) = x0 +

ˆ t

t0

f(t, x(t)) dt. (3.7)

Proof. When x satisfies x′(t) = f(t, x(t)) and x(t0) = x0, (3.7) is a direct consequence of
the Fundamental Theorem of Calculus (first form). Conversely, when x(t) is continuous
on [t0−a′, t0 +a′], f(t, x(t)) is also continuous on the same interval. By the Fundamental
Theorem of Calculus (second form), the left hand side of (3.7) is continuously differentiable
on [t0 − a′, t0 + a′] and solves (3.6).

Note that in this proposition we do not need the Lipschitz condition; only the conti-
nuity of f is needed.
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Proof of Picard-Lindelöf Theorem. Instead of solving (3.6) directly, we look for a solution
of (3.7). We will work on the metric space X = {ϕ ∈ C[t0 − a′, t0 + a′] : ϕ(t) ∈
[x0 − b, x0 + b], ϕ(t0) = x0} with the uniform metric. It is easily verified that it is a
closed subset in the complete metric space C[t0 − a′, t0 + a′] and hence complete. Recall
that every closed subset of a complete metric space is complete. The number a′ will be
specified below.

We are going to define a contraction on X. Indeed, for x ∈ X, define T by

(Tx)(t) = x0 +

ˆ t

t0

f(s, x(s)) ds.

First of all, for every x ∈ X, it is clear that f(t, x(t)) is well-defined and Tx ∈ C[t0 −
a′, t0 + a′]. To show that it is in X, we need to verify x0 − b ≤ (Tx)(t) ≤ x0 + b for
all t ∈ [t0 − a′, t0 + a′]. We claim that this holds if we choose a′ satisfying a′ ≤ b/M ,
M = sup {|f(t, x)| : (t, x) ∈ R}. For,

|(Tx)(t)− x0| =
∣∣∣∣ˆ t

t0

f(t, x(t)) dt

∣∣∣∣
≤M |t− t0|
≤Ma′

≤ b.

Next, we claim T is a contraction on X when a′ is further restricted to a′ ≤ γ/L, where
γ ∈ (0, 1) and L is the Lipschitz constant for f . For,

|(Tx2 − Tx1)(t)| =
∣∣∣∣ˆ t

t0

f(t, x2(t))− f(t, x1(t)) dt

∣∣∣∣
≤
ˆ t

t0

∣∣f(t, x2(t))− f(t, x1(t))
∣∣ dt

≤ L

ˆ t

t0

|x2(t)− x1(t)| dt

≤ L sup
t∈I
|x2(t)− x1(t)| |t− t0|

≤ La′ sup
t∈I
|x2(t)− x1(t)|

≤ γ sup
t∈I
|x2(t)− x1(t)| ,

where I = [t0 − a′, t0 + a′]. It follows that

d∞(Tx2, Tx1) ≤ γd∞(x2, x1)

where d∞ is the uniform metric d∞(f, g) ≡ ‖f − g‖∞ for f, g ∈ C[t0− a′, t0 + a′]. Now we
can apply the Contraction Mapping Principle to conclude that Tx = x for some x, and x
solves (3.6). We have shown that (3.6) admits a solution in [t0 − a′, t0 + a′] where a′ can
be chosen to be any number less than min{b/M, 1/L}.
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Next we discuss how to obtain a unique, maximal solution under a local Lipschitz
condition. We start with a unique extension result. Proposition 2.23 to Theorem 2.28 are
for optional reading.

Proposition 3.8. Let x1 and x2 be solutions to (3.6) on open intervals I1 and I2 con-
taining t0 respectively. Under the Lipschitz condition on f , x1 and x2 coincide on I1 ∩ I2.
Therefore, the function y, which is equal to x1 on I1 and x2 on I2, is a solution to (3.6)
on I1 ∪ I2.

Proof. Let J = I1 ∩ I2 ≡ (α, β) and set s = sup{t : x1 ≡ x2 on [t0, t]}. We claim that
s = β. For, if s < β, by continuity x1(s) = x2(s). For t ∈ (α, β), we have

|x1(t)− x2(t)| =
∣∣∣∣ˆ t

s

f(τ, x1(τ))− f(τ, x2(τ)) dτ

∣∣∣∣
≤ L

ˆ t

s

|x1(τ)− x2(τ)| dτ.

Let t ∈ J = [s− 1/(2L), s+ 1/(2L)]. By further enlarging L if necessary, we may assume
that J ⊂ (α, β). Let t1 satisfy |x1(t1)− x2(t1)| = maxx∈J |x1(t)− x2(t)|. Then

max
J
|x1(t)− x2(t)| = |x1(t1)− x2(t1)|

≤ Lmax
J
|x1(t)− x2(t)| |t1 − s|

≤ 1

2
max
J
|x1(t)− x2(t)| ,

which forces x1 ≡ x2 on [s − 1/(2L), s + 1/(2L)]. It means that x1 and x2 coincide on
[t0, z + 1/2L], contradicting the definition of z. Hence x1 and x2 must coincide on [t0, β).
A similar argument shows that they coincide on (α, t0].

A consequence of Theorem 2.21 and Proposition 2.23 is the existence of a maximal
solution. To describe it is convenient to enter a new definition. A function f defined in
an open set in R2 is called to satisfy the local Lipschitz condition if it satisfies the
Lipschitz condition on every compact subset of G. Here the Lipschtiz constants depend
on the compact subset. It is common that they becomes larger and larger as the compact
subsets swallow the open set G. If you feel the definition a bit complicated, we could
put it the following way. We observe that every open set in Rn can be written as the
countable union of compact subsets. Indeed, the subsets

Kn = {(t, x) ∈ G : dist((t, x), ∂G) ≥ 1/n} ∩Bn(0), n ≥ 1,

are compact and G =
⋃∞
n=1Kn. Clearly every compact subset is contained in some Kn for

sufficiently large n. With this understanding, the Lipschitz condition on f may be recast
as, there exist Ln, n ≥ 1, such that∣∣f(t, x2)− f(t, x1)

∣∣ ≤ Ln|x1 − x1|, ∀(t, x1), (t, x2) ∈ Kn.
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In the exercise you are asked to show that a C1-function defined in an open set satisfies
the local Lipschitz condition.

Theorem 3.9. Consider (3.6) where f is a continuous function on the open set G sat-
isfying the local Lipschitz condition. Then there exists a solution x∗ to (3.6) defined on
some (α, β) satisfying

(a) Whenever x is a solution of (3.6) on some interval I, I ⊂ (α, β) and x = x∗ on I .

(b) If β is finite, the solution escapes from every compact subset of G eventually. Similar
results holds at α.

“The solution escapes from every compact subset of G eventually” means, for each
compact K ⊂ G, there exists a small δ > 0 such that (t, x∗(x)) ∈ G \K for t ∈ [β − δ, β).
When G is R2, it means that x∗ either tends to ∞ or −∞ as t approaches β when β
is finite. When β is infinite, the solution could tend to positive or negative infinity or
oscillate up and down infinitely as x goes to∞. In contrast, when β is finite, the solution
could either goes to ∞ or −∞ approaching β. The case of oscillation is excluded.

In view of this theorem, it is legal to call this maximal solution the solution of (3.6) and
the interval (α, β) the maximal interval of existence.

Proof. Let I be the collection of all closed, bounded intervals I containing t0 over which
a solution of (3.6) exists and let I∗ be the union of the intervals in I. Clearly I∗ is again
an interval, denote its left and right endpoints by α and β respectively. By Proposition
2.20 there is a solution x∗ of (3.6) defined on (α, β). When β is finite, let us show
that the solution escapes from every compact subset eventually. Let K be a compact
subset of G and suppose on the contrary that there exists {tk} ⊂ (α, β), tk → β, but
(tk, x

∗(tk)) ∈ K for all k. By compactness, we may assume x∗(tk) converges to some z in
K (after passing to a subsequence if necessary). Since dist((β, z), ∂G) > 0, we can find
a rectangle [β − r, β + r] × [z − ρ, z + ρ] inside G. Then, as this is a compact subset,
f satisfies the Lipschitz condition on this rectangle. By Theorem 2.21, we could use
(tk, x

∗(xk)) as the initial data to solve (3.6). The range of this solution would be some
interval [tk − r′, tk + r′] where r′ is independent of k. Since tk approaches β, for large k
β ∈ [tk−r′, tk+r′]. But then by Proposition 2.23, the solution x∗ can be extended beyond
β, contraction holds. We conclude that the solution must escape from any compact subset
eventually. A similar argument applies to the left endpoint α.

