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MIXED FINITE ELEMENT METHOD WITH GAUSS'S LAW
ENFORCED FOR THE MAXWELL EIGENPROBLEM\ast 

HUOYUAN DUAN\dagger , JUNHUA MA\dagger , AND JUN ZOU\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . A mixed finite element method is proposed for the Maxwell eigenproblem under the
general setting. The method is based on a modification of the Kikuchi mixed formulation in terms of
the electric field and the multiplier, with a mesh-dependent Gauss law of the electric field enforced
in the formulation. The electric field is discretized by discontinuous elements, and the multiplier
is always discretized by the lowest-order continuous nodal element (e.g., the linear element). The
method renders four key features: the discrete de Rham complex exact sequence is not required and
is replaced by a gradient inclusion condition of a low-order scalar element; i.e., the finite element
space of the electric field includes the gradient of an auxiliary scalar H1-conforming finite element
space of low order; the discrete compactness property holds; the strong convergence of the Gauss
law is ensured globally for the finite element solution; the method converges nearly optimally for
both singular and smooth solutions. With these features, we develop a general analysis to prove that
whether or not the discrete eigenmodes are spurious-free and spectral-correct attributes essentially
to the first-order approximation property in the H(\bfc \bfu \bfr \bfl ; \Omega ) norm. As a direct application, except
three lowest-order elements that do not have the first-order approximation property on nonaffine
meshes, the first-kind N\'ed\'elec elements on nonaffine quadrilateral and hexahedral meshes and the
second-kind N\'ed\'elec elements on affine and nonaffine quadrilateral and hexahedral meshes, including
their discontinuous versions, are spurious-free and spectral-correct in the new mixed method, while
these N\'ed\'elec elements generate spurious and incorrect discrete eigenmodes in the classical methods.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Maxwell eigenproblem, Gauss's law, mixed finite elements, N\'ed\'elec elements,
discontinuous elements

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65N30, 65N25, 65N35

\bfD \bfO \bfI . 10.1137/20M1350753

1. Introduction. In this work, we shall propose and analyze a mixed finite
element method for the Maxwell eigenproblem, for which the following two classical
variational formulations are frequently used.

Find (\omega 2,u \not = 0) \in \BbbR \times H0(curl ; \Omega ) such that

(1.1) (\bfitmu  - 1curl u, curl v) = \omega 2(\bfitvarepsilon u,v) \forall v \in H0(curl ; \Omega ) .

Find (\omega 2,u \not = 0) \in \BbbR \times H0(curl ; \Omega ) and p \in H1
0 (\Omega ) such that

(1.2)

\biggl\{ 
(\bfitmu  - 1curl u, curl v) + (\bfitvarepsilon v,\nabla p) = \omega 2(\bfitvarepsilon u,v) \forall v \in H0(curl ; \Omega ),

(\bfitvarepsilon u,\nabla q) = 0 \forall q \in H1
0 (\Omega ).
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A3678 HUOYUAN DUAN, JUNHUA MA, AND JUN ZOU

These two formulations are known to be equivalent for all nonzero eigenvalues when
the domain is simply connected with a connected boundary. Formulation (1.2) is
known as the Kikuchi method [31], [32] and provides a compact operator. Formulation
(1.1) provides a noncompact operator, incurring a zero eigenvalue with an infinite
dimensional eigenspace, which is the kernel space of the curl operator. When both
classical formulations (1.1) and (1.2) are discretized by a conforming finite element
method, the corresponding finite element space Xh \subset H0(curl ; \Omega ) must meet the so-
called discrete de Rham complex exact sequence; i.e., there exist two discrete spaces
Mh \subset H1

0 (\Omega ) and Yh \subset H0(div ; \Omega ) such that

(1.3) 0  -  -  -  - \rightarrow Mh
\nabla  -  -  -  - \rightarrow Xh

\bfc \bfu \bfr \bfl  -  -  -  - \rightarrow Yh,

which exactly mimics the continuous de Rham complex exact sequence

(1.4) 0  -  -  -  - \rightarrow H1
0 (\Omega )

\nabla  -  -  -  - \rightarrow H0(curl ; \Omega )
\bfc \bfu \bfr \bfl  -  -  -  - \rightarrow H0(div ; \Omega ).

There are numerous references about the numerical solutions of the Maxwell equations
with H(curl ; \Omega )-conforming and discontinuous finite elements under the sequence
(1.3); we refer the reader to, just to name a few, [10], [30], [14], [19], [31], [15], [32],
[40], and references therein.

As classic H(curl ; \Omega )-conforming elements, most of the N\'ed\'elec elements [36],
[37] satisfy (1.3), e.g., the N\'ed\'elec elements of first kind and second kind on simplexes
(e.g., triangles, tetrahedra) and the N\'ed\'elec elements of first kind on parallelograms
and parallelepipeds. Unexpectedly, as the full tensor product spaces, the N\'ed\'elec
elements of the second kind on parallelograms and parallelepipeds fail to meet the
discrete exact sequence (1.3), and consequently, all of these elements produce spurious
and incorrect approximations by the classical formulations. When the meshes are
nonaffine quadrilaterals and hexahedra, the application of the N\'ed\'elec elements to the
classical formulations becomes difficult. This is because the discrete exact sequence
(1.3) may fail for N\'ed\'elec elements of both the second and first kinds; hence these
elements are generally not spurious-free and not spectral-correct. Up until now, it
has been unclear how to generally construct hexahedral elements to satisfy (1.3),
although there exist some families of quadrilateral elements (e.g., [2], [22]). Even if
the discrete de Rham complex exact sequence (1.3) holds, the analysis for the Maxwell
eigenproblem is by no means easy. The key to the analysis hinges on the so-called
discrete compactness property in [32], which is nowadays well known to be the key
property for spurious-free and spectral-correct approximations.

The discontinuous Galerkin (DG) method may violate the sequence (1.3). But as
far as we know, all the existing DG methods either assume the smooth solutions (e.g.,
see [34]), or actually still require us to obey the discrete exact sequence (1.3); see, e.g.,
[10] (where the discrete compactness property and the discrete Friedrichs inequality
property of the H(curl ; \Omega )-conforming edge elements play a key role in the analysis,
while both properties rely on the continuous and discrete exact sequences (1.4) and
(1.3); see, e.g., [29, pages 270--272] and [33, Lemma 2 and Theorem 1]). It is well
known that the assumption of smooth solutions may not be realistic because, unlike
most other problems, Maxwell equations often have singular solutions in the sense
that u and curl u lie only in some fractional order Sobolev space Hr with r < 1. The
singular solutions may be caused by a nonsmooth domain with re-entrant corners
and edges or by the heterogeneous media (cf. [16], [18]). The situation may even
be more challenging for the Maxwell eigenproblem, since there may exist infinitely
many singular eigenfunctions, as well as infinitely many smooth eigenfunctions with
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MIXED FEM MAXWELL EIGENPROBLEM A3679

H1 or higher regularities, and it is generally unlikely that one would know which
eigenfunctions are singular or smooth a priori. Therefore, it would be practically
very important for a finite element method for the Maxwell eigenproblem to well
approximate both the singular and smooth solutions.

There is another physically and mathematically important issue to take care of
when the Maxwell system is solved numerically, that is, whether the finite element
method could ensure the global strong convergence of the Gauss law for the finite
element solution. In the case of the Maxwell eigenproblem, the Gauss law reads as

(1.5) div (\bfitvarepsilon u) = 0.

In [15], [40], a convergence of the Gauss law in Sobolev space H - (1 - \delta )(\Omega ) was studied
for the Maxwell source problem, but only the lowest-order N\'ed\'elec elements on trian-
gles or tetrahedra were considered. We are still not aware of any similar results for the
Maxwell eigenproblem, neither for other N\'ed\'elec elements nor for the discontinuous
elements. The theory developed in [15], [40] relies crucially on a key property, which
is actually closely related to the discrete compactness property. But we know that
only those edge elements which meet the discrete exact sequence (1.3) possess this key
property. Clearly, this fundamental issue deserves our full attention both physically
and mathematically when the Maxwell eigenproblem is solved numerically, and it will
be studied in this work.

Now, a very important and fundamental question arises: how can one remedy
those elements for which the sequence (1.3) does not hold, but the desired spurious-
free, spectral-correct approximations are still ensured, and the strong convergence of
the Gauss law of the finite element solution also holds? More precisely, the question
is how to design a finite element scheme for the Maxwell eigenproblem so that (1.3)
can be essentially avoided but the relevant discrete compactness property is easy to
realize so that more elements and more meshes can be accommodated, the strong
convergence of the Gauss law can be ensured, and full accuracies can be attained by
the finite element solution. It is this fundamental question that motivates the current
work in developing a new mixed finite element method.

In this paper, we start from the Kikuchi formulation (1.2) to propose a new mixed
finite element method for the Maxwell eigenproblem, with a modification of (1.2) to
directly and locally enforce the Gauss law at the discrete level in the finite element
formulation. As a result, the new mixed method renders the four key features as
stated in the abstract of this paper.

For the new mixed method, the lowest-order continuous nodal element (e.g., linear
element), denoted by Qh, is always used for the multiplier, while discontinuous finite
elements of any order, denoted by Uh, can be used for the electric field. Under such
favorable conditions, the resulting finite element systems are always truly spurious-
free (because there is no zero eigenvalue). This is in sharp contrast to the edge element
method of the original Kikuchi method for (1.2), where Mh in (1.3) must be of high
order due to the higher order of Xh. It is practically important to note that the
discrete system associated with the new mixed method is much smaller than that
with the edge element mixed method under (1.2) and (1.3), in terms of the degrees of
freedom. On the other hand, in the new mixed method, although Qh is the lowest-
order element, such as the linear element, the quasi-optimal approximation on Uh,
which can be any order, holds independent of Qh. The new mixed method has the
four key features stated earlier, while the classical methods may not. We discuss these
features in more detail below. To avoid the sequence (1.3), just partially mimicking
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A3680 HUOYUAN DUAN, JUNHUA MA, AND JUN ZOU

\nabla Mh \subset Xh in (1.3), we propose a similar gradient inclusion condition but for a low-
order scalar element (actually, the lowest-order nodal element suffices); that is, we
ask for a low-order scalar finite element space, denoted by Wh \subset Q (an H1 space),
such that

(1.6) \nabla Wh \subset Uh.

The main role of the condition (1.6) is to well approximate the singular solutions
which do not have the H1 regularity. For most choices of Uh, a general choice of Wh

is Qh itself; but there are spaces Uh for which Wh may be different from Qh; i.e.,
\nabla Qh \not \subset Uh allows for this, sharply in contrast to \nabla Mh \subset Xh. We emphasize that
Wh is only for theoretical purposes and does not enter the actual discretization of
the Maxwell eigenproblem; i.e., we are working with Qh and Uh only. For smooth
solutions, condition (1.6) is not needed, and all comes down to the standard inf-sup
condition and the standard approximation properties of (Uh, Qh). Since Wh is of
low-order element, condition (1.6) can be easily realized for various popular shapes
of elements, such as simplexes, quadrilaterals, hexahedra, prisms, etc., regardless of
whether Uh is discontinuous or tangential continuous (e.g., edge elements).

Clearly, all those N\'ed\'elec elements which satisfy (1.3) fulfill (1.6) naturally, by
simply taking Wh := Mh. In other words, all the N\'ed\'elec elements that are spurious-
free and spectral-correct in the classical methods are still so in our new mixed method.
More importantly, as we show in section 7, a direct application of the new mixed
method demonstrates that many existing important elements which cannot be spurious-
free and spectral-correct in classical methods are now spurious-free and spectral-
correct. These include the N\'ed\'elec elements of the second kind on affine meshes such
as rectangles, parallelograms, and parallelepipeds, and on nonaffine quadrilateral and
hexahedral meshes (excluding only the lowest-order element on nonaffine hexahedral
meshes), as well as the N\'ed\'elec elements of the first kind on nonaffine quadrilateral
and hexahedral meshes (excluding only the two lowest-order elements on nonaffine
quadrilateral and hexahedral meshes). This is the first time it has been proved that
all these elements can be used for obtaining spurious-free and spectral-correct eigen-
modes for the Maxwell eigenproblem.

Now, we turn to the enforcement of the Gauss law in the finite element formula-
tion. We have learned from [15], [40] thatH - (1 - \delta )(\Omega ) is used to study the convergence
of the Gauss law at the discrete level. Some relevant works are [7, 6] and references
therein. It turns out that H - (1 - \delta )(\Omega ) is suitable for both edge element spaces and
other finite element spaces including discontinuous elements; a reasonable discrete
norm of H - (1 - \delta )(\Omega ) for measuring the Gauss law can be taken as

(1.7) | vh| 2h,div :=
\sum 

K\in \scrT h

h2 - 2\delta 
K | | div (\bfitvarepsilon vh)| | 20,K +

\sum 
F\in \scrF int

h

h1 - 2\delta 
F

\int 
F

| [[(\bfitvarepsilon vh) \cdot n]]| 2.

As a matter of fact, we observe that | | div (\bfitvarepsilon \cdot )| |  - (1 - \delta ) is equivalent to | \cdot | h,div on Kh

(the space of discrete divergence-free functions). Such an observation motivates us to
enforce the divergence-free Gauss law (1.5) in the finite element discretization, i.e., to
augment the Kikuchi formulation (1.2) by a mesh-dependent bilinear form

(1.8)
\sum 

K\in \scrT h

h2 - 2\delta 
K (div (\bfitvarepsilon u),div (\bfitvarepsilon v))0,K +

\sum 
F\in \scrF int

h

h1 - 2\delta 
F

\int 
F

[[(\bfitvarepsilon u) \cdot n]][[(\bfitvarepsilon v) \cdot n]].

This augmentation is consistent, since (1.8) vanishes for exact u of (1.5). We shall
prove that this augmentation is the key to the discrete compactness property and also
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ensures the kernel-ellipticity. All of these hold without resorting to the discrete de
Rham complex exact sequence.

With those four features, we develop a general analysis, revealing that from the
new mixed method, whether or not (Uh, Qh) is spurious-free and spectral-correct
essentially is attributed to a first-order approximation property of Uh for a piecewise
smooth solution z (cf. (7.10) and (7.11)). Moreover, we prove, by the abstract theory
of saddle-point problems [9], [29] and the abstract spectral theory of the compact
operator [3], [35], that the new mixed method is stable and converges essentially
optimally for both singular and smooth solutions, up to the above parameter \delta , and
that the resulting finite element solution converges to the Gauss law in both norms
(1.7) and | | div (\bfitvarepsilon \cdot )| |  - (1 - \delta ).

The rest of the paper is organized as follows. In section 2, we review the Maxwell
eigenproblem and introduce the Hilbert spaces. The new mixed finite element method
is introduced in section 3, and then a general theory for stability and error estimates
for the source problem corresponding to the eigenproblem is developed in section 4.
We obtain the error estimates in section 5. In section 6, the previous error estimates
are applied to the eigenproblem. In section 7, the gradient inclusion condition and the
standard approximation properties are generally verified for both N\'ed\'elec elements
and discontinuous elements. In particular, both affine and nonaffine quadrilateral and
hexahedral N\'ed\'elec elements and discontinuous elements are studied. In section 8,
numerical results are presented, including concluding remarks.

