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A TIME-DEPENDENT DIRECT SAMPLING METHOD FOR
RECOVERING MOVING POTENTIALS IN A HEAT EQUATION\ast 

YAT TIN CHOW\dagger , KAZUFUMI ITO\ddagger , AND JUN ZOU\S 

Abstract. We are concerned with a numerical reconstruction of the moving potential/absorption
coefficient in a heat conduction process when only a single set of boundary measurements of the
thermal reflection is available. We propose an efficient direct sampling method (DSM) to locate
moving extended objects, represented by time-dependent potentials in a heat equation, and track
the trajectories of the moving objects. This appears to be the first DSM for recovering and tracking
moving inhomogeneous inclusions in a time-dependent PDE system. Our new method is essentially
different from the existing DSMs for solving various stationary or time-harmonic inverse problems
but still preserves several important features: it is robust against the noise in the data, easy to
implement, and inexpensive computationally. Mathematical justifications are provided to verify the
validity of this new method, and insightful mathematical analysis is performed to understand the
behavior of the key probing functions proposed. Numerical experiments are presented to demonstrate
the effectiveness and efficiency of the method. The DSM provides a new promising numerical strategy
for the ill-posed inverse problem of recovering time-dependent moving inhomogeneous media.
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1. Introduction. In this work we develop a novel direct sampling method (DSM)
for recovering the time-dependent potential/absorption coefficient in a heat conduc-
tion process. The model used here may also be used as the model for other important
applications, such as the photon migration in the time-dependent diffusive optical
tomography (DOT) [1, 2, 8, 14]. We consider a homogeneous background absorption
medium space \BbbR 2, with the constant conductivity a and a background absorption co-
efficient/potential q0. Let \Omega be an open bounded connected domain with a piecewise
C2 boundary sitting inside the homogeneous background medium space. Suppose that
q \in L\infty (\BbbR 2 \times (0, T )) is a nonnegative function representing the potential/absorption
coefficient. We shall often write the support of q  - q0 as D(t) at time t, which rep-
resents the moving inhomogeneous inclusions and is assumed to sit inside \Omega . We
consider the following heat equation model that governs the behavior of the heat
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intensity u: \left\{       
\partial u

\partial t
= a\Delta u - q u in \BbbR 2 \times (0, T ) ,

u(x, 0) = u0(x) on \BbbR 2 ,

u decays as | x| \rightarrow \infty ,

(1.1)

with u \in L2(0, T ;H1
0 (\BbbR 2)) and \partial u

\partial t \in L2(0, T ;H - 1(\BbbR 2)). We assume the potential q
of the form

q(x, t) :=

k\sum 
i=1

q(x - \gamma i(t)) ,(1.2)

where \gamma i \in C1((0, T ); \Omega ) are some smooth curves inside \Omega such that the support of
q  - q0 sits inside \Omega for 1 \leq i \leq k.

For the sake of exposition, a special potential q of the form

q(x, t) = q0 +

k\sum 
i=1

(qi  - q0)\chi Bi(x - \gamma i(t))(1.3)

is considered, where B1, . . . , Bk are open connected subdomains in \Omega , q1, . . . , qk are
positive constants, and each \gamma i represents the moving path of object Bi inside \Omega .

Assume that for a fixed given initial datum u0, we assume a single measurement
of the heat intensity u(\cdot , \cdot ) along \Gamma \times (0, T ) = \partial \Omega \times (0, T ), where \Gamma = \partial \Omega is the mea-
surement surface of the sampling domain \Omega . Here and throughout the paper, we shall
often write the heat intensity over \Gamma \times (0, T ) as f , i.e., f := u| \Gamma \times (0,T ). Our inverse
medium problem is then formulated as follows: given ONE single measurement f ,
we recover the locations and the number of inhomogeneities D(t) inside the homoge-
neous background medium along with time and therefore track the movement of the
inhomogeneous objects in \Omega . We would like to emphasize that we make use of only a
single set of measurement data, i.e., the data f = u| \Gamma \times (0,T ) taken over \Gamma \times (0, T ) for
a single initial value u0. This is a highly challenging but very important situation in
applications.