Example 3.12. Consider

f(t, x) =
t

1− x
, (t, x) ∈ G ≡ (−∞,∞)× (−∞, 1)

and t0 = x0 = 0 in (3.6). Since f ∈ C1(G), the setting of Theorem 2.21 is satisfied.
(Why?) This equation is separable and the solution is readily found to be

x(t) = 1−
√

1− t2.
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So the maximal interval of existence is given by (−1, 1). As t → ±1, (t, x(t)) hits the
horizontal line x = 1 as asserted by Theorem 2.24.

There are two comparison principles which enable us to study the global existence
or finite time blow-up of the maximal solution of the first order equation. In the first
principle we compare solutions of the same equation with different data.

Proposition 3.10. Consider (3.6) where f satisfies the Lipschitz condition in every com-
pact subset of some open set G and (t0, a1), (t0, a2) ∈ G. Let xi, i = 1, 2, be the solutions
of (3.6) starting from ai. If a1 < a2, then x1(t) < x2(t) for t > t0 as long as both solutions
exist.

Proof. By continuity, as a1 < a2, there exists some interval containing t0 such that x1 <
x2. Suppose that there exists some t1 > t0 such that x1(t1) = x2(t1) and x(t) < x2(t), t ∈
[t0, t1). We can find a small, closed rectangle R in G containing (t1, x1) such that f satisfies
the Lipschitz condition in R. Applying Proposition 2.23 to the equation by taking t1 as
the initial data, we conclude that x1 and x2 coincide on some open interval containing t1,
contradiction holds. Hence x2 is always greater than x1 as long as both of them exist.

A special case is where there exists some γ such that f(γ) = 0 for all t (here f is
independent of t). Then the constant x(t) ≡ γ is a solution with initial data x(t0) = γ.
Such constant solutions are called steady states of the Cauchy Problem.

Corollary 3.11. Let γ be a steady state of f which satisfies the Lipschitz condition locally
in G and x is a solution of (3.6) satisfying x(t0) < γ (resp. x(t0) > γ). Then x(t) < γ
(resp. x(t) > γ) as long as x exists.

Example 3.13. Consider (3.6) where f(x) = αx(M − x), α,M > 0. This is a logistic
model for the growth of population. The solution x(t) gives the population of a species at
time t. Obviously there are two steady states, namely, 0 and M . Therefore, any solution
starting from x(0) ∈ (0,M) is bounded between 0 and M . By Theorem 2.24 it exists for
all time. In fact, as f is positive on (0,M), the solution keeps increasing and it is easy
to argue that it tends to M as t → ∞. We call M an attracting steady state and 0 a
repelling state. Incidentally, we point out that this equation is separable and the solution
is given explicitly by

x(t) =
MeMα(t−t0)+C

1 + eMα(t−t0)+C
.

The main point here is that the behavior of the maximal solution can be studied without
using the explicit expression.

We can also compare solutions of different equations.

Proposition 3.12. Let fi, i = 1, 2, be continuous in G and f1(t, x) ≤ f2(t, x) for all
(x, t) ∈ G. Further suppose that f2(·, x) is increasing in x. Let xi, i = 1, 2, be respectively
the solution of (3.6) corresponding to fi with x1(t0) < x2(t0). Then x1(t) < x2(t), t > t0,
as long both solutions exist.
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Proof. By continuity x2 > x1 for t close to t0. Suppose that there is some time they
coincide. Let the first such time be t1. We have x1(t1) = x2(t1) and x1(t) < x2(t), t ∈
[t0, t1). Therefore,

0 = x2(t1)− x1(t1)

= x2(t0)− x1(t0) +

ˆ t1

t0

(f2(s, x2(s))− f1(s, x1(s))) ds

≥ x2(t0)− x1(t0) +

ˆ t1

t0

(f2(s, x1(s))− f1(s, x1(s))) ds

≥ x2(t0)− x1(t0) > 0,

contradiction holds.

Example 3.14. Let f satisfy the local Lipschitz condition and the “sublinear growth
condition”

|f(t, x)| ≤ C(1 + |x|), (x, t) ∈ R2.

We are going to show that the Cauchy Problem for f always admit a solution in (−∞,∞).
The idea is to dominate f by some linear function. Indeed, it suffices to consider the
function g(t, x) = C(1 + x). The solution satisfying x(t0) = γ is given explicitly by

y(t) = (1 + γ)eC(t−t0) − 1, t ∈ (−∞,∞).

By taking γ > x(t0), we see that x(t) < y(t) for all t ∈ [t0,∞). It follows that x cannot
blow up to ∞ at any finite time greater than t0. Next consider the solution z of (3.6) for
the function h(t, x) = −C(1 + x) satisfying z(t0) < x(t0). Then x(t) > z(t) for t greater
than t0. It shows that x cannot blow up to −∞ in any finite time beyond t0. A similar
argument shows that x cannot blow up in any finite time less than t0.

We point out that the existence part of Picard-Lindelöf Theorem still holds without
the Lipschitz condition. We will prove this in the next chapter. However, the solution
may not be unique.

Example 3.15. Consider the Cauchy Problem x′ = |x|α, α ∈ (0, 1), x(0) = 0. The
function f(x) = |x|α is Hölder continuous but not Lipschitz continuous. While x1 ≡ 0 is
a solution,

x2 = (1− α)
1

1−α |t|
1

1−α

is also a solution. In fact, there are infinitely many solutions! Can you write them down?

Theorem 2.21, Propositions 2.22 –2.24 are valid for systems of differential equations.
Without making things too clumsy, we put all results in a single theorem. First of all,
the Cauchy Problem for systems of differential equations is{

dxj
dt

= fj(t, x1, x2, · · · , xN),

xj(t0) = xj0,
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where j = 1, 2, · · · , N . By setting x = (x1, x2, · · · , xN) and f = (f1, f2, · · · , fN), we can
express it as in (3.3) but now both x and f are vectors.

Essentially following the same arguments as the case of a single equation, we have

Theorem 3.13 (Picard-Lindelöf Theorem for Systems). Consider (3.6) where f
satisfies the Lipschitz condition in every compact subset of the open set G ⊂ R × Rn.
There exists a solution x∗ of (3.6) on (α, β) such that

1. If x is a solution of (3.6) on some interval I, then I ⊂ (α, β) and x is equal to x∗

on I;

2. If β <∞, then x∗ escapes from any compact subset of G as t approaches β. Similar
situation holds at α.

Note that now the Lipschitz condition on f should be interpreted as

d2(f(t, x1), f(t, x2)) ≤ Ld2(x1, x2), ∀t ∈ [t0 − a, t0 + a].

Finally, we remind you that there is a standard way to convert the Cauchy Problem
for higher order differential equation (m ≥ 2){

x(m) = f(t, x, x′, · · · , x(m−1)),
x(t0) = x0, x

′(t0) = x1, · · · , x(m−1)(t) = xm−1,

into a system of first order differential equations. As a result, we also have a corresponding
Picard-Lindelöf theorem for higher order differential equations as well as the existence of
a maximal solution. I will let you formulate these results.

Comments on Chapter 3. There are two popular constructions of the real number
system, Dedekind cuts and Cantor’s Cauchy sequences. Although the number system is
fundamental in mathematics, we did not pay much attention to its rigorous construction.
It is too dry and lengthy to be included in Mathematical Analysis I. Indeed, there are two
sophisticate steps in the construction of real numbers from nothing, namely, the construc-
tion of the natural numbers by Peano’s axioms and the construction of real numbers from
rational numbers. Other steps are much easier. Cantor’s construction of the irrationals
from the rationals is very much like the proof of Theorem 2.15. You may google under the
key words “Peano’s axioms, Cantor’s construction of the real numbers, Dedekind cuts”
for more.
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Cantor’s approach to the construction of the real numbers is now borrowed to construct
the completion of a metric space. Further results on complete metric spaces can be found
in Chapter 4.