2. The Maxwell eigenproblem, its formulation, and preliminaries. Let
\Omega \subset \BbbR d (d = 2, 3) be a bounded Lipschitz domain, with a polygonal or poly-
hedral boundary \Gamma and n being its outward unit normal. For the description of
the topology of \Omega and \Gamma , we follow [1], [27] to introduce a set of polygonal cut-

ting surfaces \Sigma 1, . . . , \Sigma N so that the domain
\circ 
\Omega = \Omega \setminus \Sigma , with \Sigma =

\bigcup N
j=1 \Sigma j , is

simply connected. We denote the connected components of \Gamma by \Gamma 0, . . . ,\Gamma n, with
\Gamma 0 being the outermost boundary. For modeling different inhomogeneous aniso-
tropic materials occupying \Omega , we use \bfitmu = (\mu ij)(2d - 3)\times (2d - 3) \in \BbbR (2d - 3)\times (2d - 3) and

\bfitvarepsilon = (\varepsilon ij)d\times d \in \BbbR d\times d for two tensor-valued functions defined in \Omega , representing
the magnetic permeability and the electric permittivity, respectively. We assume
that \bfitmu \in (L\infty (\Omega ))(2d - 3)\times (2d - 3), \bfitvarepsilon \in (L\infty (\Omega ))d\times d are both symmetric and satisfy
the elliptic conditions \bfitxi \cdot \bfitmu \bfitxi \geq \mu min| \bfitxi | 2 a.e. in \Omega for all \bfitxi \in \BbbR (2d - 3)\times (2d - 3) and
\bfitxi \cdot \bfitvarepsilon \bfitxi \geq \varepsilon min| \bfitxi | 2 a.e. in \Omega for all \bfitxi \in \BbbR d\times d, where \mu min and \varepsilon min are two positive
constants. We further assume that \bfitmu and \bfitvarepsilon are both piecewise smooth with respect to
a partition of \Omega into a set of polygonal or polyhedral subdomains \Omega 1, . . . ,\Omega m, namely,
\bfitmu | \Omega k

\in (W 1,\infty (\Omega k))
(2d - 3)\times (2d - 3) and \bfitvarepsilon | \Omega k

\in (W 1,\infty (\Omega k))
d\times d for k = 1, 2, . . . ,m. The

Maxwell eigenproblem under consideration reads as follows: Find (\omega 2,u \not = 0) such
that

curl (\bfitmu  - 1curl u) = \omega 2\bfitvarepsilon u in \Omega ,(2.1)

div (\bfitvarepsilon u) = 0 in \Omega ,(2.2)

n\times u = 0 on \Gamma ,(2.3) \int 
\Gamma i

(\bfitvarepsilon u) \cdot n = 0, 1 \leq i \leq n.(2.4)

As usual, by H1(\Omega ), H(div ; \Omega ), and H(curl ; \Omega ) we denote the spaces of square
integrable functions, with square integrable grad, div, curl, respectively, and by
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H(div ; \bfitvarepsilon ; \Omega ) we denote the space of functions with (\bfitvarepsilon v) \in H(div ; \Omega ), and byH(div 0; \Omega ),
H(div 0; \bfitvarepsilon ; \Omega ), and H(curl 0; \Omega ) the divergence-free and curl-free subspaces, respec-
tively. We shall frequently need the Sobolev spaces H1

0 (\Omega ) = \{ q \in H1(\Omega ) : q| \Gamma = 0\} ,
H0(div ; \Omega ) = \{ v \in H(div ; \Omega ) : n \cdot v| \Gamma = 0\} , H0(curl ; \Omega ) = \{ v \in H(curl ; \Omega ) : n \times 
v| \Gamma = 0\} , H0(div

0; \Omega ) = H0(div ; \Omega )\cap H(div 0; \Omega ), and H0(curl
0; \Omega ) = H0(curl ; \Omega )\cap 

H(curl 0; \Omega ). We further need

(2.5) Hflux,\Gamma (div
0; \bfitvarepsilon ; \Omega ) =

\Bigl\{ 
v \in H(div 0; \bfitvarepsilon ; \Omega ) :

\int 
\Gamma i
(\bfitvarepsilon v) \cdot n = 0, 1 \leq i \leq n

\Bigr\} 
,

(2.6) H0,flux,\Sigma (div
0; \Omega ) =

\Bigl\{ 
v \in H0(div

0; \Omega ) :
\int 
\Sigma j

v \cdot n = 0, 1 \leq j \leq N
\Bigr\} 
,

(2.7) Q =
\Bigl\{ 
q \in H1(\Omega ) : q| \Gamma 0 = 0, q| \Gamma i = constant, 1 \leq i \leq n

\Bigr\} 
.

By using the L2-norm | | \cdot | | 0, we define the norms | | q| | 21 = | | q| | 20 + | | \nabla q| | 20, | | v| | 20,\bfc \bfu \bfr \bfl =

| | v| | 20+ | | curl v| | 20, | | v| | 20,div = | | v| | 20+ | | divv| | 20, and equip H(div ; \Omega ) and H(curl ; \Omega ),
as well as their subspaces, with the norms | | \cdot | | 0,div and | | \cdot | | 0,\bfc \bfu \bfr \bfl , respectively. In
addition, we denote by (\cdot , \cdot ) and (\cdot , \cdot )\bfitvarepsilon the L2- and \bfitvarepsilon -weighted L2- inner products, with
the norms | | \cdot | | 0 and | | \cdot | | 0,\bfitvarepsilon , respectively. We shall need the L2 orthogonal decom-
positions with respect to the (\cdot , \cdot )\bfitvarepsilon inner product (cf. [27], [1]). In three dimensions,
there holds

(L2(\Omega ))3 = \nabla Q+ \bfitvarepsilon  - 1curl (H(curl ; \Omega ) \cap H0,flux,\Sigma (div
0; \Omega )).

More specifically, for any v \in (L2(\Omega ))3, we have the decomposition under the (\cdot , \cdot )\bfitvarepsilon 
inner product

v = \nabla q + \bfitvarepsilon  - 1curl\bfitpsi , q \in Q, \bfitpsi \in H(curl ; \Omega ) \cap H0,flux,\Sigma (div
0; \Omega ),(2.8)

| | v| | 20,\bfitvarepsilon = | | \nabla q| | 20,\bfitvarepsilon + | | \bfitvarepsilon  - 1/2curl\bfitpsi | | 20,(2.9)

with the stability estimate

(2.10) | | \bfitpsi | | 0 \leq C| | curl\bfitpsi | | 0.

In addition, we know by the regularity results in [1] for Lipschitz polyhedral domains
that

(2.11) \bfitpsi \in (Hs(\Omega ))3 (s > 1/2), | | \bfitpsi | | s \leq C| | curl\bfitpsi | | 0.

Similar results hold also in two dimensions.
With the above preparations, we are ready to state the variational formulation of

the system (2.1)-(2.4):
Find (\omega 2,u \not = 0) \in \BbbR \times H0(curl ; \Omega ) \cap Hflux,\Gamma (div

0; \bfitvarepsilon ; \Omega ) such that

(2.12) (\bfitmu  - 1curl u, curl v) = \omega 2(\bfitvarepsilon u,v) \forall v \in H0(curl ; \Omega ) \cap Hflux,\Gamma (div
0; \bfitvarepsilon ; \Omega ).

Equivalently, we have the following mixed formulation.
Find (\omega 2,u \not = 0) \in \BbbR \times H0(curl ; \Omega ) and p \in Q such that

(2.13)

\biggl\{ 
(\bfitmu  - 1curl u, curl v) + (\bfitvarepsilon v,\nabla p) = \omega 2(\bfitvarepsilon u,v) \forall v \in H0(curl ; \Omega ),

(\bfitvarepsilon u,\nabla q) = 0 \forall q \in Q.
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The role of the multiplier p is to relax the constraints from Hflux,\Gamma (div
0; \bfitvarepsilon ; \Omega ), and

p is identically zero. It follows from [1], [27] that H0(curl ; \Omega ) \cap Hflux,\Gamma (div
0; \bfitvarepsilon ; \Omega ) is

compactly imbedded into (L2(\Omega ))d and the bilinear form

(2.14) a(u,v) := (\bfitmu  - 1curl u, curl v)

is coercive and bounded over H0(curl ; \Omega )\cap Hflux,\Gamma (div
0; \bfitvarepsilon ; \Omega ). Consequently, the self-

adjoint operator of (2.12) and the counterpart of (2.13) are both compact, admitting
a countable set of real and positive eigenvalues that exclude the zero eigenvalue. We
shall focus on finite element solutions to the mixed problem (2.13) in this paper.

3. Mixed finite element method. Let \scrT h be a shape-regular and conforming
triangulation of \Omega into elements (cf. [12], [29], [26]), e.g., simplexes, quadrilaterals,
hexahedra, etc., where h := maxK\in \scrT h

hK , and hK is the diameter of element K.
We assume that the triangulation aligns with the discontinuities of \bfitmu and \bfitvarepsilon and all
components \Gamma i (0 \leq i \leq n) of \Gamma . In other words, each interface between \Omega \ell and \Omega k

where \bfitmu and \bfitvarepsilon are discontinuous, 1 \leq k \not = \ell \leq m, is a union of elemental edges (d = 2)
or faces (d = 3), and so are \Gamma i (0 \leq i \leq n). We denote by \scrF int

h the set of all interior
elemental faces (edges, if d = 2) of \scrT h and by \scrF \Gamma 

h the set of all boundary faces of \scrT h,
and set \scrF h = \scrF int

h \cup \scrF \Gamma 
h . For a piecewise smooth function v, we introduce the jump and

the average. For each F \in \scrF int
h , shared by two neighboring elements K(+) and K( - ),

with outward unit normals n(+) and n( - ) =  - n(+), respectively, we denote by v(+)

and v( - ) the traces of v taken from within K(+) and K( - ), respectively, and we define
the tangential jump and the average across F by [[n\times v]] := n(+)\times v(+)+n( - )\times v( - )

and \{ \{ v\} \} := (v(+)+v( - ))/2, respectively, where the notation n stands for n(+) or n( - )

but is fixed. For a boundary face F \in \scrF \Gamma 
h , [[n\times v]] := n\times v and \{ \{ v\} \} := v. We also

define the jump and the average for a scalar function across F by [[q]] := q(+)  - q( - )

and \{ \{ q\} \} = (q(+) + q( - ))/2, where q(+) and q( - ) denote the traces taken from within
K(+) and K( - ), respectively, and for a boundary face F \in \scrF \Gamma 

h , [[q]] := q and \{ \{ q\} \} = q.
Let U(K) \subset (H1(K))d and Q(K) \subset H1(K) denote two finite element spaces on
K \in \scrT h, which are to be defined (see section 7). We define two finite element spaces
for approximating the electric field solution u and the multiplier p in (2.13) as follows:

Uh := \{ v \in (L2(\Omega ))d : v| K \in U(K) \forall K \in \scrT h\} ,
Qh := \{ q \in Q : q| K \in Q(K) \forall K \in \scrT h\} .

As usual, we introduce a mesh function h \in L\infty (\scrF h) by h(x) := hF c(x)\forall x \in 
F,\forall F \in \scrF h, where hF denotes the diameter of the face F (the length of the edge
for d = 2), and the function c(x) is defined in the following way: if \bfitmu K denotes
the extension of \bfitmu | K to \partial K, and | \bfitmu K | denotes the spectral norm of \bfitmu K , then c(x) :=
min(| \bfitmu K(+)(x)| , | \bfitmu K( - )(x)| ) if x is in the interior of \partial K(+)\cap \partial K( - ) and c(x) := | \bfitmu K(x)| 
if x is in the interior of \partial K \cap \Gamma . Let \delta \geq 0 be a parameter that will be specified later,
and let \alpha > 0 be a penalty parameter that is independent of the mesh size h and the
materials \bfitmu and \bfitvarepsilon . Then we define four bilinear forms ah,\bfc \bfu \bfr \bfl (\cdot , \cdot ), ah,div (\cdot , \cdot ), ah(\cdot , \cdot ) :
Uh \times Uh \rightarrow \BbbR , and b(\cdot , \cdot ) : Uh \times Qh \rightarrow \BbbR as follows:
(3.1)

ah,\bfc \bfu \bfr \bfl (\bfu ,\bfv ) :=
\sum 

K\in \scrT h

(\bfitmu  - 1\bfc \bfu \bfr \bfl \bfu , \bfc \bfu \bfr \bfl \bfv )0,K  - 
\sum 

F\in \scrF h

\int 
F

[[\bfn \times \bfv ]] \cdot \{ \{ \bfitmu  - 1\bfc \bfu \bfr \bfl \bfu \} \} 

 - 
\sum 

F\in \scrF h

\int 
F

[[\bfn \times \bfu ]] \cdot \{ \{ \bfitmu  - 1\bfc \bfu \bfr \bfl \bfv \} \} + \alpha 
\sum 

F\in \scrF h

\int 
F

h - 1[[\bfn \times \bfu ]] \cdot [[\bfn \times \bfv ]],
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ah,div (u,v) :=
\sum 

K\in \scrT h

h2 - 2\delta 
K (div (\bfitvarepsilon u),div (\bfitvarepsilon v))0,K +

\sum 
F\in \scrF int

h

h1 - 2\delta 
F

\int 
F

[[(\bfitvarepsilon u) \cdot n]][[(\bfitvarepsilon v) \cdot n]],

(3.2)

ah(u,v) := ah,\bfc \bfu \bfr \bfl (u,v) + ah,div (u,v),
(3.3)

b(v, q) := (\bfitvarepsilon v,\nabla q).
(3.4)

Now we are ready to formulate a mixed finite element approximation of the continuous
eigenproblem (2.13).

Find (\omega 2
h,uh \not = 0) \in \BbbR \times Uh and ph \in Qh such that

(3.5)

\biggl\{ 
ah(uh,vh) + b(vh, ph) = \omega 2

h(\bfitvarepsilon uh,vh) \forall vh \in Uh,
b(uh, qh) = 0 \forall qh \in Qh.

To study the discrete eigenproblem (3.5), we shall first study the corresponding
source problem and its finite element method. The source problem is for any given
f \in (L2(\Omega ))d to find u and p such that

(3.6)

\left\{               

curl (\bfitmu  - 1curl u) + \bfitvarepsilon \nabla p = \bfitvarepsilon f in \Omega ,
div (\bfitvarepsilon u) = 0 in \Omega ,
n\times u = 0 on \Gamma ,\int 
\Gamma i
(\bfitvarepsilon u) \cdot n = 0, 1 \leq i \leq n,

p = 0 on \Gamma 0,
p = constant on \Gamma i, 1 \leq i \leq n.

The variational formulation of problem (3.6) is to find u \in H0(curl ; \Omega ) and p \in Q
such that

(3.7)

\biggl\{ 
a(u,v) + b(v, p) = (\bfitvarepsilon f ,v) \forall v \in H0(curl ; \Omega ),

b(u, q) = 0 \forall q \in Q.

Its finite element approximation is to find uh \in Uh and ph \in Qh such that

(3.8)

\biggl\{ 
ah(uh,vh) + b(vh, ph) = (\bfitvarepsilon f ,vh) \forall vh \in Uh,

b(uh, qh) = 0 \forall qh \in Qh.

Let (u, p) be the exact solution to problem (3.7) and (uh, ph) be the finite element
solution to problem (3.8); then it is easy to see the consistency or error orthogonality
property:

(3.9)

\biggl\{ 
ah(u - uh,vh) + b(vh, p - ph) = 0 \forall vh \in Uh,

b(u - uh, qh) = 0 \forall qh \in Qh.

Before closing this section, we review some formulations in the literature which
are related to (3.8).

(1) The weighted method (cf. [11], [17]), where w(x) is a weight function defined
over \Omega :

(curl u, curl v) + (w(x) divu,divv) + (w(x) divv, p) = (f ,v),

(w(x) divu, q) = 0.
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(2) The L2-projection method (cf. [21], [23], [24]):

(curl u, curl v) +
\sum 

K\in \scrT h

h2
K(divu,divv)0,K + (divv, p) = (f ,v),

(divu, q) - (p, q) = 0.

(3) The mixed H - \alpha -weighted method (cf. [4], [6], [8], [7]):

(curl u, curl v) + h2\alpha (divu,divv) + (v,\nabla p) = (f ,v),

(u,\nabla q) - h2(1 - \alpha )(\nabla p,\nabla q) = 0.

(4) The mixed method [20, 25]:

(curl u, curl v) +
\sum 

K\in \scrT h

h2 - 2\delta 
K (divu,divv)0,K + (divv, p) = (f ,v),

(divu, q) = 0.

All these methods are based on the continuous Lagrange nodal elements and do not
deal with the convergence of the discrete Gauss law in strong form. Some of them
may be used for inhomogeneous anisotropic and discontinuous media but may be far
from the optimal convergence. Among all these methods, only the method in (4)
is somehow closer to our current work; hence we add a couple more remarks here,
in addition to the aforementioned differences. The method in (4) deals only with
the eigenproblem in homogeneous media, and it is inappropriate for inhomogeneous
anisotropic and discontinuous media. It uses the piecewise constant element to ap-
proximate the multiplier and is restricted to simplexes; it is not suitable for other
meshes such as hexahedra because its underlying theory relies on the C1 elements
available on simplexes. Moreover, this method makes use of some special meshes
such as Clough--Tocher/Alfeld macro meshes. Our current work develops a general
framework for various elements, including various discontinuous elements and edge
elements, and handles the strong convergence of the Gauss law as well. In particular,
the current work deals with inhomogeneous anisotropic and discontinuous media in
a topologically nontrivial domain and is suitable for the commonly used meshes, in-
cluding simplexes, quadrilaterals, and hexahedra. One of the significant discoveries in
the current work is about the validity of the nonaffine quadrilateral and hexahedral
N\'ed\'elec elements and discontinuous elements for the Maxwell eigenproblem.

4. Discrete kernel-ellipticity, discrete compactness, and error estimates.
In this section, we provide a general theory of stability and error estimates for the
mixed finite element problem (3.8) of the Maxwell source problem (3.6). These results
provide the essential bridging tools for our subsequent analysis of the discrete eigen-
problem (3.5). We shall reach our aim by following the classical framework of the
saddle-point problems [9], [29], which mainly consist of the discrete kernel-ellipticity
and the discrete inf-sup condition. In addition, we also derive the important discrete
compactness property; see Proposition 4.1. We start by introducing three mesh-
dependent seminorms:

| \bfv | 2h,\bfc \bfu \bfr \bfl :=
\sum 

K\in \scrT h

| | \bfitmu  - 1/2\bfc \bfu \bfr \bfl \bfv | | 20,K +
\sum 

F\in \scrF h

\int 
F

h - 1| [[\bfn \times \bfv ]]| 2,(4.1)

| \bfv | 2h,div := ah,div (\bfv ,\bfv ) =
\sum 

K\in \scrT h

h2 - 2\delta 
K | | div (\bfitvarepsilon \bfv )| | 20,K +

\sum 
F\in \scrF int

h

h1 - 2\delta 
F

\int 
F

| [[(\bfitvarepsilon \bfv ) \cdot \bfn ]]| 2,(4.2)

| | \bfv | | 2h := | | \bfv | | 20,\bfitvarepsilon + | \bfv | 2h,\bfc \bfu \bfr \bfl + | \bfv | 2h,div ;(4.3)
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then | | \cdot | | h will serve as a norm of the space Uh. Now we can define the discrete kernel
space:

(4.4) Kh := \{ vh \in Uh : b(vh, qh) = 0 \forall qh \in Qh\} .