It is well known that a time-dependent potential q(x, t) can be uniquely deter-
mined by the full lateral Dirichlet-to-Neumann map, i.e., \Lambda : (u(\cdot , 0), u| \Gamma \times (0,T )) \mapsto \rightarrow 
(u(\cdot , T ), \partial nu| \Gamma \times (0,T )) [3, 4, 6, 16, 17, 22, 24]. Some numerical reconstruction methods
were proposed in these references for recovering q from the full Dirichlet-to-Neumann
map, but their computational efforts are tremendous and may also not be practical
for applications. In [10], the recovery of a time-independent coefficient in a one-
dimensional heat equation was shown to be unique from a finite set of Dirichlet-to-
Neumann measurements on the boundary.

In this work, we propose a DSM for the inverse medium problem we stated above,
i.e., recovering the moving potential of form (1.3) from a single measurement f on the
measurement surface \Gamma . We will propose a new set of probing functions and then use
these probing functions to define a new family of index functions I\alpha \gamma (x, t) to recover
the locations of D(t) inside \Omega along with time t. From this family of index functions,
we can determine the number and locations of inhomogeneous inclusions effectively
and track the movement of the inclusions.

One point to note is that, from the definition of our probing functions and newly
proposed index function, the value of an index function at a point (x, t) has nothing to
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do with the measurements f(\cdot , s) for s > t, and therefore the index can be computed
in real time, frame by frame. This is a clear advantage of our method when one hopes
to image real-time movements of objects and inclusions.

This new DSM is essentially different from the existing DSMs that have been
developed, e.g., in [11, 12, 19, 20, 21, 23], for recovering the stationary inclusions; it has
several novel features and brings the family of DSMs to a new stage of development.
First of all, our new family of probing functions in this work involves high-order
derivatives of the fundamental solutions inside the domain \Omega , which is completely
different from those generated by monopoles/dipoles/multipoles in our previous works
and therefore much easier to compute.

We notice that, from the definition of our probing functions and newly proposed
index function, the index can be computed in real time, frame by frame.

Then, in order to increase the sharpness and eliminate the deficiencies of the
index functions for locating inhomogeneities, we take (temporal) derivatives of the
index functions to generate a family of higher-order index functions, which are still
easy to evaluate. This is quite contrary to the previous approaches in the development
of DSMs, where the sharpness and sensitivity of the indices are increased by adjusting
their Sobolev scales in the duality products and weighting. Furthermore, we notice
that our new method takes a forward-projection strategy, deviated essentially from the
usual back-projection or time reversal strategy, as developed in the existing literature
either by ourselves or others. All these new features make it possible to reconstruct
moving inhomogeneous inclusions in an efficient and robust manner, as demonstrated
systematically in the subsequent sections.

The rest of the paper is organized as follows. In section 2, we introduce the
general philosophy of the DSM as well as the properties of probing and index functions
that we need to recover the moving potential q in (1.3). Then we devote section 3
to the major development of this work. We first construct the probing and index
functions in sections 3.2 and 3.3, which are followed by an introduction of high-
order index functions in section 3.4 by taking temporal derivatives. Mathematical
and graphic justifications are then given in section 3.6 for the effectiveness of the
index functions, and some further analysis is provided in section 3.7 to help us better
understand the behavior of these index functions and to verify the enhancement of
the contrast of the index functions by an increase of the temporal derivatives of
the indices. We then provide an alternative characterization of our index functions
and explain the concept of our forward-projection method, which is, to the best of
our knowledge, completely new in terms of the solution of inverse problems. Some
detailed strategies for numerical implementations are given in section 4 to increase
the stability and robustness of our method, including a nonlinear mollification process
of index functions based on a fading memory technique, a prior-corrected trajectory
identification, and an appropriately selected regularization of the trajectory of the
moving objects. Numerical results are presented in section 5 to demonstrate the
effectiveness and robustness of the new DSM for recovering one or two moving objects.