Contraction Mapping Principle, or Banach Fixed Point Theorem, was found by the
Polish mathematician S. Banach (1892-1945) in his 1922 doctoral thesis. He is the founder
of functional analysis and operator theory. According to P. Lax, “During the Second
World War, Banach was one of a group of people whose bodies were used by the Nazi
occupiers of Poland to breed lice, in an attempt to extract an anti-typhoid serum. He
died shortly after the conclusion of the war.” The interested reader should look up his
biography at Wiki.

An equally famous fixed point theorem is Brouwer’s Fixed Point Theorem. It states
that every continuous map from a closed ball in Rn to itself admits at least one fixed
point. Here it is not the map but the geometry, or more precisely, the topology of the
ball matters. You will learn it in a course on topology.

Inverse and Implicit Function Theorems, which reduce complicated structure to sim-
pler ones via linearization, are the most frequently used tool in the study of the local
behavior of maps. We learned these theorems and some of its applications in Advanced
Calculus I already. In view of this, we basically provide detailed proofs here but leave
out many standard applications. You may look up Fitzpatrick, “Advance Calculus”, to
refresh your memory. By the way, the proof in this book does not use Contraction Map-
ping Principle. I do know a third proof besides these two.

Picard-Lindelöf Theorem or the fundamental existence and uniqueness theorem of dif-
ferential equations was mentioned in Ordinary Differential Equations and now its proof
is discussed in details. Of course, the contributors also include Cauchy and Lipschitz.
Further results without the Lipschitz condition can be found in Chapter 3. A classic text
on ordinary differential equations is “Theory of Ordinary Differential Equations” by E.A.
Coddington and N. Levinson. V.I. Arnold’s ”Ordinary Differential Equations” is also a
popular text.
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The Space of Continuous Functions
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In this chapter we study the space of continuous functions as a prototype of infinite
dimensional normed spaces. In Section 1 we review these spaces. In Section 2 the notion
of separability is introduced. A proof of Weierstrass approximation theorem different
from the one given in Chapter 1 is present in Section 3, following by the general Stone-
Weierstrass theorem. The latter is applied to establish the separability of the space of
continuous functions when the underlying space is compact. Ascoli-Arezela theorem,
which characterizes compact sets in the space of continuous functions, is established in
Section 4. Finally in Section 5 we study complete metric spaces. Baire category theorem is
proved and, as an application, it is shown that continuous, nowhere differentiable functions
form a set of second category in the space of continuous functions.

4.1 Spaces of Continuous Functions

We studied continuous functions on an interval in MATH2050/60 and in a domain bounded
by curves/surfaces in R2 or R3 in MATH2010/20. After the introduction of metric spaces,
it is natural to consider the space of continuous functions defined on a metric space.

Denote by C(X) the vector space of all continuous functions defined in X where (X, d)
is a metric space. In the previous chapter we showed that there are many continuous
functions in X. In general, in a metric space such as the real line, a continuous function
may not be bounded. In order to turn continuous functions into a normed space, we need

1



2 CHAPTER 4. THE SPACE OF CONTINUOUS FUNCTIONS

to restrict to bounded functions. For this purpose let

Cb(X) = {f : f ∈ C(X), |f(x)| ≤M, ∀x ∈ X for some M}.

It is readily checked that Cb(X) is a normed space under the sup-norm. From now on,
Cb(X) is always regarded as a metric space under the metric induced by the sup-norm.
In other words,

d∞(f, g) = ‖f − g‖∞, ∀f, g ∈ Cb(X).

Some basic properties of Cb(X) are listed below.

First, Cb(X) is a Banach space. Although the proof has no difference from its special
case C[a, b], we reproduce the proof here. Indeed, let {fn} be a Cauchy sequence in Cb(X).
For ε > 0, there exists some n0 such that ‖fn−fm‖∞ < ε/4 for all n ≥ n0. In particular, it
means for each x, {fn(x)} is a Cauchy sequence in R. By the completeness of R, the limit
limn→∞ fn(x) exists and we define f(x) ≡ limn→∞ fn(x). Assuming that f ∈ Cb(X), by
taking m→∞ in the inequality above, we immediately obtain ‖fn−f‖∞ ≤ ε/4 < ε, hence
fn → f in Cb(X). To show that f ∈ Cb(X), we let m → ∞ in |fn(x) − fm(x)| < ε/4
to get |fn(x) − f(x)| ≤ ε/4 for all x and n ≥ n0. Taking n = n0 we get |f(x)| ≤
|f(x) − fn0(x)| + |fn0(x)| ≤ ε/4 + ‖fn0‖∞, hence f is bounded. On the other hand, as
fn0 is continuous, for each x we can find a δ such that |fn0(y) − fn0(x)| < ε/4 whenever
d(y, x) < δ. It follows that for all y, d(y, x) < δ,

|f(y)− f(x)| ≤ |f(y)− fn0(y)|+ |fn0(y)− fn0(x)|+ |fn0(x)− f(x)| ≤ 3ε

4
< ε.

From this proof we see that the completeness of Cb(X) is inherited from the completeness
of R, so the underlying space X does not play any role in this aspect.

Second, Cb(X) = C(X) when X is a compact metric space. Again this was done before
and we reproduce a proof. We need to show every continuous function on a compact set
is bounded. Assume on the contrary that for some continuous f , there are points {xk}
such that |f(xk)| → ∞. By compactness, there is a subsequence {xkj} and z ∈ X such
that limj→∞ xkj = z. But, by continuity we would have limj→∞ |f(xkj)| = |f(z)| < ∞,
contradiction holds. It is a good exercise to give another proof based on the finite cover
property.

Third, Cb(X) is usually an infinite dimensional Banach space. In particular this is
true when X is Rn or a subset with non-empty interior. It is easy to construct an infinite
set of linearly independent bounded, continuous functions in such X. For instance, when
X is bounded and has non-empty interior, the restriction of all monomials on X are
linearly independent and hence forms an infinite dimensional subspace in Cb(X). On the
other hand, Cb(X) could be of finite dimensional in some extreme cases. For instance,
take X = {x1, · · · , xn} be a finite set equipped with the discrete metric. Every function
defined in X is continuous. Since a function is completely determined by its values, the
correspondence f 7→ (f(x1), · · · , f(xn)) sets up a bijective linear map between Cb(X) and
Rn. Therefore, the dimension of Cb(X) is equal to n.
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Finally, although C(X) may contain unbounded functions, it is still possible to in-
troduce a metric on C(X) instead of a norm in some cases. Especially, we describe the
metric when X is Rn. Indeed, for f ∈ C(Rn), let ‖f‖n = supx∈Bn(0) |f(x)| and

d(f, g) =
∞∑
n=1

1

2n
‖f − g‖n

1 + ‖f − g‖n
.

One can verify that d forms a complete metric on C(Rn). Whether a vector space admits
a norm (normable) or a metric (metrizable) is a topic in functional analysis.

Other useful spaces of bounded, continuous or differentiable functions can be found in
the exercise.

4.2 Separabilty

We start with a general metric space (X, d). A set E in X is dense if for every x ∈ X
and ε > 0, there exists some y ∈ E such that d(y, x) < ε. Equivalently, E is dense if
every metric ball contains some point in E. It is easy to see that E is dense if and only if
E = X. According to this definition, the space X is dense trivially. In the discrete metric,
every single point is a metric ball, so X is the only dense set. In other cases, there could
be many dense sets. For instance, consider R the following three sets are dense: The set
of all rational numbers, the set of all irrational numbers and the set formed by removing
finitely many points from R. Similar situations hold in Rn. Next consider C(R) where
R is a closed, bounded (compact) rectangle in Rn. Weierstrass approximation theorem
asserts that the collection of all polynomials forms a dense set in C(R). In Chapter 1 we
showed that all finite trigonometric series are dense in C2π. In an exercise we showed that
all finite double trigonometric series

N∑
m,n=−N

amne
i(mx+ny)

are dense in the space of continuous functions which are 2π-periodic in x and y. Gener-
alization to higher dimensions is immediate.