To study the kernel-ellipticity, we assume that the finite element space Qh has
the first-order approximation property: for any p \in Q, there exists an interpolation
operator Jh such that Jhp \in Qh, and it holds for 0 \leq t \leq 1 that
(4.5)\Bigl( \sum 

K\in \scrT h

\Bigl( 
h - 2t
K | | p - Jhp| | 20,K +

\sum 
F\subset \partial K

h
 - (2t - 1)
F

\int 
F

| p - Jhp| 2
\Bigr) \Bigr) 1/2

+ h1 - t| | Jhp| | 1 \leq Ch1 - t| | p| | 1.

We know that the averaging-type interpolation operators, such as the Scott--Zhang
interpolation [39], [13], the Cl\'ement interpolation [29], and the Bernardi--Girault in-
terpolation [5], possess this first-order approximation.

Lemma 4.1. Under the approximation property (4.5) of Qh, it holds that

(4.6) sup
\bfzero \not =\bfv h\in \bfK h

b(vh, p)

| | vh| | h
\leq sup

\bfzero \not =\bfv h\in \bfK h

b(vh, p)

| vh| h,div
\leq Ch\delta | | p| | 1 \forall p \in Q.

Proof. For any fixed p \in Q, we know that Jhp \in Qh. First,

b(vh, p) = b(vh, p - Jhp) = (\bfitvarepsilon vh,\nabla (p - Jhp))

=  - 
\sum 

K\in \scrT h

(div (\bfitvarepsilon vh), p - Jhp)0,K +
\sum 

K\in \scrT h

\sum 
F\subset \partial K

\int 
F

(p - Jhp)(\bfitvarepsilon vh) \cdot n

=  - 
\sum 

K\in \scrT h

(div (\bfitvarepsilon vh), p - Jhp)0,K +
\sum 

F\in \scrF int
h

\int 
F

[[(\bfitvarepsilon vh) \cdot n]](p - Jhp).

Taking t := 1 - \delta in (4.5), for any vh \in Kh, by the Cauchy--Schwarz inequality, from
(4.3), we can obtain (4.6).

The seminorm | \cdot | h,div ensures (4.6), which implies the discrete compactness
property in Proposition 4.1.

We next recall a coercivity result of ah,\bfc \bfu \bfr \bfl (\cdot , \cdot ) when the penalty parameter \alpha is
sufficiently large. The result can be proven in a standard manner for the DG method
(e.g., cf. [10], [30]).

Lemma 4.2. For a sufficiently large penalty parameter \alpha , we have, for all vh \in 
Uh,

ah,\bfc \bfu \bfr \bfl (vh,vh) \geq C
\Bigl( \sum 

K\in \scrT h

| | \bfitmu  - 1/2curl vh| | 20,K +
\sum 

F\in \scrF h

\int 
F

h - 1| [[n\times vh]]| 2
\Bigr) 
.

Theorem 4.1. Under the same conditions as in Lemma 4.1 and Lemma 4.2, we
have the Kh kernel-ellipticity

(4.7) ah(vh,vh) \geq C| | vh| | 2h \forall vh \in Kh.

Proof. First, we know from (3.1)--(3.3), (4.1)--(4.3), and Lemma 4.2 that

(4.8) ah(vh,vh) \geq C(| vh| 2h,\bfc \bfu \bfr \bfl + | vh| 2h,div ).

Next, applying the L2-orthogonal decomposition with respect to (\cdot , \cdot )\bfitvarepsilon (see (2.8)--
(2.11)), we can write

vh = \nabla p0 + \bfitvarepsilon 
 - 1curl\bfitpsi , p0 \in Q, \bfitpsi \in H(curl ; \Omega ) \cap H0,flux,\Sigma (div

0; \Omega ),
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with the stability estimates

| | vh| | 20,\bfitvarepsilon = | | \nabla p0| | 20,\bfitvarepsilon + | | \bfitvarepsilon  - 1/2curl\bfitpsi | | 20,

| | \bfitpsi | | 0 \leq C| | curl\bfitpsi | | 0 \leq C| | \bfitvarepsilon  - 1/2curl\bfitpsi | | 0 \leq C| | vh| | 0,\bfitvarepsilon ,

and the regularity that \bfitpsi \in (Hs(\Omega ))d for some 1/2 < s < 1, satisfying

| | \bfitpsi | | s \leq C| | curl\bfitpsi | | 0 \leq C| | vh| | 0,\bfitvarepsilon .

Since vh \in Kh, we can further write
(4.9)
| | vh| | 20,\bfitvarepsilon = (\bfitvarepsilon vh,vh) = (\bfitvarepsilon vh,\nabla p0 + \bfitvarepsilon 

 - 1curl\bfitpsi ) = (\bfitvarepsilon vh,\nabla (p0  - Jhp0)) + (vh, curl\bfitpsi ),

where the last term can be estimated by the Cauchy--Schwarz inequality and the local
trace theorem on F \in \scrF h,

(\bfv h, \bfc \bfu \bfr \bfl \bfitpsi ) =
\sum 

K\in \scrT h

(\bfc \bfu \bfr \bfl \bfv h,\bfitpsi )0,K  - 
\sum 

F\in \scrF h

\int 
F

[[\bfn \times \bfv h]] \cdot \bfitpsi 

\leq C
\Bigl( \sum 

K\in \scrT h

| | \bfitmu  - 1/2\bfc \bfu \bfr \bfl \bfv h| | 20,K
\Bigr) 1/2

| | \bfitpsi | | 0 + C
\Bigl( \sum 

F\in \scrF h

\int 
F

h - 1| [[\bfn \times \bfv h]]| 2
\Bigr) 1/2

| | \bfitpsi | | s

\leq C
\Bigl( \sum 

K\in \scrT h

| | \bfitmu  - 1/2\bfc \bfu \bfr \bfl \bfv h| | 20,K +
\sum 

F\in \scrF h

\int 
F

h - 1| [[\bfn \times \bfv h]]| 2
\Bigr) 1/2

| | \bfv h| | 0,\bfitvarepsilon 

= C| \bfv h| h,\bfc \bfu \bfr \bfl | | \bfv h| | 0,\bfitvarepsilon .

On the other hand, the same proof of Lemma 4.1 leads to the estimate of the second
to last term in (4.9):

(\bfitvarepsilon vh,\nabla (p0  - Jhp0)) \leq Ch\delta | vh| h,div | | p0| | 1 \leq Ch\delta | vh| h,div | | vh| | 0,\bfitvarepsilon .

Now it follows readily from the above two estimates and (4.8) that

| | vh| | 20,\bfitvarepsilon \leq C| | vh| | 0,\bfitvarepsilon (| vh| h,\bfc \bfu \bfr \bfl + | vh| h,div ) \leq C| | vh| | 0,\bfitvarepsilon 
\Bigl( 
ah(vh,vh)

\Bigr) 1/2

,

that is,

ah(vh,vh) \geq C| | vh| | 20,\bfitvarepsilon .

This, along with (4.3) and (4.8), proves the Kh kernel-ellipticity.

By the definitions, we can easily see the following continuity of ah(\cdot , \cdot ) and (\bfitvarepsilon f , \cdot ):

(4.10) | ah(uh,vh)| \leq C| | uh| | h| | vh| | h \forall uh,vh \in Uh,

(4.11) | (\bfitvarepsilon f ,vh)| \leq | | \bfitvarepsilon 1/2f | | 0| | \bfitvarepsilon 1/2vh| | 0 \leq C| | f | | 0| | vh| | h \forall vh \in Uh.

However, the continuity of b(\cdot , \cdot ) is more subtle since it does not necessarily have the
uniform continuity under the norm | | \cdot | | Qh

. To better understand this, we first note
that
(4.12)
| b(vh, q)| = | (\bfitvarepsilon vh,\nabla q)| \leq | | \bfitvarepsilon 1/2vh| | 0| | \bfitvarepsilon 1/2\nabla q| | 0 \leq C| | vh| | h| | \nabla q| | 0 \forall vh \in Uh, \forall q \in Q.
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Then, since all the norms are equivalent on the finite dimensional space, there exists
a constant C\ast (h), which may depend on h, such that, where | | \cdot | | Qh

denotes the norm
of Qh will be defined later (cf. Theorem 4.2),

| | \nabla qh| | 0 \leq C\ast (h)| | qh| | Qh
\forall qh \in Qh,

which, along with (4.12), implies that

(4.13) | b(vh, qh)| \leq C\ast (h)| | vh| | h| | qh| | Qh
,

i.e., b(\cdot , \cdot ) is continuous over Uh\times Qh with respect to the finite element spaces (Uh, | | \cdot 
| | h) and (Qh, | | \cdot | | Qh

). Clearly, this continuity is not necessarily uniform in h.

Remark 4.1. If either of u and v is not a finite element function, one might think
that the continuity (4.10) still holds for ah(u,v) in the norm | | \cdot | | h. However, this
is generally not true unless either of \bfitmu  - 1curl u and \bfitmu  - 1curl v is more regular than
(L2(\Omega ))d, mainly due to the fact that the trace theorem does not hold for functions
with only L2-regularity. Unfortunately, for the purpose of error estimates, we must
have certain continuity of ah(\cdot , \cdot ) for nonfinite element functions. It turns out that
this is not a trivial issue in the context of the Maxwell equations; see Lemma 4.3.

Next, we are ready to establish the first main result of stability.

Theorem 4.2. Assume that

(4.14) | | qh| | Qh
:= sup

\bfzero \not =\bfv h\in \bfU h

b(vh, qh)

| | vh| | h
\forall qh \in Qh

is a norm over Qh. Then, under the same conditions as in Theorem 4.1, for any
f \in (L2(\Omega ))d, problem (3.8) admits a unique solution (uh, ph) \in Uh \times Qh, satisfying

(4.15) | | uh| | h + | | ph| | Qh
\leq C| | f | | 0.

Proof. With the Kh kernel-ellipticity (4.7), the inf-sup condition (4.14), and the
continuities (4.10)--(4.11) and (4.13), the conclusion is a direct consequence of the
classical saddle-point theory (cf. [9], [29]) applied to problem (3.8).

Now, we are in a position to give our second main result, error estimates.
From the abstract theory of spectral approximation [3], [35] of the compact op-

erator, we need to consider the finite element methods of two source problems and
their error estimates. The first source problem takes the continuous eigenfunction of
the eigenproblem as the right-hand side, while the second source problem takes the
discrete eigenfunction of the discrete eigenproblem as the right-hand side. For the
first source problem, we consider a general right-hand side (cf. (2.5))

(4.16) f \in Hflux,\Gamma (div
0; \bfitvarepsilon ; \Omega ).

With this right-hand side, the source problem (3.6) has a multiplier p = 0. For the
second source problem, we likewise consider a general right-hand side, f \in (L2(\Omega ))d

only. The multiplier satisfies

(4.17) p \in Q, | | p| | 1 \leq C| | f | | 0.

But p does not have more regularity than Q itself.
Before studying the error estimates, we recall (cf. Remark 4.1) a result from the

DG literature [10, Appendix], [7, Appendix]. For that purpose, we will use fractional
order Sobolev space Hs(D) for any open set D and any real number s, with seminorm
| \cdot | s,D and norm | | \cdot | | s,D. When D = \Omega , we write | \cdot | s and | | \cdot | | s.
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Lemma 4.3. For any z satisfying \bfitmu  - 1curl z| K \in H(curl ;K) \cap (H\sigma (K))d (0 <
\sigma < 1/2) for K \in \scrT h, we have\sum 

F\in \scrF h

\int 
F

[[n\times vh]] \cdot \{ \{ \bfitmu  - 1curl z\} \} \leq C
\Bigl( \sum 

F\in \scrF h

\int 
F

h - 1| [[n\times vh]]| 2
\Bigr) 1/2

\times 
\Bigl( \sum 

K\in \scrT h

h2\sigma 
K | | \bfitmu  - 1curl z| | 2\sigma ,K + h2

K | | curl (\bfitmu  - 1curl z)| | 20,K + | | \bfitmu  - 1curl z| | 20,K
\Bigr) 1/2

.

For the convenience of the subsequent analysis, we introduce the notation
(4.18)

| v| 2\sigma ,h :=
\sum 

K\in \scrT h

(h2\sigma 
K | | \bfitmu  - 1curl v| | 2\sigma ,K + h2

K | | curl (\bfitmu  - 1curl v)| | 20,K + | | \bfitmu  - 1curl v| | 20,K).

Let | | \cdot | | h be the norm defined in (4.3); then we can show by the local inverse estimates
and the condition on \bfitmu that

(4.19) | vh| 2\sigma ,h \leq C| | vh| | 2h \forall vh \in Uh,

The first result of the error estimates is for the source problem (3.6)/(3.7) with
the source in (4.16) and the multiplier p = 0.

Theorem 4.3. Let (u, p) be the exact solution of the source problem (3.6)/ (3.7)
with the source in (4.16) and the multiplier p = 0, with u satisfying the condition
in Lemma 4.3, and let (uh, ph) \in Uh \times Qh be the finite element solution to the
problem (3.8); then the following error estimate holds under the same conditions as
in Theorem 4.1:
(4.20)

| | u - uh| | h + | | ph| | Qh
\leq C inf

\bfv h\in \bfU h

\Bigl( 
| | u - vh| | h + | u - vh| \sigma ,h + sup

0\not =\mu h\in Qh

b(u - vh, \mu h)

| | \mu h| | Qh

\Bigr) 
.

Proof. Under the Kh kernel-ellipticity in Theorem 4.1 and the inf-sup condition
in Theorem 4.2, the estimate (4.20) can be established by adapting the standard
abstract saddle-point theory (see, e.g., [9]).

The second result of the error estimates is for the source problem (3.6)/(3.7) with
the right-hand side f \in (L2(\Omega ))d and the estimate (4.17).

Theorem 4.4. Let (u, p) be the exact solution of the source problem (3.6)/ (3.7)
with the right-hand side f \in (L2(\Omega ))d and (4.17), with u satisfying the condition in
Lemma 4.3, and (uh, ph) be finite element solution of problem (3.8) in Uh\times Qh. Then
under the same conditions as in Theorem 4.1, the following error estimate holds:
(4.21)

| | \bfu  - \bfu h| | h \leq C inf
\bfv h\in \bfU h

\Bigl( 
| | \bfu  - \bfv h| | h + | \bfu  - \bfv h| \sigma ,h + sup

0 \not =\mu h\in Qh

b(\bfu  - \bfv h, \mu h)

| | \mu h| | Qh

\Bigr) 
+ Ch\delta | | p| | 1.

Proof. Again, by adapting the standard saddle-point theory (see, e.g., [9]) (but
with p \not = 0 now), we can achieve

| | u - uh| | h \leq C inf
\bfv h\in \bfU h

\Bigl( 
| | u - vh| | h + | u - vh| \sigma ,h + sup

0 \not =\mu h\in Qh

b(u - vh, \mu h)

| | \mu h| | Qh

\Bigr) 
+C inf

qh\in Qh

sup
\bfzero \not =\bfv h\in \bfK h

b(vh, p - qh)

| | vh| | h
.

Now applying Lemma 4.1 leads to the desired estimate.
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We can obtain an error estimate for the multiplier similar to (4.21), but this is
not needed for the eigenproblem. One might think that the factor h\delta in (4.21) would
mean a very low convergence rate. This is not the case. As a matter of fact, Theo-
rem 4.4 is used for the uniform convergence so that spurious-free and spectral-correct
approximations of eigenmodes are ensured, while the convergence rate is determined
by Theorem 4.3.

From Lemma 4.1, we now prove the well-known discrete compactness property,
as stated in the following proposition. This property, which was first used by Kikuchi
[31], [32] for the N\'ed\'elec elements for Maxwell eigenproblem in homogeneous media
of topologically trivial domains, mimics the continuous compactness property that
H0(curl ; \Omega ) \cap H(div 0; \Omega ) is compactly imbedded into (L2(\Omega ))d (see [1]).

Proposition 4.1. Lemma 4.1 with \delta > 0 yields the discrete compactness prop-
erty; i.e., for any uniformly bounded sequence \{ vh\} \subset Kh, i.e., | | vh| | h \leq 1 for all
h, there exists a v \in (L2(\Omega ))d(which is actually in Hflux,\Gamma (div

0; \bfitvarepsilon ; \Omega )) such that
| | vh  - v| | 0 \rightarrow 0 as h \rightarrow 0.

Proof. We first apply the L2-orthogonal decomposition with respect to (\cdot , \cdot )\bfitvarepsilon to
vh to write vh = z + \nabla q, z \in Hflux,\Gamma (div

0; \bfitvarepsilon ; \Omega ) and q \in Q, where | | vh| | 20,\bfitvarepsilon =
| | z| | 20,\bfitvarepsilon + | | \nabla q| | 20,\bfitvarepsilon . Using the bound | | vh| | h \leq 1, we can derive

| | q| | 1 \leq C| | \nabla q| | 0 \leq C| | vh| | 0,\bfitvarepsilon \leq C| | vh| | h \leq C,

where the constant C is independent of h. Taking v := z \in Hflux,\Gamma (div
0; \bfitvarepsilon ; \Omega ), we

can write

(4.22) | | vh  - v| | 20,\bfitvarepsilon = (\bfitvarepsilon (vh  - v),vh  - v) = (\bfitvarepsilon (vh  - z),\nabla q) = (\bfitvarepsilon vh,\nabla q) = b(vh, q) .