2. Principles of the time-dependent direct sampling method. In this
section, we shall give a brief introduction to the general philosophy of our new time-
dependent DSM. The existing DSMs are a family of simple and efficient inversion
methods that aim at providing a good estimate of the locations of inhomogeneities
inside a homogeneous background representing various physical media from a single or
a small number of boundary data in both full and limited aperture cases. They were
introduced and studied in [21, 23] using far-field data and in [20] using near-field data
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for locating inhomogeneities in inverse acoustic medium scattering. The method is
based on the well-known fact that the scattered field can be approximated by a finite
sum of the fundamental solutions centered at the inhomogeneous scatterers. With the
help of a family of probing functions that are nearly orthogonal in some inner product
space, an index function can be defined in such a way that it attains large values inside
the inhomogeneous scatterers but small values outside. This index function has been
shown to be a very effective tool for reconstructing extended scatterers in two- and
three-dimensional scattering media with a limited number of incident plane waves. It
was later extended to various other coefficient determination inverse problems, such as
electrical impedance tomography (EIT) [12], diffusive optical tomography (DOT) [11],
and the electromagnetic inverse scattering problem [19]. In each of the aforementioned
tomographies, a family of probing functions is introduced and an index function is
defined as a dual product between the observed data and the probing function under
an appropriate choice of Sobolev scale. The evaluation of the index function is very
efficient computationally, and the images obtained from the index functions are proven
to be effective in locating inhomogeneous inclusions. For more details about the
existing DSMs for locating stationary inhomogeneous inclusions, we refer the reader
to [2, 11, 12, 19, 20, 21, 23].

In this work, we develop a novel DSM for solving a time-dependent inverse prob-
lem, namely identifying the potential in a heat conductive system, for which we pro-
pose a new important family of probing functions and index functions.

In what follows, we derive a general framework of the DSM for an inverse heat
equation. Consider u as the total heat intensity that is the solution to (1.1). We shall
often write u0 as the heat intensity with homogeneous background potential, i.e., the
solution to (1.1) with q = q0. Then we can easily see that\left\{       

\partial (u - u0)

\partial t
 - a\Delta (u - u0) =  - q0(u - u0) - (q  - q0)u in \BbbR 2 \times (0, T ) ,

(u - u0)(x, 0) = 0 on \BbbR 2 ,

u - u0 decays as | x| \rightarrow \infty .

(2.1)

If we define c(y, s) := (q(y, s)  - q0(y, s))u(y, s), then for the moving potential (1.3)
with q0 = 0 we have

c(y, s) =

k\sum 
i=1

qi \chi Bi
(y  - \Gamma i(s))u(y, s) .

Now we infer from the Green's formula that

(2.2)

(u - u0)(x, t) =  - 
\int t

0

\int 
\BbbR 2

\Phi (x - y, t - s) c(y, s) dyds =  - 
\int T

0

\int 
D(t)

\Phi (x - y, t - s) c(y, s) dyds ,

where \Phi is the fundamental solution to the heat equation given by

\Phi (x, t) = \chi 
t>0

(t)
1

4\pi at
exp

\biggl( 
 - | x| 2

4at

\biggr) 
.(2.3)

Applying a general quadrature rule for (2.2), we can approximate the scattered
potential f  - f0 := (u  - u0)| \Gamma \times (0,T ) by a finite sum of fundamental solutions in the
following form:

(2.4) (f  - f0)(\xi , t) \approx 
\sum 
k,j

ckj\Phi (\xi  - yk, t - sj) , (\xi , t) \in \Gamma \times (0, T ) ,
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where \{ (yk, sj)\} are quadrature points located inside \cup t\in (0,T )D(t) and \{ ckj\} are weight
coefficients in space and time.