The notion of a dense set is useful in the study of the structure of metric spaces.
A metric space X is called a separable space if it admits a countable dense subset.
Equivalently, X is separable if there is a countable subset E satisfying E = X. A set
is separable if it is separable as a metric subspace. When a metric space is separable,
every element can be approximated by elements from a countable set. Hence its structure
is easier to study than the non-separable ones. Here are two basic properties of separable
spaces.

Proposition 4.1. Every subset of a separable space is separable.
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Proof. Let Y be a subset of the separable space (X, d) and D = {xj} a countable dense
subset of X. For each n, pick a point znj from Y ∩ B1/n(xj) if it is non-empty to form
the countable set E = {znj }. We claim that E is dense in Y . For, let y ∈ Y and
each ε > 0, there is some xj ∈ D such that d(y, xj) < ε/2. Therefore, for n > 2/ε,
B1/n(xj) ∩ Y is nonempty and we can find some ynj ∈ B1/n(xj) ∩ Y . It follows that
d(y, ynj ) ≤ d(y, xj) + d(xj, y

n
j ) < ε/2 + 1/n < ε.

Proposition 4.2. Every compact metric space is separable.

Proof. Every compact space is totally bounded. By Proposition 2.11, for each n, there
exist finitely many points x1, · · · , xN such that the balls B1/n(xj), j = 1, · · ·N, form an
open cover of the space. It is clear that the countable set consisting of all centers of these
balls when n runs from 1 to infinity forms a dense set of the space.

Now we give some examples of separable spaces.

Example 4.1. Consider the Euclidean space Rn. The set of all rational numbers Q forms
a countable dense subset of R, so R is a separable space. Similarly, Rn is separable for
all n ≥ 1 because it contains the dense subset Qn. According to Proposition 3.1, all sets
in the Euclidean space are separable. I believe it is this property of the Euclidean space
that motivated the notion of separability in a metric space.

Example 4.2. C[a, b] is a separable space. Without loss of generality we take [a, b] =
[0, 1]. Denote by P the restriction of all polynomials to [0, 1]. Let

S = {p ∈ P : The coefficients of p are rational numbers}.

It is clear that S is a countable set. Given any polynomial p(x) = a0+a1x+· · ·+anxn, aj ∈
R, j = 1, · · · , n. For every ε > 0, we can choose some bj ∈ Q such that |aj−bj| < ε/(n+1)
for all j. It follows that for q(x) =

∑
j bjx

j ∈ S, we have

|p(x)− q(x)| ≤
∑
j

|a0 − b0|+ |a1 − b1||x|+ · · ·+ |an − bn||x|n

< (n+ 1)
ε

2(n+ 1)

=
ε

2

for all x. We conclude that ‖p− q‖∞ ≤ ε/2 Now, for any f ∈ C[0, 1] and ε > 0, we apply
Weierstrass approximation theorem to obtain a polynomial p such that ‖f − p‖∞ < ε/2
and then find some q ∈ S such that ‖p− q‖∞ ≤ ε/2. It follows that

‖f − q‖∞ ≤ ‖f − p‖∞ + ‖p− q‖∞ <
ε

2
+
ε

2
= ε,
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that is, S is dense in C[0, 1]. A straightforward generalization shows that C(R) is separa-
ble when R is a closed, bounded (that is, a compact) rectangle in Rn.

A general result in this direction is the following theorem. It is based on the Stone-
Weierstrass theorem in Section 3. The proof is for optional reading.

Theorem 4.3. The space C(X) is separable when X is a compact metric space.

Proof. When X consists of a singleton, C(X) is equal to R and so separable. We will
always assume X has more than one points below. By Proposition 2.11, we can find a
sequence of balls {Bj} whose centers {zj} form a dense set in X. Define fj(x) = d(x, zj)
and let M ⊂ C(X) consist of functions which are finite product of fj’s. Then let A
consist of functions of the form

f =
N∑
k=1

akhk, hk ∈M, aj ∈ Q.

It is readily checked that A forms a subalgebra of C(X). To verify separating points
property let x1 and x2 be two distinct points in X. The function f(x) = d(x, x1) satisfies
f(x1) = 0 and f(x2) 6= 0. By density, we can find some zk close to x1 so that the function
fk(x) = d(x, zk) separates x1 and x2. On the other hand, given any point x0 we can fix
another distinct point y0 so that the function d(x, y0) is nonvanishing at x0. By density
again, there is some zj close to y0 such that fj(x0) 6= 0. By Stone-Weierstrass theorem,
A is dense in C(X). The theorem will be proved if we can show that A is countable. To
see this, let An be the subset of A which only involves finitely many functions f1, · · · , fn.
We have A = ∪nAn, so it suffices to show each An is countable. Each function in An is
composed of finitely many terms of the form fa1n1

· · · faknk
, nj ∈ {1, · · · , n}. Let Amn ⊂ An

consist of all those functions whose “degree” is less than or equal to m. It is clear that
Amn is countable, so is An = ∪mAmn .

To conclude this section, we note the existence of non-separable spaces. Here is one.

Example 4.3. Consider the space of all bounded functions on [a, b] under the supnorm.
It forms a Banach space B[a, b]. We claim that it is not separable. For, let fz ∈ B[a, b]
be given by fz(x) = 0 for all x 6= z and fz(z) = 1. All fz’s form an uncountable set.
Obviously the metric balls B1/2(fz) are pairwise disjoint. If S is a dense subset of B[a, b],
S ∩ B1/2(fz) must be non-empty for each z. We pick wz ∈ S ∩ B1/2(fz) to form an un-
countable subset {wz} of S. We concldue that S must be uncountable, so there is no
countable dense set of B[a, b].
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4.3 The Stone-Weierstrass Theorem

This section is for optional reading.

So far we have shown that trigonometric functions and polynomials are dense in the
space of periodic, continuous functions and the space of continuous functions respec-
tively. In this section we will establish a far-reaching generalization of these results in the
space of continuous functions defined in a compact metric space. In such a space both
trigonometric functions and polynomials are not available, so we need to seek a reason-
able formulation. The answer relies on an extra algebraic structure we have exploited
explicitly.

Observe that the space Cb(X) carries an extra property, namely, it is an algebra under
pointwise product. A subspace A is called a subalgebra of Cb(X) if it is closed under this
product. It is readily checked that all polynomials on [a, b] form a subalgebra of C[a, b],
so does the subalgebra consisting of all polynomials with rational coefficients. Similarly,
the vector space consisting of all trigonometric polynomials and its subspace consisting
of all trigonometric polynomials with rational coefficients are algebras in in the space of
2π-periodic continuous functions in C2π. Note that C2π can be identified with C(S1) where
S1 = {(cos t, sin t) ∈ R2 : t ∈ [0, 2π]} is the unit circle.

Before proceeding further, recall that aside from the constant ones, there are many
continuous functions in a metric space. For instance, given any two distinct points x1
and x2 in X, it is possible to find some f ∈ C(X) such that f(x1) 6= f(x2). We simply
take f(x) = d(x, x1) and f(x1) = 0 < f(x2). It is even possible to find one in Cb(X),
e.g., g(x) = f(x)/(1 + f(x)) serves this purpose. We now consider what conditions a
subalgebra must possess in order that it becomes dense in Cb(X). A subalgebra is called
to satisfy the separating points property if for any two points x1 and x2 in X, there
exists some f ∈ A satisfying f(x1) 6= f(x2). From the discussion above, it is clear that
A must satisfy the separating points property if its closure is Cb(X). Thus the separat-
ing points property is a necessary condition for a subalgebra to be dense. On the other
hand, the polynomials of the form

∑n
j=0 ajx

2j form an algebra which does not have the
separating point property, for it is clear that p(−x) = p(x) for such p. Another condition
is that, whenever x ∈ X, there must be some g ∈ A such that g(x) 6= 0. We will call this
the non-vanishing property. The non-vanishing property fails to hold for the algebra
consisting of all polynomials of the form

∑n
j=1 ajx

j, for p(0) = 0 for all these p. The non-
vanishing property is also a necessary condition for an algebra to be dense in C(X). For,
if for some particular z ∈ X, f(z) = 0 holds for all f ∈ A, it is impossible to approximate
the constant function 1 in the supnorm by functions in A. Surprisingly, it turns out these
two conditions are also sufficient when the underlying space is compact, and this is the
content of the following theorem. This is for an optional reading.