But we know from Lemma 4.1 that

| b(vh, q)| \leq Ch\delta | | q| | 1 \leq Ch\delta ,

which, along with (4.22), leads readily to the desired discrete compactness property.

Up to now, the main assumption is the inf-sup condition (4.14), while other
assumptions can be easily satisfied, and all the results are very general. From Theo-
rems 4.3 and 4.4, the problem boils down to the approximation property of Uh and
the inf-sup condition (4.14), which will be studied in sections 5 and 7, respectively.

5. Fortin interpolation and error bounds. In this section, we shall specify
the assumptions onUh andQh so that we can obtain the desired error bounds between
the exact solution and the finite element solution from Theorems 4.3 and 4.4. We first
state three basic assumptions.

Assumption 1. There exists a scalar finite element space Wh \subset Q satisfying the
gradient inclusion condition

(5.1) \nabla Wh \subset Uh.

Assumption 2. For any sufficiently smooth \theta \in Q, with \theta \in 
\prod m

k=1 H
1+r(\Omega k) for

some r \geq \delta and div (\bfitvarepsilon \nabla \theta ) \in L2(\Omega ), there exists an interpolation operator Ih of Wh
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such that Ih\theta \in Wh and satisfies

| | \nabla (\theta  - Ih\theta )| | h \leq Chr - \delta 

\biggl( m\sum 
k=1

| | \theta | | 1+r,\Omega k
+ | | div (\bfitvarepsilon \nabla \theta )| | 0 + | | \theta | | 1

\biggr) 
,(5.2)

sup
0\not =\mu h\in Qh

b(\nabla (\theta  - Ih\theta ), \mu h)

| | \mu h| | Qh

\leq Chr - \delta 

\biggl( m\sum 
k=1

| | \theta | | 1+r,\Omega k
+ | | div (\bfitvarepsilon \nabla \theta )| | 0 + | | \theta | | 1

\biggr) 
.(5.3)

Note that | \nabla (\theta  - Ih\theta )| \sigma ,h = 0. Here the norms | | \cdot | | h, | | \cdot | | Qh
and the notation | \cdot | \sigma ,h

are defined by (4.3), (4.14), and (4.18), respectively, while the parameter \delta appears in
the definition of the norm | \cdot | h,div in (4.2).

Assumption 3. For any sufficiently smooth z \in H0(curl ; \Omega ), satisfying z \in 
H(div ; \bfitvarepsilon ; \Omega ), \bfitmu  - 1curl z \in H(curl ; \Omega ), and z \in 

\prod m
k=1(H

1+r(\Omega k))
d for some r \geq \delta ,

there exists an interpolation operator \Pi h associated with the space Uh such that
\Pi hz \in Uh and satisfies

| | z - \Pi hz| | h + | z - \Pi hz| \sigma ,h

(5.4)

\leq Chr - \delta 
\Bigl( m\sum 

k=1

| | z| | 1+r,\Omega k
+ | | div (\bfitvarepsilon z)| | 0 + | | curl (\bfitmu  - 1curl z)| | 0 + | | z| | 0,\bfc \bfu \bfr \bfl 

\Bigr) 
,

sup
0 \not =\mu h\in Qh

b(z - \Pi hz, \mu h)

| | \mu h| | Qh

(5.5)

\leq Chr - \delta 
\Bigl( m\sum 

k=1

| | z| | 1+r,\Omega k
+ | | div (\bfitvarepsilon z)| | 0 + | | curl (\bfitmu  - 1curl z)| | 0 + | | z| | 0,\bfc \bfu \bfr \bfl 

\Bigr) 
.

We shall use Assumption 1 to establish the inf-sup condition and to well ap-
proximate all the singular solutions. As will be seen later, (5.3) and (5.5) can be
achieved from the inf-sup condition and the approximation properties (5.2) and (5.4).
Since both \theta and z are smooth, with H1+r-regularity, the approximation properties
(5.2) and (5.4) in Assumptions 2 and 3 are standard or classical. Thus, the gradient
inclusion condition in Assumption 1 is one of the two most essential ingredients in
our proposed method. The other is the Gauss law that is built in the finite element
variational formulation.

Based on the existing results, e.g., from [17], [18], [16] (see also [38], [15]), we
can make the following assumptions on the regularity of the solution to the source
problem (3.6) with a right-hand side f \in (L2(\Omega ))d. Assume that the solution u \in 
H0(curl ; \Omega ) \cap Hflux,\Gamma (div

0; \bfitvarepsilon ; \Omega ) has the regularity, for some 0 < r < 1,

(5.6) u \in 
m\prod 

k=1

(Hr(\Omega k))
d, curl u \in 

m\prod 
k=1

(Hr(\Omega k))
2d - 3

and further admits regular-singular decomposition

(5.7) u = ureg +\nabla psing,
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(5.8) ureg \in H0(curl ; \Omega ) \cap H(div ; \bfitvarepsilon ; \Omega ) \cap 
m\prod 

k=1

(H1+r(\Omega k))
d,

(5.9) psing \in Q \cap 
m\prod 

k=1

H1+r(\Omega k), div (\bfitvarepsilon \nabla psing) \in L2(\Omega ),

where ureg is the regular part and \nabla psing is the singular part, satisfying

(5.10)

m\sum 
k=1

(| | ureg| | 1+r,\Omega k
+ | | psing| | 1+r,\Omega k

) + | | div (\bfitvarepsilon \nabla psing)| | 0 + | | div (\bfitvarepsilon ureg)| | 0)

\leq C
m\sum 

k=1

(| | u| | r,\Omega k
+ | | curl u| | r,\Omega k

) + C| | curl (\bfitmu  - 1curl u)| | 0 + C| | u| | 0,\bfc \bfu \bfr \bfl .

Moreover, we assume that

(5.11)

m\sum 
k=1

(| | u| | r,\Omega k
+ | | curl u| | r,\Omega k

) + | | curl (\bfitmu  - 1curl u)| | 0 + | | u| | 0,\bfc \bfu \bfr \bfl \leq C| | f | | 0.

As for the multiplier p \in Q of the source problem (3.6), we shall not need any
more regularity. In fact, we cannot have higher regularity about p than Q because
f lies in (L2(\Omega ))d only. But we note that the computation and the approximation
of the multiplier may not be of practical interest here, since the multiplier for our
eigenproblem is identically zero.

Now, for the solution u of the source problem (3.6) with a right-hand side f \in 
(L2(\Omega ))d, satisfying (5.6)--(5.11), we define a Fortin-type interpolation operator

(5.12) \bfitpi hu := \Pi hu
reg +\nabla (Ihp

sing).

From Assumptions 1 to 3, we know \bfitpi hu \in Uh, and we further find from (5.10)--(5.12)
that

sup
0 \not =\mu h\in Qh

b(\bfu  - \bfitpi h\bfu , \mu h)

| | \mu h| | Qh

\leq Chr - \delta | | \bff | | 0,

(5.13)

| | \bfu  - \bfitpi h\bfu | | h + | \bfu  - \bfitpi h\bfu | \sigma ,h \leq | | \bfu reg  - \bfPi h\bfu 
reg| | h + | \bfu reg  - \bfPi h\bfu 

reg| \sigma ,h + | | \nabla (psing  - Ihp
sing)| | h

\leq Chr - \delta | | \bff | | 0.(5.14)

The estimates (5.13) and (5.14) directly imply the following result.

Lemma 5.1. Let u be the solution of the source problem (3.6) with a right-hand
side f \in (L2(\Omega ))d, satisfying (5.6)--(5.11). Under Assumptions 1 to 3, the Fortin-type
operator \bfitpi h (cf. (5.12)) has the following approximation:

(5.15) | | u - \bfitpi hu| | h + | u - \bfitpi hu| \sigma ,h + sup
0\not =\mu h\in Qh

b(u - \bfitpi hu, \mu h)

| | \mu h| | Qh

\leq Chr - \delta | | f | | 0.

Using Lemma 5.1, we readily deduce the following convergence rate and uniform
convergence from Theorems 4.3-4.4. And the results will be applied to the error
estimates of the finite element solutions to the eigenproblem in the next section.
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Theorem 5.1. Under the same conditions as in Theorem 4.3 and in Lemma 5.1,
let (u, p) be the exact solution of the source problem (3.6) or (3.7) with the source
in (4.16) and the multiplier p = 0, and let (uh, ph) be the finite element solution of
problem (3.8) in Uh \times Qh; then

| | u - uh| | h + | | ph| | Qh
\leq Chr - \delta | | f | | 0.

Theorem 5.2. Under the same conditions as in Theorem 4.4 and in Lemma 5.1,
let (u, p) denote the exact solution of the source problem (3.6) or (3.7) with the right-
hand side f \in (L2(\Omega ))d and the stability (4.17), and let (uh, ph) be the finite element
solution of problem (3.8) in Uh \times Qh; then

| | u - uh| | h \leq C(hr - \delta + h\delta )| | f | | 0.

Remark 5.1. From Theorem 5.2, with \delta > 0, we obtain the uniform convergence
with respect to f \in (L2(\Omega ))d, i.e., sup\bfzero \not =\bff \in (L2(\Omega ))d | | u - uh| | h/| | f | | 0 \rightarrow 0 as h \rightarrow 0. It
is this uniform convergence that ensures spurious-free and spectral-correct approxi-
mations of eigenmodes (eigenvalues and eigenfunctions) of the compact operator.

Now, the role of the parameter 0 < \delta < r is clear: it helps to establish the
discrete compactness property (cf. Lemma 4.1 and Proposition 4.1) and the uniform
convergence in Theorem 5.2. And \delta should also be chosen in the range (0, r).

Remark 5.2. If the solution u is sufficiently smooth piecewisely, say, u \in \prod m
k=1(H

1+\ell (\Omega k))
d, where the integer \ell \geq 1 is the order of approximation of Uh,

we can obtain | | u  - uh| | h + | | ph| | Qh
\leq Ch\ell  - \delta 

\sum m
k=1 | | u| | 1+\ell ,\Omega k

. Moreover, we do not
need to resort to Assumption 1 and the regular-singular decomposition (5.7) as long
as the kernel-coercivity, the inf-sup condition, and the approximation properties hold
for (Uh, Qh).

6. Eigenproblem and strong convergence of Gauss's law. This section is
devoted to the analysis of the finite element method for solving the Maxwell eigenprob-
lem. From Theorem 5.1 and Theorem 5.2, from the abstract theory of the compact
operator [3], [35], the theoretical results in this section can be proven, and the details
will be omitted. Further, we prove the strong convergence of Gauss's law, in the spirit
of [15].

Let A : (L2(\Omega ))d \rightarrow U := H0(curl ; \Omega ) denote the solution operator of the contin-
uous source problem (3.7) corresponding to the continuous eigenproblem (2.13), and
define the multiplier as Bf \in Q, where the solution operator B maps from (L2(\Omega ))d

onto Q. In other words, for any given f \in (L2(\Omega ))d, Af \in U and Bf \in Q are
determined by

(6.1)

\biggl\{ 
a(Af ,v) + b(v, Bf) = (\bfitvarepsilon f ,v) \forall v \in U,
b(Af , q) = 0 \forall q \in Q.

In fact, Af \in K := H0(curl ; \Omega ) \cap Hflux,\Gamma (div
0; \bfitvarepsilon ; \Omega ). As stated in section 5, we may

assume that the solution Af satisfies the regularity (5.6). The solution operator A
is compact from (L2(\Omega ))d to U, since K is compactly imbedded into (L2(\Omega ))d. In
addition, the multiplier Bf \in Q satisfies

(6.2) Bf = 0 for f \in Hflux,\Gamma (div
0; \bfitvarepsilon ; \Omega ).

In terms of A, the continuous eigenproblem (2.13) can be written in the equivalent
form (with \lambda = \omega  - 2)

(6.3) Au = \lambda u .
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On the other hand, the discrete source problem (3.8) corresponding to the discrete
eigenproblem (3.5) defines the discrete solution operator Ah from (L2(\Omega ))d onto Uh

and the discrete operator Bh from (L2(\Omega ))d onto Qh, i.e., for any given f \in (L2(\Omega ))d,
Ahf \in Uh and Bhf \in Qh are determined by

(6.4)

\biggl\{ 
ah(Ahf ,vh) + b(vh, Bhf) = (\bfitvarepsilon f ,vh) \forall vh \in Uh,
b(Ahf , qh) = 0 \forall qh \in Qh.

In terms of Ah, the discrete eigenproblem (3.5) can be written in the form (with
\lambda h = \omega  - 2

h )

(6.5) Ahuh = \lambda huh.

From the Kh kernel-coercivity of the corresponding source problem, we can easily
show that all the discrete eigenfunctions must belong to Kh, and all the discrete
eigenvalues \omega 2

h must satisfy

(6.6) \omega 2
h \geq C > 0 .

Using Theorem 5.2, we have the following approximation of the discrete solution
operator Ah to the continuous solution operator A.

Theorem 6.1. Assume the same conditions in Theorem 5.2. For any f \in (L2(\Omega ))d,
letting Af \in U and Ahf \in Uh be defined by (6.1) and (6.4), respectively, it holds that

(6.7) | | (A - Ah)f | | h \leq C(hr - \delta + h\delta )| | f | | 0 , | | (A - Ah)f | | 0 \leq C(hr - \delta + h\delta )| | f | | 0.

From Remark 5.1, we can see that Theorem 6.1 ensures that the discrete eigen-
problem (3.5) provides the spurious-free and spectral-correct approximation of the
continuous eigenproblem (2.13). In what follows, we study the order of this conver-
gence.

Let \lambda be an eigenvalue of multiplicity L, with E \subset U being the corresponding
eigenspace. Obviously, we have E \subset K. We denote by \lambda 1,h, . . . , \lambda L,h the discrete
eigenvalues converging to \lambda and by Eh \subset Kh the direct sum of the corresponding
eigenspaces. We can introduce the gaps between the spaces of continuous and dis-
crete eigenfunctions in the L2-norm: \Delta \ast 

0(E,Eh) = max(\Delta 0(E,Eh),\Delta 0(Eh,E)), where
\Delta 0(E,Eh) and \Delta 0(Eh,E) are given by \Delta 0(E,Eh) = sup\bfu \in \bfE ,| | \bfu | | 0=1 inf\bfv h\in \bfE h

| | u  - 
vh| | 0 and \Delta 0(Eh,E) = sup\bfu h\in \bfE h,| | \bfu h| | 0=1 inf\bfv \in \bfE | | uh  - v| | 0. Similarly, we can
introduce the gaps between the spaces of continuous and discrete eigenfunctions
in the norm | | \cdot | | h: \Delta \ast 

h(E,Eh) = max(\Delta h(E,Eh),\Delta h(Eh,E)), where \Delta h(E,Eh)
and \Delta h(Eh,E) are given by \Delta h(E,Eh) = sup\bfu \in \bfE ,| | \bfu | | h=1 inf\bfv h\in \bfE h

| | u  - vh| | h and
\Delta h(Eh,E) = sup\bfu h\in \bfE h,| | \bfu h| | h=1 inf\bfv \in \bfE | | uh - v| | h. We also introduce | | (A - Ah)| \bfE | | h :=
sup\bfzero \not =\bfv \in \bfE | | (A  - Ah)v| | h/| | v| | h, | | (Bh)| \bfE | | Qh

:= sup\bfzero \not =\bfv \in \bfE | | (Bh)v| | Qh
/| | v| | h, | | (A  - 

Ah)| \bfE | | 0 := sup\bfzero \not =\bfv \in \bfE | | (A - Ah)v| | 0/| | v| | 0.
By Theorem 5.1 we can obtain the error estimates of the gaps \Delta \ast 

0(E,Eh) and
\Delta \ast 

h(E,Eh) as stated in Theorems 6.2 and 6.3 below.

Theorem 6.2. Under the same hypotheses of Theorem 5.1, there exists a constant
C such that
(6.8)
\Delta \ast 

0(E,Eh) \leq C| | (A - Ah)| \bfE | | 0 \leq Chr - \delta , \Delta \ast 
h(E,Eh) \leq C| | (A - Ah)| \bfE | | h \leq Chr - \delta .

Theorem 6.3. Under the same hypotheses of Theorem 5.1, there exists a constant
C such that
(6.9)

| \lambda  - \lambda i,h| \leq C
\Bigl( 
| | (A - Ah)| \bfE | | 

2
h+| | (A - Ah)| \bfE | | h| | (Bh)| \bfE | | Qh

\Bigr) 
\leq Ch2(r - \delta ) for i = 1, 2, . . . , L.
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Remark 6.1. If some eigenfunctions are sufficiently smooth, say, u \in 
\prod m

k=1

(H1+\ell (\Omega k))
d for \ell \geq 1, and the order of approximation of U is \ell , then we can obtain

from Remark 5.2 (with \Delta \ast := \Delta \ast 
0 or \Delta \ast := \Delta \ast 

h)

\Delta \ast (E,Eh) \leq Ch\ell  - \delta ; | \lambda  - \lambda i,h| \leq Ch2(\ell  - \delta ) for i = 1, 2, . . . , L.