If we can define a family of probing functions \{ \eta x,t\} x\in \Omega ,t\in (0,T ) \subset L2(\Gamma \times (0, T ))
such that they are nearly orthogonal to the family \{ \Phi y,s := \Phi (y - \cdot , s - \cdot ) | \Gamma \} y\in \Omega ,s\in (0,T )

with respect to a semi-inner product \langle \cdot , \cdot \rangle X in a Hilbert space X and a seminorm | \cdot | Y
in a Hilbert space Y in the following sense, namely for any (y, s) \in \Omega \times (0, T ), the
function

(x, t) \mapsto \rightarrow K0(x, y; t, s) :=
\langle \eta x,t,\Phi y,s\rangle X

| \eta x,t| Y
, (x, t) \in \Omega \times (0, T ) ,(2.5)

attains the maximum at (x, t) = (y, s) and decays when (x, t) moves away from (y, s).
Now if we define an index function

I0(x, t) :=
\langle \eta x,t, f  - f0\rangle X

| \eta x,t| Y
, (x, t) \in \Omega \times (0, T ) ,(2.6)

then by substituting (2.4) into (2.6), we arrive at

I0(x, t) =
\langle \eta x,t, f  - f0\rangle X

| \eta x,t| Y
\approx 
\sum 
k,j

ckj
\langle \eta x,t,\Phi yk,sj \rangle X

| \eta x,t| Y
=
\sum 
k,j

ckjK0(x, yk; t, sj) .(2.7)

From the representation (2.7) of the index function I0, we can see that the magni-
tude of I0 is relatively large inside \cup t\in (0,T )D(t) \subset (0, T )\times \Omega , and it is relatively small
outside; see numerical verifications in section 3.4 and mathematical justifications in
sections 3.6--3.8. Therefore, if the magnitude of the index function I0 is relatively
large at a point (x, t) in space and time, it is most likely that the point x lies inside
\cup t\in (0,T )D(t) . On the contrary, if the magnitude of I0 is relatively small at (x, t), it is
then very likely that the point is at the homogeneous background. Therefore, the in-
dex function provides us with an estimate of the time-dependent location of D(t) and
hence also the number of and moving trajectories of the inhomogeneous inclusions.

The above description gives only a general principle of our DSM to recover the
location of D(t), based on the index function I0(x, t) in (2.6). But, for the imple-
mentation of the DSM, we have to compute I0(x, t) at each selected sampling point
and time (xk, tj) in \Omega \times (0, T ), for which we need the measurement data f  - f0 on
\Gamma \times (0, T ) and the explicit expressions of the probing functions \{ \eta xk,tj\} over \Gamma \times (0, T ).
So it is more convenient for us to present the detailed implementations of the DSM in
later sections, after our further discussions about the choices of probing functions and
several variants of the index function I0(x, t); see sections 3.5 and 4.1 for Algorithms
I and II, respectively.

3. Time-dependent probing and index functions.

3.1. New features of time-dependent DSM. In the previous section, we
introduced the basic concept of the time-dependent DSM and applied this concept
to the moving potential identification in the heat equation. As we shall see in the
subsequent development, the new time-dependent DSM is essentially different from
the previous DSMs [11, 12, 19, 20, 21, 23].

First, instead of using a family of probing functions generated by monopoles/
dipoles/multiples, as developed in [11, 12, 19, 20, 21, 23], our new family of probing
functions (cf. section 3.2) is a high-order derivative of a family of fundamental solutions
taken inside the domain \Omega . This makes the family of probing functions easier to
evaluate.
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Second, all the existing DSMs increase the sharpness and sensitivity of the index
function by adjusting their Sobolev scales in the corresponding duality products and
weighting involved. But, as we will see later in section 3.3, this conventional strategy
for DSMs does not work effectively for locating time-dependent inclusions. Instead,
we find it much more effective to take the (temporal) derivatives of our new index
functions to generate a family of higher-order index functions, which are shown to
be able to enhance the sharpness and eliminate the deficiencies of locating the inho-
mogeneities, as developed in sections 3.6--3.7. The resulting index functions are still
cheap to compute and will be also shown to be efficient and robust for our desired
moving potential identification.