Theorem 4.4 (Stone-Weierstrass Theorem). Let A be a subalgebra of C(X) where
X is a compact metric space. Then A is dense in C(X) if and only if it has the separating
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points and non-vanishing properties.

Recall that Cb(X) = C(X) when X is compact. For the proof of this theorem two
lemmas are needed.

Lemma 4.5. Let A be a subalgebra of Cb(X). For every pair f, g ∈ A, |f |, f ∨g and f ∧g
belong to the closure of A.

Proof. Observing the relations

f ∨ g ≡ max{f, g} =
1

2
(f + g) +

1

2
|f + g|,

and

f ∧ g ≡ min{f, g} =
1

2
(f + g)− 1

2
|f + g|,

it suffices to show that |f | belongs to the closure of A. Indeed, given ε > 0, since t 7→ |t|
is continuous on [−M,M ], M = sup{|f(x)| : x ∈ X}, by Weierstrass approximation
theorem, there exists a polynomial p such that

∣∣|t| − p(t)∣∣ < ε for all t ∈ [−M,M ]. It
follows that ‖|f | − p(f)‖∞ ≤ ε. As p(f) ∈ A, we conclude that A is dense in C(X).

Lemma 4.6. Let A be a subalgebra in C(X) which separates points and non-vanishing
at all points. For x1, x2 ∈ X and α, β ∈ R, there exists ϕ ∈ A such that ϕ(x1) = α and
ϕ(x2) = β.

Proof. Since A separates points, we can find some ψ ∈ A such that ψ(x1) 6= ψ(x2). We
claim that one can further choose ψ such that ψ(x1), ψ(x2) are both non-zero. For, if,
for instance, ψ(x1) = 0, fix some ξ ∈ A satisfying ξ(x1) 6= 0. This is possible due to the
non-vanishing property. Consider a function ψ1 ∈ A of the form ψ + tξ. We would like
to find t ∈ R such that (a) ψ1(x1) 6= ψ1(x2), (b) ψ1(x1) 6= 0, and (c) ψ1(x2) 6= 0. There
are two cases; when ξ(x2) 6= 0, it suffices to choose t such that t 6= 0,−ψ(x2)/ξ(x2) (if
ξ(x2) 6= 0). When ξ(x2) = 0, we choose t such that t 6= ψ(x2)/ξ(x1). Replacing ψ by ψ1,
we obtain our desired function which satisfies (a)–(c).

Now, we can find a and b such that the combination ϕ = aψ + bψ2 ∈ A satisfies the
requirement in the lemma. Indeed, what we need are the conditions aψ(x1)+bψ2(x1) = α
and aψ(x2) + bψ2(x2) = β. As the determinant of this linear system (viewing a and b as
the unknowns) is equal to ψ(x1)ψ(x2)(ψ(x1)−ψ(x2)) which is not equal to 0, a and b can
always be found.

Proof of Theorem 3.5. It remains to establish the necessary part of the theorem.
Let f ∈ C(X) be given. For each pair of x, y, there exists a function ϕx,y ∈ A satisfying
ϕx,y(x) = f(x) and ϕx,y(y) = f(y). This is due to the previous lemma when x and y are
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distinct. When x is equal to y, such function still exists. Now, for each ε > 0, there exists
an open set Ux,y containing x and y such that

|f(t)− ϕx,y(t)| < ε, ∀t ∈ Ux,y.

For fixed y, the sets {Ux,y : x ∈ X} form an open cover of X. By the compactness of X, it
admits a finite subcover {Uxj ,y}Nj=1. The function ϕy = ϕx1,y∨· · ·∨ϕxN ,y belongs to A ac-
cording to Lemma 3.3. Furthermore, ϕy > f − ε in X. For, let x ∈ X, there is some Uxj ,y
containing x. Therefore, ϕy(x) ≥ ϕxj ,y(x) > f(x)−ε. Next, Gy ≡ ∩Nj=1Uxj ,y is an open set
containing y and all these open sets together form an open cover of X when y runs over
X. Note that ϕy < f+ε on X since ϕxj ,y < f+ε in Gy for all j = 1, · · · , N . By compact-
ness, we can extract y1, · · · , yM such that {Gyk}Mk=1, cover X. Define ϕ = ϕy1 ∧ · · · ∧ϕyM .
By Lemma 3.3 it belongs to A and ϕ > f − ε in X. On the other hand, each x belongs
to some Gyk , so ϕ(x) ≤ ϕyk(x) < f(x)+ε holds. We conclude that ‖f−ϕ‖∞ < ε, ϕ ∈ A. �

4.4 Compactness and Arzela-Ascoli Theorem

We pointed out before that not every closed, bounded set in a metric space is compact. In
Section 2.3 a bounded sequence without any convergent subsequence is explicitly displayed
to show that a closed, bounded set in C[a, b] needs not be compact. In view of numerous
theoretic and practical applications, it is strongly desirable to give a characterization of
compact sets in C[a, b]. The answer is given by the fundamental Arezela-Ascoli Theorem.
This theorem gives a necessary and sufficient condition when a closed and bounded set in
C[a, b] is compact. In order to have wider applications, we will work on a more general
space C(K), where K is a closed, bounded subset of Rn, instead of C[a, b]. Recall that
C(K) is a complete, separable space under the sup-norm.

The crux for compactness for continuous functions lies on the notion of equicontinuity.
Let X be a subset of Rn. A subset F of C(X) is equicontinuous if for every ε > 0,
there exists some δ such that

|f(x)− f(y)| < ε, for all f ∈ F , and |x− y| < δ, x, y ∈ X.

Recall that a function is uniformly continuous in X if for each ε > 0, there exists some
δ such that |f(x) − f(y)| < ε whenever |x − y| < δ, x, y ∈ X. So, equicontinuity means
that δ can further be chosen independent of the functions in F .

There are various ways to show that a family of functions is equicontinuous. Recall
that a function f defined in a subset X of Rn is called Hölder continuous if there exists
some α ∈ (0, 1) such that

|f(x)− f(y)| ≤ L|x− y|α, for all x, y ∈ X, (4.1)
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for some constant L. The number α is called the Hölder exponent. The function is called
Lipschitz continuous if (3.1) holds for α equals to 1. A family of functions F in C(X)
is said to satisfy a uniform Hölder or Lipschitz condition if all members in F are Hölder
continuous with the same α and L or Lipschitz continuous and (3.1) holds for the same
constant L. Clearly, such F is equicontinuous. In fact, for any ε > 0, any δ satisfying
Lδα < ε can do the job. The following situation is commonly encountered in the study
of differential equations. The philosophy is that equicontinuity can be obtained if there
is a good, uniform control on the derivatives of functions in F .

Proposition 4.7. Let F be a subset of C(X) where X is a convex set in Rn. Suppose that
each function in F is differentiable and there is a uniform bound on the partial derivatives
of these functions in F . Then F is equicontinuous.

Proof. For, x and y in X, (1 − t)x + ty, t ∈ [0, 1], belongs to X by convexity. Let
ψ(t) ≡ f((1− t)x+ ty). By the chain rule

ψ′(t) =
n∑
j=1

∂f

∂xj
((1− t)x+ ty)(yj − xj),

we have

f(y)− f(x) = ψ(1)− ψ(0)

=

ˆ 1

0

ψ′(t)dt

=
n∑
j=1

ˆ 1

0

∂f

∂xj
(x+ t(y − x))(yj − xj).

Therefore,
|f(y)− f(x)| ≤

√
nM |y − x|,

where M = sup{|∂f/∂xj(x)| : x ∈ X, j = 1, . . . , n, f ∈ F} after using Cauchy-Schwarz
inequality. We conclude that F satisfies a uniform Lipschitz condition with Lipschitz
constant n1/2M .

Example 4.4. Let

A = {y : y′ = sin(xy), x ∈ [−1, 1]} ⊂ C[−1, 1].

It can be shown that, given any y0 ∈ R, there is a unique solution y solving the equation
and y(0) = y0, so A contains many functions. There is an obvious uniform estimate on
its derivative, namely,

|y′(x)| = | sinxy| ≤ 1.