We have seen that the error estimates are essentially optimal, only up to an
arbitrarily small positive constant \delta , relative to the regularity of the solution and the
order of approximation.

Now, we turn to the strong convergence of the Gauss law of the finite element
solution in the norm | | \cdot | |  - (1 - \delta ) of H - (1 - \delta )(\Omega ). For that purpose, we first note that
for a given eigenvalue \lambda , by means of Theorem 6.2, we know the existence of a discrete
eigenfunction uh such that, where u \in E is the eigenfunction of \lambda ,

(6.10) | | u - uh| | h \leq Chr - \delta .

Theorem 6.4. Under the same hypotheses of Theorem 5.1, for any given eigen-
value \lambda = (\omega 2) - 1, with its convergent discrete eigenvalue \lambda h, letting an eigenfunction
be u corresponding to \lambda , normalized with | | u| | h = 1, and the discrete eigenfunction be
uh corresponding to \lambda h satisfying (6.10), we have for 0 \leq \delta < 1/2 that

(6.11) | | div (\bfitvarepsilon (u - uh))| |  - (1 - \delta ) \leq C| | u - uh| | h \leq Chr - \delta .

Proof. By the definition of the weak divergence, we can easily see for any q \in D(\Omega )
that

\langle div (\bfitvarepsilon (u - uh)), q\rangle =  - (\nabla q, \bfitvarepsilon (u - uh)).

Since uh is the finite element solution, satisfying

b(u - uh, qh) = (\nabla qh, \bfitvarepsilon (u - uh)) = 0 \forall qh \in Qh,

particularly, we can take qh \in Qh\cap H1
0 (\Omega ) from (4.5) which satisfies for 0 \leq t \leq s and

1/2 < s \leq 1

(6.12)
\Bigl( \sum 

K\in \scrT h

h - 2t
K | | q - qh| | 20,K

\Bigr) 1/2

+
\Bigl( \sum 

F\in \scrF int
h

h
 - (2t - 1)
F

\int 
F

| q - qh| 2
\Bigr) 1/2

\leq Chs - t| | q| | s.

Now, we can obtain, by integration by parts,

 - (\nabla q, \bfitvarepsilon (u - uh)) =  - (\nabla (q  - qh), \bfitvarepsilon (u - uh))

=
\sum 

K\in \scrT h

(q  - qh,div (\bfitvarepsilon (u - uh)))0,K

 - 
\sum 

K\in \scrT h

\int 
\partial K

(q  - qh)(\bfitvarepsilon (u - uh)) \cdot n,

where the second term can be rewritten as

 - 
\sum 

K\in \scrT h

\int 
\partial K

(q  - qh)(\bfitvarepsilon (u - uh)) \cdot n =  - 
\sum 

F\in \scrF int
h

\int 
F

[[(\bfitvarepsilon (u - uh)) \cdot n]](q  - qh).

Now taking t := 1 - \delta and s := 1 - \delta in (6.12), we can deduce immediately

| \langle div (\bfitvarepsilon (\bfu  - \bfu h)), q\rangle | \leq C| | q| | 1 - \delta 

\Bigl( \sum 
K\in \scrT h

h2 - 2\delta 
K | | div (\bfitvarepsilon (\bfu  - \bfu h))| | 20,K

+
\sum 

F\in \scrF int
h

h1 - 2\delta 
F

\int 
F

| [[(\bfitvarepsilon (\bfu  - \bfu h)) \cdot \bfn ]]| 2
\Bigr) 1/2

\leq C| | q| | 1 - \delta | \bfu  - \bfu h| h,div .
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Hence, we find that

| | div (\bfitvarepsilon (u - uh))| |  - (1 - \delta ) \leq C| u - uh| h,div

and further obtain from (6.10) and the definition (4.3) of | | \cdot | | h that

| | div (\bfitvarepsilon (u - uh))| |  - (1 - \delta ) \leq C| u - uh| h,div \leq C| | u - uh| | h \leq Chr - \delta .

Inequality (6.11) shows that the strong convergence of the Gauss law is implied
by the convergence of the finite element solution. Following the same argument as for
(6.11), we have

| | div (\bfitvarepsilon vh)| |  - (1 - \delta ) \leq C| vh| h,div \forall vh \in Kh.

On the other hand, we can prove the converse is also true, and | \cdot | h,div is equivalent
to | | div (\bfitvarepsilon \cdot )| |  - (1 - \delta ) on Kh.

Remark 6.2. To clarify what assumptions and conditions are the main ingredients
for the proposed mixed finite element method, we now give a brief summary for a later
use; also see the comment we made at the end of section 4. We have seen that the
main assumptions for the finite element method (3.5) are

\bullet the inf-sup condition (4.14) in Theorem 4.1;
\bullet the three assumptions Assumption 1, Assumption 2, Assumption 3.

All other assumptions and conditions can be easily verified. In what follows, we shall
mainly focus on the verification of the above assumptions and the inf-sup condition.
We shall further see that the crucial assumption is the gradient inclusion condition in
Assumption 1. It essentially implies the inf-sup condition (4.14) and the approxima-
tion properties in Assumptions 2 and 3.

7. Verification of assumptions and general finite elements. In this sec-
tion, we carry out a verification of Assumptions 1 to 3 and the inf-sup condition (4.14)
for general finite elements, and then we apply them to some specific elements such as
discontinuous elements and tangential continuous N\'ed\'elec elements on quadrilateral
and hexahedral meshes.

We assume that every elementK \in \scrT h in the physical coordinate system x1, . . . , xd

of \BbbR d is obtained from a single reference element \^K in the reference coordinate system
\^x1, . . . , \^xd of \BbbR d through a diffeomorphism FK : \^K \rightarrow \BbbR d, i.e., K = FK( \^K). We write
the Jacobian matrix of FK as DFK and its determinant as JFK . With x = FK(\^x),
we have

(7.1) \nabla q(x) = (DFK) - T \^\nabla \^q(\^x).

We will call the transformation v(x) = (DFK) - T \^v(\^x) the Piola-like transformation
from \^v on \^K to v on K.

Let \^\scrR \ell ( \^K) denote the scalar space of polynomials of degree \ell \geq 1 on \^K, and
define the local element space \scrR \ell (K) := \{ q : q(FK(\^x)) = \^q(\^x), \^x \in \^K, \^q \in \^\scrR \ell ( \^K)\} .
For example, if we use simplexes, \scrR \ell (K) will be the image \scrP \ell (K) of \^\scrP \ell ( \^K) (the
space of polynomials of total degree in variables \^x1 \cdot \cdot \cdot \^xd not greater than \ell on \^K)
through the affine isomorphism FK ; if we use quadrilaterals and hexahedra, \scrR \ell (K)
will be the image \scrQ \ell (K) of \^\scrQ \ell ( \^K) (the space of polynomials of separate degree in
variables \^x1 \cdot \cdot \cdot \^xd not greater than \ell on \^K = [0, 1]d) through the bilinear or trilinear
isomorphism FK . We define the scalar finite element space Qh for approximating the
multiplier in \scrR \ell (K) with \ell = 1:

(7.2) Qh = \{ qh \in Q : qh| K \in Q(K) \forall K \in \scrT h\} , Q(K) := \scrR 1(K) .
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To define the space Uh for approximating the electric field, we let \^E\ell ( \^K) be the
vector-valued space of polynomials, belonging to some space of complete polynomials
of degree \ell \geq 1 on \^K, and define the local element space E\ell (K) := \{ v : v(FK(\^x)) =

(DFK) - T (\^x)\^v(\^x), \^x \in \^K, \^v \in \^E\ell ( \^K)\} . For example, on tetrahedral elements, \^E\ell ( \^K)
can be chosen as the N\'ed\'elec element of the first kind, i.e.,

(7.3) \^E\ell ( \^K) := N\ell ( \^K) := ( \^\scrP \ell  - 1( \^K))3 + \{ \^v \in ( \~\scrP \ell ( \^K))3 : \^v(\^x) \cdot \^x = 0\} ,

where \~\scrP \ell ( \^K) denotes the space of homogeneous polynomials of degree not greater

than \ell on \^K; \^E\ell ( \^K) may also be chosen as the second kind, i.e.,

(7.4) \^E\ell ( \^K) := ( \^\scrP \ell ( \^K))3.

We now define the vector-valued (discontinuous) finite element space Uh for the elec-
tric field in E\ell (K) (\ell \geq 1):

(7.5) Uh = \{ vh \in (L2(\Omega ))d : vh| K \in U(K) \forall K \in \scrT h\} , U(K) := E\ell (K).

We can also choose Uh to be tangential continuous (e.g., N\'ed\'elec elements), and the
theory and results of this work are equally applicable.

Next we discuss the verifications of Assumptions 1 to 3. First for Assumption 1,
from (7.1) and the definition of E\ell (K) that \^\nabla \^\scrR 1( \^K) \subset \^E\ell ( \^K), we have

(7.6) \nabla \scrR 1(K) \subset E\ell (K),

and consequently, \nabla Qh \subset Uh, and then Wh := Qh. Thus we arrive at the following
result.

Lemma 7.1. If the general finite element spaces Qh and Uh are constructed by
means of (7.2), (7.5), and the local gradient inclusion (7.6), then the gradient inclu-
sion condition in Assumption 1 holds with Wh := Qh.

With the above general finite element spaces Qh and Uh, we can establish the
inf-sup condition from the local gradient inclusion condition (the proof is given later
in this section):

(7.7) sup
\bfzero \not =\bfv h\in \bfU h

b(vh, qh)

| | vh| | h
\geq C| | qh| | \delta ,Qh

:= C
\Bigl( \sum 

K\in \scrT h

h2\delta 
K | | \nabla qh| | 20,K

\Bigr) 1/2

\forall qh \in Qh.

This implies immediately the inf-sup condition (4.14) in Theorem 4.1, satisfying

(7.8) | | qh| | Qh
\geq C| | qh| | \delta ,Qh

\forall qh \in Qh.

It remains to verify Assumptions 2 and 3. For that purpose, corresponding to Uh

and Qh defined by (7.5) and (7.2), respectively, we require the standard approximation
properties of Ih\theta and \Pi hz for 0 \leq t \leq r, as follows:\Bigl( \sum 

K\in \scrT h

h - 2t
K | | \nabla (\theta  - \nabla (Ih\theta ))| | 20,K

\Bigr) 1/2

\leq Chr - t
m\sum 

k=1

| | \theta | | 1+r,\Omega k
,(7.9)

\Bigl( \sum 
K\in \scrT h

h - 2t
K | | z - \Pi hz| | 20,K

\Bigr) 1/2

\leq Chr - t
m\sum 

k=1

| | z| | 1+r,\Omega k
,(7.10)

\Bigl( \sum 
K\in \scrT h

| | curl (z - \Pi hz)| | 20,K
\Bigr) 1/2

\leq Chr
m\sum 

k=1

| | z| | 1+r,\Omega k
.(7.11)
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Note that the approximation properties in Assumptions 2 and 3 are only needed for
piecewise smooth functions. We shall show that Assumption 2 follows from (7.9),
while Assumption 3 follows from (7.10) and (7.11). These approximation properties
are classical results, since z and \theta are piecewise smooth, and Ih and \Pi h can be
constructed locally.

Although the approximation properties in Assumption 3 are stated for piecewise
smooth functions, we still need to be cautious when dealing with the tangential jumps,
e.g.,

(7.12)
\sum 

F\in \scrF h

\int 
F

h - 1[[n\times z]] \cdot [[n\times v]].

For linear and higher-order elements of Uh, there is no problem in dealing with the
tangential jumps because of the following approximation property for 0 \leq t \leq 1 + r:

(7.13)
\Bigl( \sum 

K\in \scrT h

h - 2t
K | | z - \Pi hz| | 20,K

\Bigr) 1/2

\leq Ch1+r - t
m\sum 

k=1

| | z| | 1+r,\Omega k
.

When Uh does not contain a linear element or a complete space of polynomials (in
the reference element), e.g., the lowest-order N\'ed\'elec element of the first kind on
tetrahedra, (7.13) does not hold. Then, to deal with the tangential jump terms such
as (7.12), we need to additionally require that \Pi hz \in H0(curl ; \Omega ) satisfies

(7.14)
\sum 

F\in \scrF h

\int 
F

h - 1[[n\times (z - \Pi hz)]] \cdot [[n\times vh]] = 0 \forall vh \in Uh.

With the above preparations, we now verify Assumptions 2 and 3. We give the
details only for Assumption 2 as the same applies to Assumption 3. We first introduce
an approximation of \bfitvarepsilon . Let JK\bfitvarepsilon denote the local canonical Lagrange interpolation
of \bfitvarepsilon \in (W 1,\infty (K))d\times d from any suitable element-local Lagrange finite element space
(\scrL (K))d\times d on K, e.g., \scrL (K) := \scrR 1(K). We have from [12] and [29] that

(7.15) | | \bfitvarepsilon  - JK\bfitvarepsilon | | 0,\infty ,K + hK | \bfitvarepsilon  - JK\bfitvarepsilon | 1,\infty ,K \leq ChK | | \bfitvarepsilon | | 1,\infty ,K .

The verification of Assumption 2 is based on (7.9), (7.7), and (7.8). By the
definition (4.3) of | | \cdot | | h,

(7.16)

| | \nabla (\theta  - Ih\theta )| | 2h
= | | \nabla (\theta  - Ih\theta )| | 20,\bfitvarepsilon +

\sum 
K\in \scrT h

h2 - 2\delta 
K | | div (\bfitvarepsilon \nabla (\theta  - Ih\theta ))| | 20,K

+
\sum 

F\in \scrF int
h

h1 - 2\delta 
F

\int 
F

| [[(\bfitvarepsilon \nabla (\theta  - Ih\theta )) \cdot n]]| 2.

For the first term above, we have from (7.9) that

(7.17) | | \nabla (\theta  - Ih\theta )| | 0,\bfitvarepsilon \leq Chr
m\sum 

k=1

| | \theta | | 1+r,\Omega k
.

It remains to estimate the last two terms in (7.16). For \bfitvarepsilon \nabla \theta \in (Hr(K))d with r > 0,
letting | K| be the volume of K, we define a piecewise constant L2 projection

\bfitrho K(\bfitvarepsilon \nabla \theta ) =

\int 
K
\bfitvarepsilon \nabla \theta 

| K| 
.
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It can be shown (e.g., cf. [29]) that

| | \bfitrho K(\bfitvarepsilon \nabla \theta ) - \bfitvarepsilon \nabla \theta | | 0,K \leq Chr
K | | \bfitvarepsilon \nabla \theta | | r,K \leq Chr

K | | \theta | | 1+r,K .

Also, we know that div (\bfitrho K(\bfitvarepsilon \nabla \theta )) = 0 on K; hence we can derive

h1 - \delta 
K | | div (\bfitvarepsilon \nabla (\theta  - Ih\theta ))| | 0,K \leq h1 - \delta 

K | | div (\bfitvarepsilon \nabla \theta )| | 0,K+h1 - \delta 
K | | div (\bfitrho K(\bfitvarepsilon \nabla \theta )) - div (\bfitvarepsilon \nabla (Ih\theta ))| | 0,K ,

where the last term can be estimated, by means of the local inverse estimates and the
L2-projection approximation property, as follows:

h1 - \delta 
K | | div (\bfitrho K(\bfitvarepsilon \nabla \theta )) - div (\bfitvarepsilon \nabla (Ih\theta ))| | 0,K \leq h1 - \delta 

K | | div (\bfitrho K(\bfitvarepsilon \nabla \theta ) - (JK\bfitvarepsilon )\nabla (Ih\theta ))| | 0,K
+h1 - \delta 

K | | div ((\bfitvarepsilon  - JK\bfitvarepsilon )\nabla (Ih\theta ))| | 0,K ,

h1 - \delta 
K | | div (\bfitrho K(\bfitvarepsilon \nabla \theta ) - (JK\bfitvarepsilon )\nabla (Ih\theta ))| | 0,K \leq Ch - \delta 

K | | \bfitrho K(\bfitvarepsilon \nabla \theta ) - (JK\bfitvarepsilon )\nabla (Ih\theta )| | 0,K
\leq Ch - \delta 

K | | \bfitrho K(\bfitvarepsilon \nabla \theta ) - \bfitvarepsilon \nabla \theta | | 0,K + h - \delta 
K | | \bfitvarepsilon \nabla \theta  - (JK\bfitvarepsilon )\nabla (Ih\theta )| | 0,K

\leq Chr - \delta 
K | | \theta | | 1+r,K + h - \delta 

K | | (\bfitvarepsilon  - JK\bfitvarepsilon )\nabla \theta | | 0,K + h - \delta 
K | | (JK\bfitvarepsilon )\nabla (\theta  - Ih\theta )| | 0,K

\leq Chr - \delta 
K | | \theta | | 1+r,K + Ch - \delta 

K | | \bfitvarepsilon  - JK\bfitvarepsilon | | 0,\infty ,K | | \theta | | 1,K
+Ch - \delta 

K | | JK\bfitvarepsilon | | 0,\infty ,K | | \nabla (\theta  - Ih\theta )| | 0,K
\leq Chr - \delta 

K | | \theta | | 1+r,K + Ch1 - \delta 
K | | \theta | | 1,K + Ch - \delta 

K | | \nabla (\theta  - Ih\theta )| | 0,K ,

h1 - \delta 
K | | div ((\bfitvarepsilon  - JK\bfitvarepsilon )\nabla (Ih\theta ))| | 0,K \leq Ch1 - \delta 

K | \bfitvarepsilon  - JK\bfitvarepsilon | 1,\infty ,K | | \nabla (Ih\theta )| | 0,K
+Ch1 - \delta 

K | | \bfitvarepsilon  - JK\bfitvarepsilon | | 0,\infty ,K | Ih\theta | 2,K
\leq Ch1 - \delta 

K | | Ih\theta | | 1,K \leq Ch1 - \delta 
K | | \theta | | 1,K .