Moreover, we would like to emphasize that, with the new probing functions,
the time-dependent DSM does not involve a usual back-projection or time reversal
strategy as it did in all the existing DSMs for various stationary or time-harmonic
inverse problems. Instead, it can be illustrated well using a novel efficient forward-
projection strategy (cf. section 3.3), as done in depth in section 3.8.

3.2. Probing functions. We are now ready to introduce an appropriate family
of time-dependent probing functions \{ \eta x,t\} , which will be used for our DSM for the
moving potential identification in the heat equation.

With a given small \delta > 0 and \alpha \in \BbbN , for any given point y in \Omega and time
s \in (0, T ), we define an auxiliary function w\alpha 

y,s:

w\alpha 
y,s(x, t) = \Delta \alpha 

x\Phi y,s(x, t)\chi \BbbR +(s - t - \delta ) , (x, t) \in \Omega \times (0, T ) .(3.1)

Then we define a family of probing functions \{ \eta \alpha y,s\} y\in \Omega ,s\in (0,T ) as the trace of the
family of the auxiliary functions on \Gamma \times (0, T ), i.e.,

\eta \alpha y,s = w\alpha 
y,s| \Gamma \times (0,T ) .(3.2)

We would like to remark that the introduction of a cut-off parameter \delta in the time
direction is only for removing a possible blowup at t = s when the sampling point
y \in \Omega approaches the function argument x on the boundary \Gamma and hence to ensure
the numerical stability in the implementation of the desired DSM.

As one can clearly see, our family of probing functions is the boundary data of
the fundamental solutions after taking a 2\alpha -order derivative inside the domain. It is
quite different from the monopoles or dipoles as used in the previous DSMs for solving
other medium inverse problems; see, e.g., [11, 12, 19, 20, 21, 23].

3.3. Zeroth-order index function. With the probing functions \eta \alpha x,t intro-
duced in the previous subsection, we now discuss an appropriate choice of two Hilbert
spaces X and Y for our time-dependent (zeroth-order) index function I\alpha 0 .

For the definition of the index function I\alpha 0 , we first consider both the semi-inner
product and the seminorm from the special space X = Y = L2(\Gamma \times (0, T )). Therefore,
the index function in (2.6) reads as

(3.3)

I\alpha 0 (x, t) :=
\langle \eta \alpha x,t, f  - f0\rangle L2(\Gamma \times (0,T ))

| \eta \alpha x,t| L2(\Gamma \times (0,T ))

=

\int t - \delta 
0

\int 
\Gamma \eta \alpha x,t(p, r)(f  - f0)(p.r)dpdr

| \eta \alpha x,t| L2(\Gamma \times (0,T ))

, (x, t) \in \Omega \times (0, T ) .

We would like to remark again that the value of f(\cdot , \cdot ) = u(\cdot , \cdot ) | \partial \Omega \times (0, T ) is one
single measurement on \partial \Omega \times (0, T ). This one measurement event at the boundary can
be realized by taking u(xi, tj), where (xi, tj) \in \Gamma \times (0, T ) are some mesh points.
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Fig. 1. I\alpha 0 (\cdot , t) for t = 0.5, 0.75, 1.0, 1.25 and \alpha = 2, with the scattered field by the point
potential q = \delta (0.5,0)(x)\delta 1(t) at the point (0.5, 0) marked by a green star. The maximum in each
graph is either 0.120, 0.119, 0.091, or 0.055 (round to three decimal places). Color is available online
only.

For a better illustrative purpose and comparison at each time t, we normalize the
index by a constant such that the maximum of the index values is 1:

\^I\alpha 0 (x, t) =
| I\alpha 0 (x, t)| 

maxx\in \Omega | I\alpha 0 (x, t)| 
.(3.4)

One point to notice is that, by the definition of our probing functions, to compute a
value I\alpha 0 (x, t), we actually do not need to use any information about f(\cdot , s) for s > t.
Therefore, the computation can be done in real time, frame by frame. This is a clear
advantage of our method.