By Proposition 4.7 A forms an equicontinuous family. However, as there is no control on
y0, A is not bounded.



10 CHAPTER 4. THE SPACE OF CONTINUOUS FUNCTIONS

Example 4.5. Let

B = {f ∈ C[0, 1] : |f(x)| ≤ 1, x ∈ [0, 1]} ⊂ C[0, 1].

Clearly B is closed and bounded. However, we do not have any uniform control on
the oscillation of the functions in this set, so it should not be equicontinuous. In fact,
consider the sequence {sinnx}, n ≥ 1, in B. We claim that it is not equicontinuous. In
fact, suppose for ε = 1/2, there exists some δ such that | sinnx− sinny| < 1/2, whenever
|x − y| < δ for all n. Pick a large n such that nδ > π. Taking x = 0 and y = π/2n,
|x − y| < δ but | sinnx − sinny| = | sin π/2| = 1 > 1/2, contradiction holds. Hence B is
not equicontinuous.

More examples of equicontinuous families can be found in the exercise.

We first establish a necessary condition for compactness.

Theorem 4.8 (Arzela’s Theorem). A compact set in C(K) where K is a compact set
in Rn is closed, bounded and equicontinuous.

Proof. Let F be compact in CK. We already knew that it must be closed and bounded.
It remains to prove equicontinuity. Since a compact set is totally bounded, for each ε > 0,
there exist f1, · · · , fN ∈ F such that F ⊂

⋃N
j=1Bε(fj) where N depends on ε. So for any

f ∈ F , there exists fj such that

|f(x)− fj(x)| < ε, for all x ∈ K.

As each fj is continuous, there exists δj such that |fj(x)−fj(y)| < ε whenever |x−y| < δj.
Letting δ = min{δ1, · · · , δN}, then

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)| < 3ε,

for |x− y| < δ, so F is equicontinuous.

It turns out the converse of Arzela’s theorem is also true.

Theorem 4.9 (Ascoli’s Theorem). A closed, bounded and equicontinuous set in C(K)
where K is a compact set in Rn is compact.

We need the following lemma from elementary analysis. It will be used in many
occasions.

Lemma 4.10. Let {zj, j ≥ 1} be a sequence in Rn and {fn} be a sequence of functions
defined on {zj, j ≥ 1}. Suppose that for each j, there exists an Mj such that |fn(zj)| ≤Mj

for all n ≥ 1. There is a subsequence of {fn}, {gn}, such that {gn(zj)} is convergent for
each j.
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Proof. Since {fn(z1)} is a bounded sequence, we can extract a subsequence {f 1
n} such that

{f 1
n(z1)} is convergent. Next, as {f 1

n(z2)} is bounded, it has a subsequence {f 2
n} such that

{f 2
n(z2)} is convergent. Keep doing in this way, we obtain sequences {f jn} satisfying (i)
{f j+1

n } is a subsequence of {f jn} and (ii) {f jn(z1)}, {f jn(z2)}, · · · , {f jn(zj)} are convergent.
Then the diagonal sequence {gn}, gn = fnn , for all n ≥ 1, is a subsequence of {fn} which
converges at every zj.

The subsequence selected in this way is usually referred to as Cantor’s diagonal se-
quence. It first came up in Cantor’s study of infinite sets.

Proof of Ascoli’s Theorem. Since K is compact in Rn, it is totally bounded. For each
j ≥ 1, we can cover K by finitely many balls B1/j(x

j
1), · · · , B1/j(x

j
N) where the number N

depends on j. All {xjk}, j ≥ 1, 1 ≤ k ≤ N, form a countable set. For any sequence {fn}
in F , by Lemma 4.10, we can pick a subsequence denoted by {gn} such that {gn(xjk)} is
convergent for all xjk’s. We claim that {gn} is a Cauchy sequence in C(K). For, due to
the equicontinuity of F , for every ε > 0, there exists a δ such that |gn(x) − gn(y)| < ε,
whenever |x − y| < δ. Pick j0, 1/j0 < δ. Then for x ∈ K, there exists xj0k such that
|x− xj0k | < 1/j0 < δ,

|gn(x)− gm(x)| ≤ |gn(x)− gn(xj0k )|+ |gn(xj0k )− gm(xj0k )|+ |gm(xj0k )− gm(x)|
< ε+ |gn(xj0k )− gm(xj0k )|+ ε.

As {gn(xj0k )} converges, there exists n0 such that

|gn(xj0k )− gm(xj0k )| < ε, for all n,m ≥ n0. (4.2)

Here n0 depends on xj0k . As there are finitely many xj0k ’s, we can choose some N0 such
that (4.2) holds for all xj0k and n,m ≥ N0. It follows that

|gn(x)− gm(x)| < 3ε, for all n,m ≥ N0,

i.e., {gn} is a Cauchy sequence in C(K). By the completeness of C(K) and the closedness
of F , {gn} converges to some function in F .

These two theorems together form a necessary and sufficient condition for compactness
in C(K). When it comes to applications, the sufficient condition is more relevant than
the necessary condition. Ascoli’s theorem is usually used in the following form.

Theorem 4.11. A sequence in C(K) where K is compact in Rn has a convergent subse-
quence if it is uniformly bounded and equicontinuous.

Proof. Let F be the closure of the sequence {fn}. We would like to show that F is
bounded and equicontinuous. First of all, by the uniform boundedness assumption, there
is some M such that

|fn(x)| ≤M, ∀x ∈ K, n ≥ 1.
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As every function in F is either one of these fn or the limit of its subsequence, it also
satisfies this estimate, so F is bounded in C(K). On the other hand, by equicontinuity,
for every ε > 0, there exists some δ such that

|fn(x)− fn(y)| < ε

2
, ∀x, y ∈ K, |x− y| < δ.

As every f ∈ F is the limit of a subsequence of {fn}, f satisfies

|f(x)− f(y)| ≤ ε

2
< ε, ∀x, y ∈ K, |x− y| < δ,

so F is also equicontinuous. Now the conclusion follows from Ascoli’s Theorem.

We present an application of Arezela-Ascoli Theorem to ordinary differential equations.
Consider the initial value problem again,

dx

dt
= f(t, x),

y(t0) = x0.

(IVP)

where f is a continuous function defined in the rectangle R = [t0−a, t0+a]×[x0−b, x0+b].
In Chapter 3 we proved that this Cauchy problem has a unique solution when f satisfies
the Lipschitz condition. Now we show that the existence part of Picard-Lindelöf theoorem
is still valid without the Lipschitiz condition.

Theorem 4.12 (Cauchy-Peano Theorem). Consider (2.3) where f is continuous on
R = [t0 − a, t0 + a] × [x0 − b, x0 + b]. There exist a′ ∈ (0, a) and a C1-function x :
[t0 − a′, t0 + a′]→ [x0 − b, x0 + b], solving (IVP).

From the proof we will see that a′ can be taken to be 0 < a′ < min{a, b/M} where
M = sup{|f(t, x)| : (t, x) ∈ R}. The theorem is also valid for systems.

Proof. Recalling in the proof of Picard-Lindelöf theorem we showed that under the Lips-
chitz condition the unique solution exists on the interval [t0 − a′, t0 + a′] where 0 < a′ <
min{a, b/M, 1/L∗} where L∗ is the Lipschitz constant. Let us first argue that the maximal
solution in fact exists in the interval [t0−a′, t0 +a′] where 0 < a′ < min{a, b/M}. In other
words, the Lipschitz condition does not play any role in the range of existence. Although
this was done in the exercise, we include it here for the sake of completeness.

Take t0 = x0 = 0 to simplify notations. The functions w(t) = Mt and z(t) = −Mt
satisfy x′ = ±M, x(0) = 0, respectively. By comparing them with x, our maximal
solution to (2.3), we have z(t) ≤ y(t) ≤ w(t) as long as x exists. In case x exists on
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[0, α) for some α < min{a, b/M}, (t, x(t)) would be confined in the triangle bounded by
x = Mt, x = −Mt, and t = α. As this triangle is compactly contained in the interior of
R, the Lipschitz constant ensures that the solution could be extended beyond α. Thus
the solution exists up to min{a, b/M}. Similarly, one can show that the solution exists in
(−min{a, b/M}, 0].