Combining all of the above, we find that
(7.18)\Bigl( \sum 

K\in \scrT h

h2 - 2\delta 
K | | div (\bfitvarepsilon \nabla (\theta  - Ih\theta ))| | 20,K

\Bigr) 1/2

\leq Chr - \delta 
\Bigl( m\sum 

k=1

| | \theta | | 1+r,\Omega k
+| | div (\bfitvarepsilon \nabla \theta )| | 0+| | \theta | | 1

\Bigr) 
.

To estimate the jump term in (7.16), we make use of the Raviart--Thomas ele-
ments. We first note that
(7.19)

h1 - 2\delta 
F

\int 
F

| [[(\bfitvarepsilon \nabla (\theta  - Ih\theta )) \cdot n]]| 2 = h1 - 2\delta 
F

\int 
F

| [[(\bfitvarepsilon \nabla (Ih\theta )) \cdot n]]| 2

\leq Ch1 - 2\delta 
F

\Bigl( \int 
F

| ((\bfitvarepsilon  - JK(+)\bfitvarepsilon )\nabla (Ih\theta )) \cdot n| 2 +
\int 
F

| ((\bfitvarepsilon  - JK( - )\bfitvarepsilon )\nabla (Ih\theta )) \cdot n| 2
\Bigr) 

+Ch1 - 2\delta 
F

\int 
F

| ((JK(+)\bfitvarepsilon )\nabla (Ih\theta ) - (JK( - )\bfitvarepsilon )\nabla (Ih\theta )) \cdot n| 2,

where the first term on the right-hand side can be estimated by the local trace theorem
that hF

\int 
F
| wh| 2 \leq C| | wh| | 20,K for any finite element function wh,

h1 - 2\delta 
F

\Bigl( \int 
F

| ((\bfitvarepsilon  - JK(+)\bfitvarepsilon )\nabla (Ih\theta )) \cdot n| 2 +
\int 
F

| ((\bfitvarepsilon  - JK( - )\bfitvarepsilon )\nabla (Ih\theta )) \cdot n| 2
\Bigr) 

\leq Ch1 - 2\delta 
F

\Bigl( 
| | \bfitvarepsilon  - JK(+)\bfitvarepsilon | | 20,\infty ,K(+)

\int 
F

| \nabla (Ih\theta )| 2 + | | \bfitvarepsilon  - JK( - )\bfitvarepsilon | | 20,\infty ,K( - )

\int 
F

| \nabla (Ih\theta )| 2
\Bigr) 

\leq C(h2 - 2\delta 
K(+) | | \nabla (Ih\theta )| | 20,K(+) + h2 - 2\delta 

K( - ) | | \nabla (Ih\theta )| | 20,K( - ))

\leq C(h2 - 2\delta 
K(+) | | \theta | | 21,K(+) + h2 - 2\delta 

K( - ) | | \theta | | 21,K( - )).

Since \bfitvarepsilon \nabla \theta \in (Hr(K))d with r > 0 and div (\bfitvarepsilon \nabla \theta ) \in L2(K), we can construct a canon-
ical interpolation from any suitable Raviart--Thomas finite element space RT(K) on
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A3700 HUOYUAN DUAN, JUNHUA MA, AND JUN ZOU

K, i.e., there exists an interpolation operator \Upsilon K such that \Upsilon K(\bfitvarepsilon \nabla \theta ) \in RT(K)
satisfies (\Upsilon K(+)(\bfitvarepsilon \nabla \theta ) - \Upsilon K( - )(\bfitvarepsilon \nabla \theta )) \cdot n = 0 on F = \partial K(+) \cap \partial K( - ) and

| | \bfitvarepsilon \nabla \theta  - \Upsilon K(\bfitvarepsilon \nabla \theta )| | 0,K(\pm ) \leq Chr
K(\pm ) | | \bfitvarepsilon \nabla \theta | | r,K(\pm ) \leq Chr

K(\pm ) | | \theta | | 1+r,K(\pm ) .

By the local trace theorem again, we can also estimate the second term on the right-
hand side of (7.19),

h1 - 2\delta 
F

\int 
F

| ((\bfJ K(+)\bfitvarepsilon )\nabla (Ih\theta ) - (\bfJ K( - )\bfitvarepsilon )\nabla (Ih\theta )) \cdot \bfn | 2

= h1 - 2\delta 
F

\int 
F

| (((\bfJ K(+)\bfitvarepsilon )\nabla (Ih\theta ) - \Upsilon K(+)(\bfitvarepsilon \nabla \theta )) - (\Upsilon K( - )(\bfitvarepsilon \nabla \theta ) - (\bfJ K( - )\bfitvarepsilon )\nabla (Ih\theta ))) \cdot \bfn | 2

\leq Ch - 2\delta 
F | | (\bfJ K(+)\bfitvarepsilon )\nabla (Ih\theta ) - \Upsilon K(+)(\bfitvarepsilon \nabla \theta )| | 20,K(+)

+Ch - 2\delta 
F | | (\bfJ K( - )\bfitvarepsilon )\nabla (Ih\theta ) - \Upsilon K( - )(\bfitvarepsilon \nabla \theta )| | 20,K( - ) ,

which can be further bounded by the triangle inequality and the error estimates of
JK and \Upsilon K ,

| | (JK(\pm )\bfitvarepsilon )\nabla (Ih\theta ) - \Upsilon K(\pm )(\bfitvarepsilon \nabla \theta )| | 20,K(\pm ) \leq C| | \nabla (\theta  - Ih\theta )| | 20,K(\pm )

+Ch2
K(\pm ) | | \theta | | 21,K(\pm ) + Ch2r

K(\pm ) | | \theta | | 21+r,K(\pm ) .

Therefore, we can come to

h1 - 2\delta 
F

\int 
F

| ((JK(+)\bfitvarepsilon )\nabla (Ih\theta ) - (JK( - )\bfitvarepsilon )\nabla (Ih\theta )) \cdot n| 2

\leq Ch - 2\delta 
K(+) | | \nabla (\theta  - Ih\theta )| | 20,K(+) + Ch2 - 2\delta 

K(+) | | \theta | | 21,K(+) + Ch2r - 2\delta 
K(+) | | \theta | | 2

1+r,K(+)

+Ch - 2\delta 
K( - ) | | \nabla (\theta  - Ih\theta )| | 20,K( - ) + Ch2 - 2\delta 

K( - ) | | \theta | | 21,K( - ) + Ch2r - 2\delta 
K( - ) | | \theta | | 2

1+r,K( - ) ,

and then we have proved from (7.19) that

(7.20)
\Bigl( \sum 

F\in \scrF int
h

h1 - 2\delta 
F

\int 
F

| [[(\bfitvarepsilon \nabla (\theta  - Ih\theta )) \cdot n]]| 2
\Bigr) 1/2

\leq Chr - \delta 
\Bigl( m\sum 

k=1

| | \theta | | 1+r,\Omega k
+ | | \theta | | 1

\Bigr) 
.

Now it is easy to see that the approximation (5.2) in Assumption 2 is a direct conse-
quence of (7.16)--(7.20).

Remark 7.1. For the estimate of the normal jump terms like the one in (7.16),
we need only the L2-norm approximation of the Raviart--Thomas element. For affine
or nonaffine quadrilaterals and affine hexahedra, we can choose the original Raviart--
Thomas--N\'ed\'elec element or the variant in [2]. For nonaffine hexahedra, we can choose
the Falk--Gatto--Monk element [26]. However, we can avoid using the Raviart--Thomas
element, at the expense of losing some slight accuracy for r \leq 1/2; i.e., r - \delta is replaced
by r  - \epsilon  - \delta for any small \epsilon \in (0, r  - \delta ).

Now we are ready to show (5.3) in Assumption 2. In fact, using the estimates
above, we have

b(\nabla (\theta  - Ih\theta ), \mu h) = (\bfitvarepsilon \nabla (\theta  - Ih\theta ),\nabla \mu h)

\leq C
\Bigl( \sum 

K\in \scrT h

h - 2\delta 
K | | \nabla (\theta  - Ih\theta )| | 20,K

\Bigr) 1/2\Bigl( \sum 
K\in \scrT h

h2\delta 
K | | \nabla \mu h| | 20,K

\Bigr) 1/2

\leq Chr - \delta | | \mu h| | \delta ,Qh

m\sum 
k=1

| | \theta | | 1+r,\Omega k
,
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MIXED FEM MAXWELL EIGENPROBLEM A3701

which, along with (7.8), yields

sup
0\not =\mu h\in Qh

b(\nabla (\theta  - Ih\theta ), \mu h)

| | \mu h| | Qh

\leq Chr - \delta 
m\sum 

k=1

| | \theta | | 1+r,\Omega k
.

Hence we have proved (5.3) and also completed the verification of Assumption 2. We
can do the same to verify Assumption 3, and hence we have deduced the following
results.

Lemma 7.2. Assumption 2 follows from the same conditions as in Lemma 7.1
and the approximation property (7.9), while Assumption 3 follows from the same
conditions as in Lemma 7.1 and the approximation properties (7.10)--(7.11).

Next, we establish the inf-sup condition (7.7). To do so, using the local inclusion
(7.6), we may choose

vh := h2\delta 
K\nabla qh on K \in \scrT h \forall qh \in Qh

to derive

b(vh, qh) =
\sum 

K\in \scrT h

h2\delta 
K | | \bfitvarepsilon 1/2\nabla qh| | 20,K \geq C

\sum 
K\in \scrT h

h2\delta 
K | | \nabla qh| | 20,K = C| | qh| | 2\delta ,Qh

.

Then, following an argument similar to the one for verifying Assumption 2, we can
show | | vh| | h \leq C| | qh| | \delta ,Qh

; hence the inf-sup condition (7.7) follows, resulting in the
following lemma.

Lemma 7.3. The same conditions as in Lemma 7.1 imply the inf-sup condition
(7.7); hence the inf-sup (4.14) follows.

Collecting the results from Lemmas 7.1 to 7.3 and from Remark 6.2 and section 6,
we can conclude the following results for general finite elements.

Theorem 7.1. For the spaces Uh and Qh defined by (7.5) and (7.2), respectively,
the local gradient inclusion condition (7.6) and the standard approximation properties
(7.9)--(7.11) guarantee that the mixed finite element approximation (3.5) is spurious-
free and spectral-correct for the Maxwell eigenproblem (2.1)--(2.4), with nearly optimal
approximation accuracy.

The error estimates are \scrO (hr - \delta ) for the eigenspace gaps and \scrO (h2(r - \delta )) for ei-
genvalues if the eigenfunctions, along with its curls, are piecewise Hr-regular for some
r > 0; the error estimates are \scrO (h\ell  - \delta ) for the eigenspace gaps and \scrO (h2(\ell  - \delta )) for ei-
genvalues if the eigenfunctions are piecewise H1+\ell -regular. Here \delta is an arbitrarily
small positive constant.

Remark 7.2. Theorem 7.1 reveals that the gradient inclusion in Assumption 1
and the standard approximation properties (7.9), (7.10), and (7.11) for piecewise
smooth solutions play a fundamental role in generating a spurious-free and spectral-
correct finite element solution by the new mixed method (3.5). Furthermore, since
the gradient inclusion in Assumption 1 can be easily realized for a lowest-order nodal
element Wh = Qh, we know that whether the new mixed method (3.5) is spurious-
free and spectral-correct relies totally on the standard approximation properties (7.9),
(7.10), and (7.11) for piecewise smooth solutions.

We shall demonstrate in the rest of this section that under the new mixed fi-
nite element method (3.5), many elements that could not possibly be spurious-free
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A3702 HUOYUAN DUAN, JUNHUA MA, AND JUN ZOU

and spectral-correct for the Maxwell eigenproblem in classical formulations are now
spurious-free and spectral-correct. These elements include the N\'ed\'elec elements of the
second kind on rectangles, parallelograms, and parallelepipeds; the N\'ed\'elec elements
of the second kind on nonaffine quadrilateral and hexahedral meshes (excluding only
the lowest-order element on nonaffine hexahedral meshes); and the N\'ed\'elec elements
of the first kind on nonaffine quadrilateral and hexahedral meshes (excluding only
the lowest-order elements on nonaffine quadrilateral and hexahedral meshes). We re-
fer the reader to Remark 7.3 for more details about the three lowest-order nonaffine
elements excluded above.

Affine meshes built on the reference element \^\bfitK = [0, 1]\bfitd . We consider
the meshes obtained from \^K = [0, 1]d by an affine mapping FK : \^K \rightarrow K, such as
elements of rectangles, cuboids, parallelograms, parallelepipeds, etc. For H(curl ; \Omega )-
conforming N\'ed\'elec elements of the second kind, for any integer \ell \geq 1, we define Uh

by choosing

(7.21) \^E\ell ( \^K) = \^QNed
\ell := ( \^\scrQ \ell ( \^K))d,

while for Qh, we choose the lowest-order nodal element \^\scrQ 1( \^K). From (7.5)--(7.6) and
(7.2), we can easily verify the gradient inclusion in Assumption 1 and the standard
approximation properties (7.9)--(7.11) for piecewise smooth solutions. Here, we should
note that

(7.22) Vh := \{ vh \in (H1(\Omega ))d \cap H0(curl ; \Omega ) : vh| K \in (\scrQ \ell (K))d \forall K \in \scrT h\} \subset Uh,

since DFK is a constant matrix for the affine mapping FK . The above inclusion allows
the use of the interpolation operator \Pi h as the Lagrange interpolation operator for
satisfying (7.10) and (7.11). Consequently, the N\'ed\'elec elements of the second kind on
rectangles, parallelograms, and parallelepipeds are spurious-free and spectral-correct
for solving the Maxwell eigenproblem under (3.5). For the sake of clarification, we
formulate a general theorem.

Theorem 7.2. The whole family of N\'ed\'elec elements of the second kind on affine
quadrilateral and hexahedral meshes is spurious-free and spectral-correct under the
mixed finite element method (3.5).

Nonaffine meshes built from the reference element \^\bfitK = [0, 1]\bfitd . It is well
known that it is very difficult to approximate H(curl ; \Omega ) over nonaffine quadrilateral
or hexahedral elements. For nonaffine hexahedral elements, we are only aware of
the work [26], where a low-order element is constructed as an enriched version of
the lowest-order N\'ed\'elec element of the first kind, and no results are available about
the N\'ed\'elec element of the second kind. As for the Maxwell eigenproblem, the first
difficulty is due to the failure of the discrete de Rham exact sequence (1.3) in general,
and the other difficulty is that the distortion of the meshes (the faces of hexahedral
elements are nappes of hyperbolic paraboloids) may generate finite element spaces
that do not even contain the constant vector-valued functions locally.

However, under the new mixed formulation (3.5), the whole family of N\'ed\'elec

elements \^QNed
\ell of the second kind on nonaffine quadrilaterals and hexahedra (except

for the lowest-order element on nonaffine hexahedra; see Remark 7.3), as well as the
whole family of N\'ed\'elec elements of first kind, namely,

(7.23)

\Biggl\{ 
\^QNed
\ell  - 1/\ell :=

\^\scrQ \ell  - 1,\ell ( \^K)\times \^\scrQ \ell ,\ell  - 1( \^K) for d = 2,
\^QNed
\ell  - 1/\ell /\ell :=

\^\scrQ \ell  - 1,\ell ,\ell ( \^K)\times \^\scrQ \ell ,\ell  - 1,\ell ( \^K)\times \^\scrQ \ell ,\ell ,\ell  - 1( \^K) for d = 3
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MIXED FEM MAXWELL EIGENPROBLEM A3703

on nonaffine quadrilaterals and hexahedra (except for the lowest-order elements on
nonaffine quadrilaterals and hexahedra; see Remark 7.3), are all spurious-free and
spectral-correct. Here \^\scrQ i,j,k( \^K) denotes the tensor of polynomials of different degree

at most i, j, k in each variable \^x1, \^x2, \^x3 on \^K, and similarly for the space \^\scrQ i,j( \^K) in
two dimensions.

Lemma 7.4. For N\'ed\'elec elements \^QNed
\ell of the second kind on nonaffine quad-

rilateral and hexahedral meshes (with \ell \geq 2), let the canonical interpolation \Pi h be
defined through the Piola-like transformation (DFK) - T from the canonical interpola-

tion \^\Pi on \^K by the degrees of freedom on the reference element \^K as in [37] (see also
[9]). Then it holds for z \in (H1+r(K))3 with r > 0 that

| | z - \Pi hz| | 0,K \leq Chr
K | | z| | 1+r,K , | | curl (z - \Pi hz)| | 0,K \leq Chr

K | | z| | 1+r,K .