To emphasize the dependence of K0 in (2.5) on \alpha , we shall write K0 as K\alpha 
0

from now on. For a better understanding of the performance of the above zeroth-
order index function, Figure 1 shows the value of the kernel K\alpha 

0 (x, (0.5, 0); t, 1) at
t = 0.5, 0.75, 1.0, 1.25 for \alpha = 2. It can also be regarded as the index function I\alpha 0 of
the scattered field by a point potential q = \delta (0.5,0)(x)\delta 1(t).

To illustrate how the kernel changes over the temporal parameter, let us note
that the maximum in each graph for t = 0.5, 0.75, 1.0, 1.25 is either 0.120, 0.119,
0.091, or 0.055 (round to three decimal places).

From the four plots in Figure 1, we can clearly see that there are two disappointing
deficiencies in the index function I\alpha 0 . First of all, the probing function does not appear
to be sensitive with respect to the time. And we can see that it is also inaccurate in
time, as the spatial maxima do not occur at the desired locations; in fact, they are
actually shifted toward the origin instead. These observations are not only related to
the very ill posed nature of the concerned inverse problem but are also closely related
to the fact that the zeroth-order index I\alpha 0 has some inherent deficiencies, as will be
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further discussed in sections 3.6--3.7. Therefore, I\alpha 0 is generally not a good candidate
for the purpose of an index function to locate the moving inclusion \cup t\in [0,T ](D(t), t).

In the next subsection, we propose a new family of (higher-order) index functions
I\alpha \gamma derived from I\alpha 0 , which can yield an improved index function that achieves more
accurate space-time locations as \gamma increases (up to \alpha ).

3.4. Temporal derivatives and a new family of higher-order index func-
tions. From the previous subsection, we observe that the index function I\alpha 0 is neither
sharp nor accurate in locating the movement of the inclusions: it does not give a tem-
poral local maximum as we hoped it would have, and it is not sharp in space such
that the spatial maximum of the index function, though near the true location, al-
ways deviates from it by a considerable distance. In this subsection, we would like to
propose a new family of higher-order index functions I\alpha \gamma derived from I\alpha 0 , which shall
enhance the performance of the zero-order index.

Motivated by our previous observations, we shall introduce the higher-order index
functions by taking the time derivatives of the zero-order index I\alpha 0 . Indeed, from the
behavior of the kernel function K\alpha 

0 in Figure 1, we notice that the spatial maximum
starts to drop quite significantly with respect to time as time goes over from t = 1
onward. Therefore, we expect that a rate of change of the deficient index function I\alpha 0
may capture the inclusion bulk more effectively.

With this observation, we now introduce the following modification by defining a
modified index I\alpha 1 as the temporal derivative of the index I\alpha 0 , i.e.,

I\alpha 1 =
\partial 

\partial t
I\alpha 0 .(3.5)

Again, for a better illustrative purpose and comparison, we shall normalize this new
index:

\^I\alpha 1 (x, t) =
| I\alpha 1 (x, t)| 

maxx\in \Omega | I\alpha 1 (x, t)| 
.(3.6)

For a better understanding of the performance of our newly introduced first-order
index function, Figure 2 shows the value of the kernel I\alpha \gamma (\cdot , t) at t = 0.5, 0.75, 1.0, 1.25,
with a point potential q = \delta (0.5,0)(x)\delta 1(t) and \alpha = 2, \gamma = 1. To illustrate how the
kernel changes over the temporal parameter, we may note that the maximum in the
graphs for t = 0.5, 0.75, 1.0, 1.25 is either 0.027, 0.026, 0.031, or 0.002.