With this improvement at our disposal, we prove the theorem. First, of all, by Weier-
strass approximation theorem, there exists a sequence of polynomials {fn} approach-
ing f in C([−a, a] × [−b, b]) uniformly. In particular, it means that Mn → M, where
Mn = max{|fn(t, x)| : (t, x) ∈ [−a, a] × [−b, b]. As each fn satisfies the Lipschitz condi-
tion (why?), there is a unique solution yn defined on In = (−an, an), an = min{a, b/Mn}
for the initial value problem

dx

dt
= fn(t, x), x(0) = 0.

From |dxn/dt| ≤ Mn and limn→∞Mn = M , we know from Proposition 4.7 that {xn}
forms an equicontinuous family. Clearly, it is also bounded. By Theorem 4.11, it contains
a subsequence {xnj

} converging uniformly to a continuous function x ∈ I on every subin-
terval [α, β] of I and x(0) = 0 holds. It remains to check that x solves the differential
equation for f .

Indeed, each xn satisfies the integral equation

xn(x) =

ˆ t

0

f(s, xn(s))dt, t ∈ In.

As {xnj
} → x uniformly, {f(t, xnj

(t))} also tends to f(t, x(t)) uniformly. By passing to
limit in the formula above, we conclude that

x(t) =

ˆ t

0

f(s, x(s))dt, t ∈ I

holds. By Proposition 3.11, y is differentiable and a solution to (IVP).

4.5 Completeness and Baire Category Theorem

In this section we discuss Baire category theorem, a basic property of complete metric
spaces. It is concerned with the decomposition of a metric space into a countable union
of subsets. The motivation is somehow a bit strange at first glance. For instance, we can
decompose the plane R2 as the union of strips R2 =

⋃
k∈Z Sk where Sk = (k, k+1]×R. In

this decomposition each Sk is not so sharply different from R2. Aside from the boundary,
the interior of each Sk is just like the interior of R2. On the other hand, one can make
the more extreme decomposition: R2 =

⋃
α∈R lα where lα = {α} × R. Each lα is a

vertical straight line and is very different from R2. It is simpler in the sense that it is
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one-dimensional and has no area. The sacrifice is now we need an uncountable union.
The question is: Can we represent R2 as a countable union of these sets (or sets with
lower dimension)? It turns out that the answer is no. The obstruction comes from the
completeness of the ambient space.

We need one definition. Let (X, d) be a metric space. A subset E of X is called
nowhere dense if its closure does not contain any metric ball. Equivalently, E is nowhere
dense if X \ E is dense (and open) in X. Note that a set is nowhere dense if and only if
its closure is nowhere dense. Also every subset of a nowhere dense set is nowhere dense.

Theorem 4.13 (Baire Category Theorem). Let {Ej}∞1 be a sequence of nowhere
dense subsets of (X, d) where (X, d) is complete. Then

⋃∞
j=1Ej has empty interior.

A set with empty interior means that it does not contain any ball. It is so if and only
if its complement is a dense set.

Proof. Replacing Ej by its closure if necessary, we may assume all Ej’s are closed sets. Let
B0 be any ball. The theorem will be established if we can show that B0

⋂
(X \

⋃
j Ej) 6= φ.

As E1 is nowhere dense, there exists some point x ∈ B0 lying outside E1. Since E1 is
closed , we can find a closed ball B1 ⊂ B0 centering at x such that B1 ∩ E1 = φ and its
diameter d1 ≤ d0/2, where d0 is the diameter of B0. Next, as E2 is nowhere dense and
closed, by the same reason there is a closed ball B2 ⊂ B1 such that B2 ∩ E2 = φ and
d2 ≤ d1/2. Repeating this process, we obtain a sequence of closed balls Bj satisfying (a)
Bj+1 ⊂ Bj, (b) dj ≤ d0/2

j, and (c) Bj is disjoint from E1, · · · , Ej. Pick xj from Bj to form
a sequence {xj}. As the diameters of the balls tend to zero, {xj} is a Cauchy sequence.
By the completeness of X, {xj} converges to some x∗. Clearly x∗ belongs to all Bj. If x∗

belongs to
⋃
j Ej, x

∗ belongs to some Ej1 , but then x∗ ∈ Bj1

⋂
Ej1 which means that Bj1

is not disjoint from Ej1 , contradiction holds. We conclude that B0

⋂
(X \

⋃
j Ej) 6= φ.

Some remarks are in order.

First, taking complement in the statement of the theorem, it asserts that the inter-
section of countably many open, dense sets is again a dense set. Be careful it may not be
open. For example, let {qj} be the set of all rational numbers in R and Dk = R \ {qj}kj=1.
Each Dk is an open, dense set. However,

⋂
kDk = R\Q is the set of all irrational numbers.

Although it is dense, it is not open any more.

Second, that the set
⋃
j Ej has no interior in particular implies X \

⋃
j Ej is nonempty,

that is, it is impossible to decompose a complete metric space into a countable union of
nowhere dense subsets.

Third, the above remark may be formulated as, if X is complete and X =
⋃
j Aj where

Aj are closed, then one of the Aj’s must contain a ball.

When we describe the size of a set in a metric space, we could use the notion of a
dense set or a nowhere dense set. However, sometimes some description is too rough. For
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instance, consider Q, I and Y , the set obtained by removing finitely many points from
R. All of them are dense in R. However, everyone should agree that they are are very
different. Q is countable, I is uncountable and Y is open. From a measure-theoretic point
of view, Q is a set of measure zero and yet I has infinite measure. Y should be “more
dense” than I, and I “more dense” than Q. Thus simply calling them dense sets is not
precise enough. Baire category theorem enables us to make a more precise description
of the size of a set in a complete metric space. A set in a metric space is called of first
category if it can be expressed as a countable union of nonwhere dense sets. Note that by
definition any subset of a set of first category is again of first category. A set is of second
category if its complement is of first category. According to Baire category theorem, a
set of second category is a dense set when the underlying space is complete.

Proposition 4.14. If a set in a complete metric space is of first category, it cannot be of
second category, and vice versa.

Proof. Let E be of first category and let E = ∪∞k=1Ek where Ek are nowhere dense sets.
If it is also of second category, its complement is of first category. Thus, X \E = ∪∞k=1Fk
where Fk are nowhere dense. It follows that X = E ∪ (X \E) = ∪k(Ek ∪Fk) so the entire
space is a countable union on of nowhere dense sets, contradicting the completeness of
the space and the Baire category theorem.

Applying to R, we see that Q is of first category and I is of second category although
they both are dense sets. Indeed, Q = ∪k{xk} where k runs through all rational numbers
and I = R \Q is of second category.

Baire category theorem has many applications. We end this section by giving two
standard ones. It is concerned with the existence of continuous, but nowhere differentiable
functions. We knew that Weierstrass is the first person who constructed such a function
in 1896. His function is explicitly given in the form of an infinite series

W (x) =
∞∑
n=1

cos 3nx

2n
.

Here we use an implicit argument to show there are far more such functions than contin-
uously differentiable functions.

We begin with a lemma.

Lemma 4.15. Let f ∈ C[a, b] be differentiable at x. Then it is Lipschitz continuous at x.

Proof. By differentiability, for ε = 1, there exists some δ0 such that∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣ < 1, ∀y 6= x, |y − x| < δ0.
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We have
|f(y)− f(x)| ≤ L|y − x|, ∀y, |y − x| < δ0,

where L = |f ′(x)|+ 1. For y lying outside (x− δ0, x+ δ0), |y − x| ≥ δ0. Hence

|f(y)− f(x)| ≤ |f(x)|+ |f(y)|

≤ 2M

δ0
|y − x|, ∀y ∈ [a, b] \ (x− δ0, x+ δ0),

where M = sup{|f(x)| : x ∈ [a, b]}. It follows that f is Lipschitz continuous at x with
an Lipschitz constant not exceeding max{L, 2M/δ0}.

Proposition 4.16. The set of all continuous, nowhere differentiable functions forms a
set of second category in C[a, b] and hence dense in C[a, b].

Proof. For each L > 0, define

SL =
{
f ∈ C[a, b] : f is Lipschitz continuous at some x with the Lipschitz constant ≤ L

}
.