Proof. Since \^\Pi \^QNed
\ell \equiv \^QNed

\ell , \scrP 1(K)\circ FK \subset \^\scrQ 1( \^K), and (DFK)T (\scrP 1(K)\circ FK)d \subset 
( \^\scrQ 2( \^K))d, we have

(DFK)T (\scrP 0(K) \circ FK)d \subset \^QNed
\ell = ( \^\scrQ \ell ( \^K))d \forall \ell \geq 1,

curl q1 = curl\Pi hq1 \forall q1 \in (\scrP 1(K))d, \forall \ell \geq 2,

where \scrP \ell (K) is the space of polynomials on the hexahedral element K of total degree
not greater than \ell . Then the desired result follows from a similar argument in [26,
Theorems 8.1 and 8.2].

Lemma 7.4 implies immediately the following result.

Theorem 7.3. For all \ell \geq 2, let Uh be H(curl ; \Omega )-conforming space by defining
\^E\ell ( \^K) as N\'ed\'elec elements \^QNed

\ell = ( \^\scrQ \ell ( \^K))d of the second kind on nonaffine quad-
rilateral and hexahedral meshes. These finite element spaces are all spurious-free and
spectral-correct under the mixed formulation (3.5).

We have the same conclusion as in Theorem 7.3 for the lowest-order case of
N\'ed\'elec elements of the second kind (\ell = 1) on nonaffine quadrilaterals, but it is
more conveniently dealt with separately, as is done below.

Theorem 7.4. Let Uh be an H(curl ; \Omega )-conforming finite element space by defin-

ing \^E1( \^K) as the lowest-order N\'ed\'elec elements \^QNed
1 = ( \^\scrQ 1( \^K))2 of the second kind

on nonaffine quadrilateral meshes. Then it holds for z \in (H1+r(K))2 with r > 0 that

(7.24) | | z - \Pi hz| | 0,K \leq Chr
K | | z| | 1+r,K , | | curl (z - \Pi hz)| | 0,K \leq Chr

K | | z| | 1+r,K .

Consequently, Uh is spurious-free and spectral-correct under the mixed finite element
formulation (3.5).

Proof. The first estimate in (7.24) follows readily from the fact that

(DFK)T (\scrP 0(K) \circ FK)2 \subset \^QNed
1 = ( \^\scrQ 1( \^K))2

and the standard interpolation estimate. To establish the second estimate in (7.24),

we can first use the fact that \^curl ( \^\scrQ 1( \^K))2 \equiv \^\scrP 1( \^K) to find that \^curl \^\Pi \^z = \^\rho \^curl \^z,
where \^\rho is the L2-projection onto \^\scrP 1( \^K).

For convenience, we now rotate z by \pi /2 to get z\ast := ( - z2, z1); then curl z =
div z\ast . By similar rotations for \Pi h, etc., we can show that

| | div (z\ast  - \Pi \ast 
hz

\ast )| | 0,K \leq Chr
K | div z\ast | r,K .
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A3704 HUOYUAN DUAN, JUNHUA MA, AND JUN ZOU

For any constant t0 \in \scrP 0(K), we wish to find \^s0 \in ( \^\scrQ 1( \^K))2 so that it holds for
s0 = (JFK) - 1DFK\^s0 that

t0 = div s0 = (JFK) - 1 \^div \^s0,

where \^s0 \in ( \^\scrQ 1( \^K))2 is determined by JFKt0 = \^div \^s0, since \^div ( \^\scrQ 1( \^K))2 \equiv \^\scrP 1( \^K)
and JFKt0 \in \^\scrP 1( \^K). Further, we can see that

div\Pi \ast 
hs0 = (JFK) - 1 \^div \^\Pi \ast \^s0 = (JFK) - 1 \^div \^s0 = div s0 = t0;

then we can proceed to write and estimate\int 
K
| div (\bfz \ast  - \bfPi \ast 

h\bfz 
\ast )| 2 =

\int 
K
| div (\bfz \ast  - \bfs 0  - \bfPi \ast 

h(\bfz 
\ast  - \bfs 0))| 2

=
\int 

\^K
| (JFK) - 1 \^div (\^\bfz \ast  - \^\bfs 0  - \^\bfPi \ast (\^\bfz \ast  - \^\bfs 0))| 2JFK \leq Ch - 2

K

\int 
\^K
| \^div (\^\bfz \ast  - \^\bfs 0  - \^\bfPi \ast (\^\bfz \ast  - \^\bfs 0))| 2

= Ch - 2
K

\int 
\^K
| \^div (\^\bfz \ast  - \^\bfs 0) - \^\rho \^div (\^\bfz \ast  - \^\bfs 0)| 2 \leq Ch - 2

K | \^div (\^\bfz \ast  - \^\bfs 0)| 2r, \^K ,

where we have used the shape-regularity condition JFK \geq Ch2
K . On the other hand,

we can bound

| \^div (\^z\ast  - \^s0)| 2r, \^K = | JFK(div (z\ast  - s0)) \circ FK | 2
r, \^K

\leq Ch4
K(| | (div (z\ast  - s0)) \circ FK | | 2

0, \^K
+ | (div (z\ast  - s0)) \circ FK | 2

r, \^K
).

We can now choose a suitable t0 \in \scrP 0(K) as the approximation of div z\ast on K such
that

| | (div (\bfz \ast  - \bfs 0)) \circ FK | | 20, \^K \leq Ch - 2
K | | div (\bfz \ast  - \bfs 0)| | 20,K = Ch - 2

K | | div \bfz \ast  - t0| | 20,K \leq C| div \bfz \ast | 2r,K ,

| div (\bfz \ast  - \bfs 0) \circ FK | 2r, \^K \leq Ch2r
K h - 2

K | div \bfz \ast | 2r,K ;

hence we have deduced that\int 
K

| div (z\ast  - \Pi \ast 
hz

\ast )| 2 \leq Ch2r
K | div z\ast | 2r,K .

This, along with the fact that curl z = div z\ast , leads to the second estimate in (7.24).

Remark 7.3. We note that the argument above for the quadrilateral elements does
not apply to the lowest-order hexahedral \^QNed

1 N\'ed\'elec element of the second kind

because JFK(DFK) - 1(\scrP 0(K)\circ FK)3 \not \subset \^curl \^QNed
1 = \^curl ( \^\scrQ 1( \^K))3. This means that

on the physical hexahedral element K, the curl of the local approximating space on
K does not contain the constant vector-valued functions, and consequently, there is
no approximation in the curl seminorm no matter how smooth the function z is, that
is, | | curl (z - \Pi hz)| | 0 = O(1). For this reason, the lowest-order N\'ed\'elec element \^QNed

1

of the second kind on nonaffine hexahedral meshes should not be used in any case.
A similar fact is also well known for the lowest-order N\'ed\'elec elements \^QNed

0/1 of the

first kind on nonaffine quadrilateral meshes and \^QNed
0/1/1 of the first kind on nonaffine

hexahedral meshes, motivating the quadrilateral H(curl ; \Omega ) elements (by a rotation
\pi /2 ofH(div ; \Omega ) elements) (cf. [22]) and the low-order hexahedralH(curl ; \Omega ) element
(cf. [26]).

We conclude this section with the N\'ed\'elec elements of the first kind on quadri-
laterals and hexahedra. Unlike the second kind, the first kind on affine meshes such
as rectangles satisfies the discrete de Rham exact sequence (1.3) and is spurious-free
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MIXED FEM MAXWELL EIGENPROBLEM A3705

and spectral-correct for the classical method (1.1). But this is not valid for nonaffine
quadrilateral and hexahedral meshes.

By noticing that

(DFK)T (\scrP 1(K) \circ FK)2 \subset \^\scrQ 1,2( \^K)\times \^\scrQ 2,1( \^K),

(DFK)T (\scrP 1(K) \circ FK)3 \subset \^\scrQ 1,2,2( \^K)\times \^\scrQ 2,1,2( \^K)\times \^\scrQ 2,2,1( \^K),

we can use the same argument as for Theorem 7.3 to derive the following result.

Theorem 7.5. Let Uh be an H(curl ; \Omega )-conforming finite element space by defin-

ing \^E\ell ( \^K) (\ell \geq 2) as N\'ed\'elec elements \^QNed
\ell  - 1/\ell of the first kind on nonaffine quadri-

lateral meshes and \^QNed
\ell  - 1/\ell /\ell of the first kind on nonaffine hexahedral meshes; then all

of these spaces Uh are spurious-free and spectral-correct under the new mixed method
(3.5).

All the discontinuous counterparts of those elements in Theorems 7.3 to 7.5 are
spurious-free and spectral-correct under the mixed formulation (3.5).

8. Numerical experiments. In this section, we present several sets of numer-
ical results for the lowest-order N\'ed\'elec element of the second kind on rectangles and
quadrilaterals, i.e., the (\scrQ Ned

1 )2 element for the electric field. For the multiplier, we
use the lowest-order Lagrange isoparametric bilinear element, i.e., the \scrQ 1 element.

8.1. Spurious approximation by the classical method. We review the spu-
rious approximations by the classical method (1.1) with the (\scrQ Ned

1 )2 element on rec-
tangles. This is well known in the literature (cf. [28]). We take the example from
[28], with the domain \Omega = (0, \pi )2. The first 10 exact eigenvalues are as follows:
1, 1, 2, 4, 4, 5, 5, 8, 9, 9. We collect the numerical results in Table 1 for the nonzero ei-
genvalues and in Table 2 for the zero eigenvalue. As was shown explicitly in [28], we
see from Tables 1 and 2 that zero is a spurious eigenvalue; the discrete counterparts
of the eigenvalues 1, 4, 9 have wrong multiplicities, while other eigenvalues 2, 5, 8 have
correct multiplicities.

Table 1
Spurious approximations by the classical method.

\pi /h \omega 2 /(multiplicities) \omega 2
h /(multiplicities) \omega 2 /(multiplicities) \omega 2

h /(multiplicities)
4 1.05238686203823 /(10) 5.91580367687045 /(2)
8 1.01291604505883 /(18) 5.22246349321185 /(2)

16 1 /(2) 1.00321687435621 /(34) 5 /(2) 5.05488105459235 /(2)
32 1.00080344825532 /(66) 5.01367094568282 /(2)
4 2.10477372407648 /(1) 9.72683362966443 /(1)
8 2.02583209011778 /(1) 8.41909489630593 /(1)

16 2 /(1) 2.00643374871356 /(1) 8 /(1) 8.10332836047114 /(1)
32 2.00160689651227 /(1) 8.02573499485413 /(1)
4 4.86341681483219 /(10) 12.843089751768 /(10)
8 4.20954744815297 /(18) 10.0802909335883 /(18)

16 4 /(2) 4.05166418023506 /(34) 9 /(2) 9.26313055554446 /(34)
32 4.01286749742499 /(66) 9.06524486372812 /(66)

8.2. Spurious-free approximation by new mixed finite element method.
We report that the new mixed finite element method (3.5) can provide spurious-free
and spectral-correct approximations for the (\scrQ Ned

1 )2 element on rectangles and non-
affine quadrilaterals. The nonaffine quadrilateral mesh is composed of the trapezoids
as in [2]. Since the domain is convex, there are no singular solutions (i.e., all eigen-
functions are H1-regular). For the pair of the (\scrQ Ned

1 )2/\scrQ 1 element, the theoretical
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Table 2
Zero eigenvalues by the classical method.

\pi /h \omega 2 /(multiplicities) \omega 2
h (multiplicities)

4 \approx 0 /(9)
8 \approx 0 /(49)

16 0 /(infinity) \approx 0 /(225)
32 \approx 0 /(961)

convergence rate is 2(1 - \delta ) for 0 < \delta < 1 for discrete eigenvalues. To investigate the
effect of the parameter \delta , we test \delta = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1 and compute the cor-
responding convergence rates. From our numerical results, we observe three points:
there are no discrete zero eigenvalues; all discrete eigenvalues converge correctly, with
correct multiplicities; the convergence rate approaches 2 (the optimal convergence rate
that is the same as the order of approximation) as h \rightarrow 0 for every discrete eigenvalue
when \delta lies between 0 and 1, indicating that \delta does not really affect the convergence
rate. Due to this last point, we present the results only for \delta = 0 in Table 3 and in
Table 4. The first two observations are consistent with the theoretical results.

8.3. Discontinuous media. We now study a model problem in a discontin-
uous medium in \Omega = ( - 1, 1)2, with \bfitvarepsilon = \varepsilon I, where \varepsilon is given by \varepsilon (x) = 0.5,
x \in \Omega 1 := (0, 1)2 \cup \Omega 3 := ( - 1, 0)2, and \varepsilon (x) = 1, x \in \Omega 2 := (( - 1, 0)\times (0, 1)) \cup \Omega 4 :=
((0, 1) \times ( - 1, 0)). The minimal regularity of the solution is about r = 0.78 (https:
//perso.univ-rennes1.fr/monique.dauge/benchmax.html). We compute the first 10
eigenvalues with \delta = 0, 0.3, 0.7, 0.8; see Tables 5 and 6. We observe no convergence
for \delta = 0 and \delta = 0.8(> 0.78) for some discrete eigenvalues. The case \delta = 0.3 shows
the best convergence among the 10 eigenvalues. It appears that the convergence
rates follow the theoretical rate 2(ri  - \delta ), where ri denotes the piecewise regular-
ity of the ith eigenvalue, for instance, r1 = 1 approximately, i.e., the eigenfunction
u| \Omega j \in (Hr1(\Omega j))

2.

8.4. Nonconvex domain. We provide numerical results in an L-shaped ( - 1, 1)2\setminus 
([0, 1]\times [ - 1, 0]) and a cracked domain \Omega = ( - 1, 1)2\setminus \{ (x1, x2) \in \BbbR 2 : 0 \leq x < 1, y = 0\} .
The exact eigenvalues are taken from https://perso.univ-rennes1.fr/monique.dauge/
benchmax.html. The first eigenvalue for the L-shaped domain is 1.47562182408, and
its eigenfunction has the strongest unbounded singularity, belonging to (H2/3 - \epsilon (\Omega ))2

for any \epsilon > 0. The first eigenvalue for the cracked domain 1.03407400850, whose
eigenfunction is very singular, belongs to (H1/2 - \epsilon (\Omega ))2 for any \epsilon > 0. For other ei-
genvalues whose eigenfunctions are H1 regular, the parameter \delta does not affect the
convergence rate, as reported in subsection 8.2. We present the numerical results with
different values of the parameter \delta on rectangular meshes. We can see from Table 7
and Table 8 that the convergence rate behaves like 2(r  - \delta ) as \delta varies. We also
observe that when \delta is bigger than r, the computed first eigenvalue tends to merge
with the second eigenvalue.

8.5. Discrete Gauss law. We present numerical results to verify the discrete
Gauss law. From our theory, the finite element solution uh converges in the norm
| | div (\bfitvarepsilon \cdot )| |  - (1 - \delta ) to the exact solution u of Hr regularity with convergence order hr - \delta .
We need only to compute the convergence in the mesh-dependent norm | u - uh| h,div .
For the current Maxwell eigenproblem, div (\bfitvarepsilon u) = 0 and [[(\bfitvarepsilon u) \cdot n]] = 0, so we actually
need only to compute | uh| h,div . We present only numerical results for the L-shaped
domain, with rectangle meshes, and compute the discrete Gauss law for the first
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eigenvalue (denoted by \lambda min) with different values of \delta . From Table 9, we see that
the discrete Gauss law holds with the convergence hr - \delta approximately (r = 2/3 - \epsilon ).

Table 3
Rectangle mesh: Relative errors and con-

vergence rate of the new method, with \delta = 0.

\omega 2 \pi /h \omega 2
h | \omega 2  - \omega 2

h| /| \omega 
2| Conv. rate

1

4 1.052386862038 5.2387E-02  - 
8 1.012916045059 1.2916E-02 2.0200

16 1.003216874357 3.2169E-03 2.0054
32 1.000803448248 8.0345E-04 2.0014

1

4 1.052386862038 5.2387E-02  - 
8 1.012916045059 1.2916E-02 2.0200

16 1.003216874357 3.2169E-03 2.0054
32 1.000803448292 8.0345E-04 2.0014

2

4 2.117798387026 5.8899E-02  - 
8 2.016141152150 8.0706E-03 2.8675

16 2.003199319691 1.5997E-03 2.3349
32 2.000747585914 3.7379E-04 2.0975

4

4 4.863416814832 2.1585E-01  - 
8 4.209547448153 5.2387E-02 2.0428

16 4.051664180236 1.2916E-02 2.0200
32 4.012867497428 3.2169E-03 2.0054

4

4 4.863416814832 2.1585E-01  - 
8 4.209547448153 5.2387E-02 2.0428

16 4.051664180236 1.2916E-02 2.0200
32 4.012867497428 3.2169E-03 2.0054

5

4 5.981382804172 1.9628E-01  - 
8 5.175337048473 3.5067E-02 2.4847

16 5.039480829353 7.8962E-03 2.1509
32 5.009603696742 1.9207E-03 2.0395

5

4 5.981382804172 1.9628E-01  - 
8 5.175337048473 3.5067E-02 2.4847

16 5.039480829353 7.8962E-03 2.1509
32 5.009603696757 1.9207E-03 2.0395

8

4 9.982803144233 2.4785E-01  - 
8 8.209258327497 2.6157E-02 3.2442

16 8.032410837451 4.0514E-03 2.6907
32 8.006845438435 8.5568E-04 2.2433

9

4 12.843089751768 4.2701E-01  - 
8 10.080290933588 1.2003E-01 1.8308

16 9.263130555544 2.9237E-02 2.0376
32 9.065244863730 7.2494E-03 2.0118

9

4 12.843089751768 4.2701E-01  - 
8 10.080290933588 1.2003E-01 1.8308

16 9.263130555545 2.9237E-02 2.0376
32 9.065244863785 7.2494E-03 2.0118

Table 4
Quadrilateral mesh: Relative errors and

convergence rate of the new method, with \delta = 0.