We may easily observe from Figure 2 that the new first-order index function I21
provides a much sharper location of the inclusion in both space and time than I20 (cf.
Figure 1). First, Figure 1 indicates that the maximum of K2

0 (x, (0.5, 0); t, 1) at time
t = 1 deviates significantly from the target point (0.5, 0), while Figure 2 shows that
the maximum of K2

1 (x, (0.5, 0); t, 1) at time t = 1 is attained at a point very close to
the target (0.5, 0). Second, the temporal sensitivity of I21 also outperforms I\alpha 0 . In fact,
we see from Figure 1 that the temporal maximum of the function K2

0 (x, (0.5, 0); t, 1)
at t = 0.5, 0.75, 1.0, 1.25 is either 0.120, 0.119, 0.091, or 0.055, which clearly shows
that I20 is a very poor candidate for the correct time t = 1. On the other hand,
Figure 2 shows that the temporal maximum of the function K2

1 (x, (0.5, 0); t, 1) at
t = 0.5, 0.75, 1.0, 1.25 is either 0.027, 0.026, 0.031, or 0.002, indicating that I21 achieves
its maximum at the desired time t = 1 and hence yields a much better temporal
sensitivity. Therefore, the above numerical comparisons demonstrate that I21 is a
better candidate for tracing the moving inhomogeneous inclusion \cup t\in [0,T ](D(t), t).
These numerical observations are justified theoretically in sections 3.6 and 3.7.
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Fig. 2. I\alpha \gamma (\cdot , t) for t = 0.5, 0.75, 1.0, 1.25, \alpha = 2, \gamma = 1, with the scattered field by a point
potential q = \delta (0.5,0)(x)\delta 1(t) at the point (0.5, 0) marked by a green star. The maximum in each
graph is either 0.027, 0.026, 0.031, or 0.002. Color is available online only.

We can generalize the above construction and define a family of index functions
I\alpha \gamma by taking temporal derivatives of I\alpha 0 up to the order \gamma , i.e.,

I\alpha \gamma =

\biggl( 
\partial 

\partial t

\biggr) \gamma 

I\alpha 0 ,(3.7)

and its normalized index:

\^I\alpha \gamma (x, t) =
| I\alpha \gamma (x, t)| 

maxx\in \Omega | I\alpha \gamma (x, t)| 
.(3.8)

We shall describe an algorithm for computing this new family of index functions \^I\alpha \gamma 
in the next subsection and develop in sections 3.6 and 3.7 mathematical justifications
of the indices I\alpha \gamma for more accurately locating the time-dependent inhomogeneities
inside a homogeneous background. Based on the justifications, we may write, similarly
to the approximation (2.7),

(3.9) I\alpha \gamma (x, t) \approx 
\sum 
k,j

ckjK
\alpha 
\gamma (x, yk; t, sj) ,

where \{ (yk, sj)\} is a set of discrete points in inhomogeneous inclusion \cup t\in (0,T )(D(t), t)
and assumed to be sparsely distributed. Then it follows from (3.8) that

(3.10) \^I\alpha \gamma (x, t) \approx 
\sum 

k,j ckjK
\alpha 
\gamma (x, yk; t, sj)

maxx\in \Omega | 
\sum 

k,j ckjK
\alpha 
\gamma (x, yk; t, sj)| 

.

As will be seen from the asymptotic analysis in sections 3.6 and 3.7, for a sampling
point (x, t) that is close to some point (yl, si), the value of K

\alpha 
\gamma (x, yk; t, sj) is relatively
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large in magnitude for (k, j) = (l, i) and relatively small for (k, j) \not = (l, i), and hence
\^I\alpha \gamma (x, t) is relatively large. On the other hand, for a sampling point (x, t) that is not
close to any point (yl, si), the value of K\alpha 

\gamma (x, yk; t, sj) is small for all (yk, sj), and

therefore \^I\alpha \gamma (x, t) is also small.

Moreover, the sharpness and the accuracy of the index function \^I\alpha \gamma (x, t) are de-
termined by the sharpness of the peak K\alpha 

\gamma (x, y, t, s) and the deviation of the peak
maximum at (x, t) from the point (y, s). Based on our previous numerical compari-
son between K2

1 and K2
0 right after Figure 2, which is also theoretically analyzed in

sections 3.6 and 3.7, we conclude that \^I21 provides a better estimate than \^I20 for the
location of the inhomogeneous inclusion \cup t\in (0,T )(D(t), t).