We claim that SL is a closed set. For, let {fn} be a sequence in SL which is Lipschitz
continuous at xn and converges uniformly to f . By passing to a subsequence if necessary,
we may assume {xn} to some x∗ in [a, b]. We have, by letting n→∞,

|f(y)− f(x∗)| ≤ |f(y)− fn(y)|+ |fn(y)− f(x∗)|
≤ |f(y)− fn(y)|+ |fn(y)− fn(xn)|+ |fn(xn)− fn(x∗)|+ |fn(x∗)− f(x∗)|
≤ |f(y)− fn(y)|+ L|y − xn|+ L|xn − x∗|+ |fn(x∗)− f(x∗)|
→ L|y − x∗|

Next we show that each SL is nowhere dense. Let f ∈ SL. By Weierstrass approxima-
tion theorem, for every ε > 0, we can find some polynomial p such that ‖f − p‖∞ < ε/2.
Since every polynomial is Lipschitz continuous, let the Lipschitz constant of p be L1.
Consider the function g(x) = p(x) + (ε/2)ϕ(x) where ϕ is the jig-saw function of period
r satisfying 0 ≤ ϕ ≤ 1 and ϕ(0) = 1. The slope of this function is either 1/r or −1/r.
Both will become large when r is chosen to be small. Clearly, we have ‖f − g‖∞ < ε. On
the other hand,

|g(y)− g(x)| ≥ ε

2
|ϕ(y)− ϕ(x)| − |p(y)− p(x)|

≥ ε

2
|ϕ(y)− ϕ(x)| − L1|y − x| .

For each x sitting in [a, b], we can always find some y nearby so that the slope of ϕ over
the line segment between x and y is greater than 1/r or less than −1/r. Therefore, if we
choose r so that

ε

2

1

r
− L1 > L,
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we have |g(y)− g(x)| > L|y − x|, that is, g does not belong to SL.

Denoting by S the set of functions in C[a, b] which are differentiable at at least one
point, by Lemma 3.15 it must belong to SL for some L. Therefore, S ⊂ ∪∞k=1Sk is of first
category.

Though elegant, a drawback of this proof is that one cannot assert which particular
function is nowhere differentiable. On the other hand, the example of Weierstrass is a
concrete one.

Our second application is concerned with the basis of a vector space. Recall that a
basis of a vector space is a set of linearly independent vectors such that every vector
can be expressed as a linear combination of vectors from the basis. The construction
of a basis in a finite dimensional vector space was done in MATH2040. However, in
an infinite dimensional vector space the construction of a basis is difficult. Nevertheless,
using Zorn’s lemma, a variant of the axiom of choice, one shows that a basis always exists.
Some authors call a basis for an infinite dimensional basis a Hamel basis. The difficulty
in writing down a Hamel basis is explained in the following result.

Proposition 4.17. Any basis of an infinite dimensional Banach space consists of un-
countably many vectors.

Proof. Let V be an infinite dimensional Banach space and B = {wj} be a countable basis.
We aim for a contradiction. Indeed, let Wn be the subspace spanned by {w1, · · · , wn}.
We have the decomposition

V =
⋃
n

Wn.

If one can show that each Wn is closed and nowhere dense, since V is complete, Baire
category theorem tells us this decomposition is impossible. To see that Wn is nowhere
dense, pick a unit vector v0 outside Wn. For w ∈ Wn and ε > 0, w+εv0 ∈ Bε(w)∩(V \Wn),
so Wn is nowhere dense. Next, letting vj be a sequence in Wn and vj → v0, we would
like to show that v ∈ Wn. Indeed, every vector v ∈ Wn can be uniquely expressed as∑n

j=1 ajwj. The map v 7→ a ≡ (a1, · · · , an) sets up a linear bijection between Wn and
Rn and ‖|a‖| ≡ ‖v‖ defines a norm on Rn. Since any two norms in Rn are equivalent, a
convergent (resp. Cauchy ) sequence in one norm is the same in the other norm. Since
now {vj} is convergent in V , it is a Cauchy sequence in V . The corresponding sequence
{aj}, aj = (aj1, · · · , ajn), is a Cauchy sequence in Rn with respect to ‖| · ‖| and hence in
‖ · ‖2, the Euclidean norm. Using the completeness of Rn with respect to the Euclidean
norm, {aj} converges to some a∗ = (a∗1, · · · , a∗n). But then {vj} converges to v∗ =

∑
j a
∗
jwj

in Wn. By the uniqueness of limit, we conclude that v0 = v∗ ∈ Wn, so Wn is closed.

Comments on Chapter 4. Three properties, namely, separability, compactness, and
completeness of the space of continuous functions are studied in this chapter.
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Separability is established by various approximation theorems. For the space C[a, b],
Weierstrass approximation theorem is applied. Weierstrass (1885) proved his approxima-
tion theorem based on the heat kernel, that is, replacing the kernel Qn in our proof in
Section 1 by the heat kernel. The argument is a bit more complicated but essentially the
same. It is taken from Rudin, Principles of Mathematical Analysis. A proof by Fourier
series is already presented in Chapter 1. Another standard proof is due to Bernstein,
which is constructive and had initiated a branch of analysis called approximation theory.
The Stone-Weierstrass theorem is due to M.H. Stone (1937, 1948). We use it to establish
the separability of the space C(X) where X is a compact metric space. You can find more
approximation theorem by web-surfing.

Arezela and Ascoli Theorems play the role in the space of continuous functions the
same as Bolzano-Weierstrass theorem does in the Euclidean space. A bounded sequence
of real numbers always admits a convergent subsequence. Although this is no longer true
for bounded sequences of continuous functions on [a, b], it does hold when the sequence is
also equicontinuous. Ascoli’s Theorem (Theorem 4.11) is widely applied in the theory of
partial differential equations, the calculus of variations, complex analysis and differential
geometry. Here is a taste of how it works for a minimization problem. Consider

inf
{
J [u] : u(0) = 0, u(1) = 5, u ∈ C1[0, 1]

}
,

where

J [u] =

ˆ 1

0

(
u

′2(x)− cosu(x)
)
dx.

First of all, we observe that J [u] ≥ −1. This is clear, for the cosine function is always
bounded by ±1. After knowing that this problem is bounded from −1, we see that inf J [u]
must be a finite number, say, γ. Next we pick a minimizing sequence {un}, that is, every
un is in C1[0, 1] and satisfies u(0) = 0, u(1) = 5, such that J [un] → γ as n → ∞. By
Cauchy-Schwarz inequality, we have∣∣un(x)− un(y)

∣∣ ≤ ˆ y

x

∣∣u′n(x)
∣∣dx

≤

√ˆ y

x

12dx

√ˆ y

x

u′2
n (x)dx

≤

√ˆ y

x

12dx

√ˆ 1

0

u′2
n (x)dx

≤
√
J [un] + 1

√
|y − x|

≤
√
γ + 2 |y − x|1/2

for all large n. From this estimate we immediately see that {un} is equicontinuous and
bounded (because un(0) = 0). By Ascoli’s Theorem, it has a subsequence {unj

} converging
to some u ∈ C[0, 1]. Apparently, u(0) = 0, u(1) = 5. Using knowledge from functional
analysis, one can further argue that u ∈ C1[0, 1] and is the minimum of this problem.
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There is an alternate proof of Cauchy-Peano Theorem without using Picard-Lindelöf
Theorem. In this proof piecewise linear approximate solutions to (IVP) are constructed
and subconvergence to a solution is shown by Ascoli’s theorem, see, Coddington-Levinson,
Theory of Ordinary Differential Equations, for details.

You may google under Arezela-Ascoli Theorem for more on equicontinuity.

There are some fundamental results that require completeness. The contraction map-
ping principle is one and Baire category theorem is another. The latter was first introduced
by Baire in his 1899 doctoral thesis. It has wide, and very often amazing applications in
all branches of analysis. Some nice applications are available on the web. Google under
applications of Baire category theorem for more.

Weierstrass’ example is discussed in some detailed in Hewitt-Stromberg, “Abstract
Analysis”. An simpler example can be found in Rudin’s Principles.

Being unable to locate a single reference containing these three topics, I decide not to
name any reference but let you search through the internet.
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