\omega 2 \pi /h \omega 2
h | \omega 2  - \omega 2

h| /| \omega 
2| Conv. rate

1

4 1.088800832495 8.8801E-02  - 
8 1.016593866630 1.6594E-02 2.4199

16 1.003583466571 3.5835E-03 2.2112
32 1.000822706689 8.2271E-04 2.1229

1

4 1.230798335934 2.3080E-01  - 
8 1.093587158873 9.3587E-02 1.3023

16 1.013460450306 1.3460E-02 2.7976
32 1.002339680398 2.3397E-03 2.5243

2

4 2.320337045007 1.6017E-01  - 
8 2.090877405767 4.5439E-02 1.8176

16 2.013848986366 6.9245E-03 2.7141
32 2.002071811856 1.0359E-03 2.7408

4

4 5.413997793531 3.5350E-01  - 
8 4.267861008813 6.6965E-02 2.4002

16 4.055837156948 1.3959E-02 2.2622
32 4.013500832806 3.3752E-03 2.0482

4

4 6.241424874135 5.6036E-01  - 
8 4.487614139165 1.2190E-01 2.2006

16 4.095773971189 2.3943E-02 2.3480
32 4.016788732686 4.1972E-03 2.5121

5

4 6.750542215301 3.5011E-01  - 
8 5.306099514632 6.1220E-02 2.5157

16 5.055089346678 1.1018E-02 2.4742
32 5.011132699334 2.2265E-03 2.3070

5

4 6.955212026321 3.9104E-01  - 
8 5.480154424885 9.6031E-02 2.0258

16 5.082393210334 1.6479E-02 2.5429
32 5.014918352329 2.9837E-03 2.4654

8

4 10.673760260586 3.3422E-01  - 
8 8.592251467340 7.4031E-02 2.1746

16 8.088253919420 1.1032E-02 2.7465
32 8.012580236137 1.5725E-03 2.8105

9

4 13.218593939734 4.6873E-01  - 
8 10.366039431151 1.5178E-01 1.6268

16 9.288481349492 3.2053E-02 2.2434
32 9.067794393815 7.5327E-03 2.0892

9

4 14.148527375137 5.7206E-01  - 
8 10.538680759916 1.7096E-01 1.7425

16 9.328232990934 3.6470E-02 2.2289
32 9.072495460249 8.0551E-03 2.1788

Concluding remarks. We have proposed a new mixed finite element method for
the Maxwell eigenproblem, in terms of the electric field and a scalar multiplier, where
the Gauss law is enforced in the finite element formulation and discontinuous elements
are used for the electric field and the lowest-order nodal element for the multiplier.
We have shown the stability and error estimates of the new method and the strong
convergence of the discrete Gauss law. In particular, we prove that holding the well-
known discrete compactness property and without resorting to the discrete de Rham
complex exact sequence, the new method is spurious-free and spectral-correct as long
as the first-order approximation in the H(curl ; \Omega ) norm holds for smooth functions.
Consequently, all N\'ed\'elec elements on affine and nonaffine meshes are spurious-free
and spectral-correct in the new method, except only the three lowest-order N\'ed\'elec
elements that do not hold the first-order approximation on the nonaffine quadrilateral
and hexahedral meshes. Hence, the new method is more advantageous than the
classical methods which require the discrete de Rham complex exact sequence and do
not satisfy the discrete compactness property---this property is an extremely difficult
issue for many N\'ed\'elec elements. Numerical results have confirmed the theoretical
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Table 5
Relative errors and convergence rate in nonhomogeneous media.

\omega 2 1/h
\delta = 0.3 \delta = 0.7

\omega 2
h

| \omega 2  - \omega 2
h| 

| \omega 2| 
Conv. rate \omega 2

h

| \omega 2  - \omega 2
h| 

| \omega 2| 
Conv. rate

3.31754876342

4 3.373790330997 1.6953E-02  - 3.393420726989 2.2870E-02  - 
8 3.333046028939 4.6713E-03 1.8596 3.344885745624 8.2401E-03 1.4727
16 3.322033479731 1.3518E-03 1.7889 3.329002334654 3.4524E-03 1.2551
32 3.318900288110 4.0739E-04 1.7304 3.322958840759 1.6307E-03 1.0821

3.36632415726

4 3.454932324173 2.6322E-02  - 3.553031255492 5.5463E-02  - 
8 3.403425644698 1.1021E-02 1.2560 3.509333242230 4.2482E-02 0.3847
16 3.384229077442 5.3188E-03 1.0511 3.491675557791 3.7237E-02 0.1901
32 3.375611128640 2.7588E-03 0.9471 3.480892659893 3.4034E-02 0.1298

6.18638956249

4 6.254570072979 1.1021E-02  - 6.266662659233 1.2976E-02  - 
8 6.202870552138 2.6641E-03 2.0486 6.205480800053 3.0860E-03 2.0720
16 6.190494892254 6.6361E-04 2.0052 6.190996258842 7.4465E-04 2.0511
32 6.187420591039 1.6666E-04 1.9934 6.187514737509 1.8188E-04 2.0336

13.92632333103

4 14.676576363672 5.3873E-02  - 14.688942604189 5.4761E-02  - 
8 14.112175178217 1.3345E-02 2.0132 14.115146794519 1.3559E-02 2.0139
16 13.972689289927 3.3294E-03 2.0030 13.973328528184 3.3753E-03 2.0061
32 13.937919218731 8.3266E-04 1.9995 13.938051224857 8.4214E-04 2.0029

15.08299096123

4 15.836349691064 4.9948E-02  - 15.862542934204 5.1684E-02  - 
8 15.271373430179 1.2490E-02 1.9997 15.278478526612 1.2961E-02 1.9956
16 15.130230327187 3.1320E-03 1.9956 15.132161475598 3.2600E-03 1.9912
32 15.094856440883 7.8668E-04 1.9932 15.095381335190 8.2148E-04 1.9886

15.77886590819

4 16.350460308391 3.6225E-02  - 16.487901759137 4.4936E-02  - 
8 15.932600032036 9.7430E-03 1.8946 15.963545007066 1.1704E-02 1.9408
16 15.818793890060 2.5305E-03 1.9450 15.829234109283 3.1921E-03 1.8744
32 15.789211806927 6.5568E-04 1.9483 15.793982644500 9.5804E-04 1.7364

18.64329693686

4 19.265547904577 3.3377E-02  - 19.459898887434 4.3801E-02  - 
8 18.819221400703 9.4363E-03 1.8225 18.854528858053 1.1330E-02 1.9508
16 18.689673943004 2.4876E-03 1.9235 18.700535843318 3.0702E-03 1.8838
32 18.655376951069 6.4795E-04 1.9408 18.662104326135 1.0088E-03 1.6057

25.79753111031

4 24.390190847849 5.4553E-02  - 27.196764801646 5.4239E-02  - 
8 26.035534902772 9.2258E-03 2.5639 26.159754081781 1.4041E-02 1.9497
16 25.867640143095 2.7177E-03 1.7633 25.887537590825 3.4890E-03 2.0088
32 25.816271147558 7.2643E-04 1.9035 25.819833263321 8.6451E-04 2.0128

29.85240067684

4 26.667059793475 1.0670E-01  - 33.602270950088 1.2561E-01  - 
8 30.731286700643 2.9441E-02 1.8577 30.771111916146 3.0775E-02 2.0292
16 30.072538942593 7.3742E-03 1.9973 30.084036270336 7.7594E-03 1.9878
32 29.907719198975 1.8531E-03 1.9926 29.912414589455 2.0104E-03 1.9485

30.53785871253

4 27.692056035051 9.3189E-02  - 34.231984360219 1.2097E-01  - 
8 31.364373481626 2.7065E-02 1.7837 31.496404670057 3.1389E-02 1.9463
16 30.751787457670 7.0054E-03 1.9499 30.838299474985 9.8383E-03 1.6738
32 30.593920472721 1.8358E-03 1.9320 30.672594137224 4.4121E-03 1.1570

results of the new method.
Since the new method (in its h-version) can always ensure the discrete compact-

ness property, it would be highly interesting to extend and generalize the new method
to the p- and hp-versions of the finite element discretization. As is well known, in the
classical methods, the discrete compactness property for the p- and hp-versions has
been a far more difficult issue than that for the h-version, even if the discrete de Rham
complex exact sequence holds. For example, for the hp-version on simplexes, little
work is available on the establishment of the discrete compactness property. Such an
extension and generalization will be presented elsewhere.

Acknowledgment. The authors would like to thank the referees for their valu-
able comments and suggestions, which have helped to improve the presentation of the
paper.
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Table 6
Relative errors and convergence rate in nonhomogeneous media.

\omega 2 1/h
\delta = 0 \delta = 0.8

\omega 2
h

| \omega 2  - \omega 2
h| 

| \omega 2| 
Conv. rate \omega 2

h

| \omega 2  - \omega 2
h| 

| \omega 2| 
Conv. rate

3.31754876342

4 3.366248958742 1.4680E-02  - 3.401272745439 2.5237E-02  - 
8 3.329698177698 3.6622E-03 2.0030 3.350769814651 1.0014E-02 1.3335
16 3.320613031874 9.2365E-04 1.9873 3.333236659173 4.7288E-03 1.0824
32 3.318322833918 2.3333E-04 1.9850 3.325929063342 2.5261E-03 0.9046

3.36632415726

4 3.423554358868 1.7001E-02  - 3.596287098015 6.8313E-02  - 
8 3.382036077480 4.6674E-03 1.8649 3.570161834290 6.0552E-02 0.1740
16 3.370794152961 1.3279E-03 1.8135 3.570329092694 6.0602E-02 -0.0012
32 3.367632574545 3.8868E-04 1.7725 3.577542345870 6.2744E-02 -0.0501

6.18638956249

4 6.241788464926 8.9550E-03  - 6.270503728102 1.3597E-02  - 
8 6.199433569895 2.1085E-03 2.0865 6.206565292445 3.2613E-03 2.0597
16 6.189607391509 5.2015E-04 2.0192 6.191263280101 7.8781E-04 2.0495
32 6.187192103837 1.2973E-04 2.0034 6.187575187702 1.9165E-04 2.0394

13.92632333103

4 13.021391490081 6.4980E-02  - 14.693287465271 5.5073E-02  - 
8 13.035385668436 6.3975E-02 0.0225 14.116368453597 1.3646E-02 2.0128
16 13.067332334894 6.1681E-02 0.0527 13.973625278181 3.3966E-03 2.0064
32 13.089406560634 6.0096E-02 0.0376 13.938118006116 8.4693E-04 2.0038

15.08299096123

4 14.668520969081 2.7479E-02  - 15.870101827730 5.2185E-02  - 
8 14.110034645747 6.4507E-02 -1.2311 15.281101773441 1.3135E-02 1.9903
16 13.972115991998 7.3651E-02 -0.1912 15.132949734990 3.3123E-03 1.9875
32 13.937762914382 7.5928E-02 -0.0439 15.095601131377 8.3605E-04 1.9862

15.77886590819

4 15.170249716379 3.8572E-02  - 16.517079925341 4.6785E-02  - 
8 15.277040011130 3.1804E-02 0.2783 15.974805343280 1.2418E-02 1.9136
16 15.131574502674 4.1023E-02 -0.3672 15.834859987226 3.5487E-03 1.8071
32 15.095147732531 4.3331E-02 -0.0790 15.797347165666 1.1713E-03 1.5992

18.64329693686

4 15.857932054135 1.4940E-01  - 19.491319158026 4.5487E-02  - 
8 15.623096436102 1.6200E-01 -0.1168 18.864808578347 1.1882E-02 1.9367
16 15.742515583047 1.5559E-01 0.0582 18.706583070793 3.3946E-03 1.8074
32 15.770301093979 1.5410E-01 0.0139 18.667936944365 1.3217E-03 1.3609

25.79753111031

4 17.134025416776 3.3583E-01  - 27.307802555697 5.8543E-02  - 
8 17.130811241358 3.3595E-01 -0.0005 26.185520245099 1.5040E-02 1.9607
16 17.076177339536 3.3807E-01 -0.0091 25.893638099976 3.7254E-03 2.0133
32 17.091352132797 3.3748E-01 0.0025 25.821255863400 9.1965E-04 2.0182

29.85240067684

4 17.538669107976 4.1249E-01  - 33.642193225593 1.2695E-01  - 
8 17.286296227339 4.2094E-01 -0.0293 30.784139569954 3.1212E-02 2.0241
16 17.460680947272 4.1510E-01 0.0202 30.089646647282 7.9473E-03 1.9735
32 17.547902020120 4.1218E-01 0.0102 29.915443658327 2.1118E-03 1.9120

30.53785871253

4 20.120531759866 3.4113E-01  - 34.293322995642 1.2298E-01  - 
8 19.101902300399 3.7448E-01 -0.1346 31.550556663024 3.3162E-02 1.8908
16 18.774780592102 3.8520E-01 -0.0407 30.899081089006 1.1829E-02 1.4872
32 18.678386863165 3.8835E-01 -0.0118 30.744458870508 6.7654E-03 0.8060

Table 7
Relative errors and convergence rate in L-

shaped domain for \omega 2 = 1.47562182408.

\delta 1/h \omega 2
h | \omega 2  - \omega 2

h| /| \omega 
2| Conv. rate

0

4 1.56373176117288 5.9710E-02  - 
8 1.51265068392776 2.5094E-02 1.2507

16 1.49127832611766 1.0610E-02 1.2419
32 1.48215443760253 4.4270E-03 1.2610

0.1

4 1.59255025816799 7.9240E-02  - 
8 1.53319476789002 3.9016E-02 1.0222

16 1.50424692779372 1.9399E-02 1.0081
32 1.48966601020096 9.5175E-03 1.0273

0.3

4 1.67629489053128 1.3599E-01  - 
8 1.60613750576798 8.8448E-02 0.6206

16 1.56141456021173 5.8140E-02 0.6053
32 1.53142288003012 3.7815E-02 0.6206

0.5

4 1.81161668840557 2.2770E-01  - 
8 1.75687192270555 1.9060E-01 0.2566

16 1.71390891708074 1.6148E-01 0.2392
32 1.67714571668900 1.3657E-01 0.2417

Table 8
Relative errors and convergence rate in

cracked domain for \omega 2 = 1.03407400850.

\delta 1/h \omega 2
h | \omega 2  - \omega 2

h| /| \omega 
2| Conv. rate

0

4 1.29565551733762 2.5296E-01  - 
8 1.17409151374395 1.3540E-01 0.9017

16 1.10829350768039 7.1774E-02 0.9157
32 1.07268848782586 3.7342E-02 0.9427

0.1

4 1.38878730483937 3.4303E-01  - 
8 1.25593297905526 2.1455E-01 0.6770

16 1.17172217844846 1.3311E-01 0.6887
32 1.11788869550645 8.1053E-02 0.7157

0.3

4 1.65805430137384 6.0342E-01  - 
8 1.54604603486598 4.9510E-01 0.2854

16 1.45211537647965 4.0427E-01 0.2924
32 1.37071725654294 3.2555E-01 0.3124

0.5

4 2.08428961333973 1.0156E+00  - 
8 2.12767428004568 1.0576E+00 -0.0584

16 2.17194844843256 1.1004E+00 -0.0573
32 2.21271425146206 1.1398E+00 -0.0508
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Table 9
Discrete Gauss's law in L-shaped domain.

1/h 4 8 16 32 64

\delta = 0

\lambda min 1.56373 1.51265 1.49128 1.48215 1.47831
| \bfu h| h,div 0.3038 0.2020 0.1339 0.0876 0.0566
Conv. rate 0.62 0.59 0.59 0.61 0.63

\delta = 0.1

\lambda min 1.59255 1.53319 1.50425 1.48967 1.48239
| \bfu h| h,div 0.3436 0.2437 0.1730 0.1216 0.0845
Conv. rate 0.53 0.50 0.49 0.51 0.52

\delta = 0.3

\lambda min 1.67629 1.60614 1.56141 1.53142 1.51135
| \bfu h| h,div 0.4385 0.3525 0.2856 0.2309 0.1855
Conv. rate 0.35 0.31 0.30 0.31 0.32

\delta = 0.5

\lambda min 1.81162 1.75687 1.71391 1.67715 1.64503
| \bfu h| h,div 0.5562 0.5043 0.4624 0.4258 0.3922
Conv. rate 0.18 0.14 0.13 0.12 0.12
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