3.5. The algorithm. In order to proceed, let us assume, for a given \Gamma , the
following BACKWARD difference approximation rule for a general function H(t)
over some mesh points \{ tj\} nj=0 (where tn = t, tj  - tj - 1 = h, and h is a mesh size):\biggl( 

\partial 

\partial t

\biggr) \gamma 

H(t) \approx 1

h\gamma 

\sum 
j

A\gamma 
jH(tn - j) ;

e.g., if \gamma = 1, a legitimate choice will be\biggl( 
\partial 

\partial t

\biggr) 
H(t) \approx 1

h
(H(t) - H(t - h)) ,

and if \gamma = 2, one might choose instead\biggl( 
\partial 

\partial t

\biggr) 
H(t) \approx 1

h2
(H(t) - 2H(t - h) +H(t - 2h)) .

Let us also choose a quadrature rule over \Gamma for an integration of a function H defined
over \Gamma as \int 

\Gamma 

H(y)d\sigma y \approx 
\sum 
\ell 

blH(y\ell ) .

A convenient and stable choice would be a rectangular rule. Given one measurement
event, with this choice of \Gamma , time mesh h, finite difference approximation, and quadra-
ture rule in hand, we are now ready to state the algorithm clearly for computing I\alpha \gamma .

Algorithm I
1. Choose a value of \alpha and \delta .
2. For t = ta \in [0, T ], a = 1, 2, . . . ,

\bullet For x = xb \in \Omega , b = 1, 2, . . . ,
(a) Obtain measurements u(xi, sj) where xi \in \Gamma , 0 < sj < ta  - \delta .
(b) Compute the value of I\alpha 0 (xb, ta) approximately as

I\alpha 0 (xb, ta) =

\sum 
sj<ta - \delta 

\sum 
i hbi \eta 

\alpha 
xb,ta

(xi, sj)(f  - f0)(xi.sj)\sqrt{} \sum 
sj<ta - \delta 

\sum 
i hbi | \eta \alpha xb,ta

(xi, sj)| 2
.

\bullet For x = xb \in \Omega , b = 1, 2, . . . , compute

\^I\alpha 0 (xb, ta) =
| I\alpha 0 (xb, ta)| 

maxb | I\alpha 0 (xb, ta)| 
.
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\bullet For x = xb \in \Omega , b = 1, 2, . . . , compute the value of I\alpha \gamma (xb, ta) approxi-
mately as

I\alpha \gamma (xb, ta) =
1

h\gamma 

\sum 
j

A\gamma 
j
\^I\alpha 0 (xb, ta - j) .

\bullet For x = xb \in \Omega , b = 1, 2, . . . , compute

\^I\alpha \gamma (xb, ta) =
| I\alpha \gamma (xb, ta)| 

maxb | I\alpha \gamma (xb, ta)| 
.

3.6. Verification of the index function. In this subsection, we would like to
provide a mathematical verification of our newly developed family of index functions
I\alpha \gamma . In order to do so, we shall focus on the kernel K\alpha 

0 as K0 defined in (2.5), and
their time derivatives K\alpha 

\gamma as \partial \gamma t K
\alpha 
0 , and illustrate that these families of kernels attain

their maximum magnitude near (x, t) = (y, s) and decay when (x, t) moves away from
(y, s).

For this purpose, we consider the kernel K\alpha 
0 as K0 defined in (2.5),

K\alpha 
0 (x, y; t, s) =

\int min\{ t - \delta ,s\} 
0

\int 
\Gamma 
\Phi (y  - z, s - k)\Delta \alpha 

z\Phi (x - z, t - k)d\sigma zdk\sqrt{} \int t - \delta 

0

\int 
\Gamma 
(\Delta \alpha 

z\Phi (x - z, t - k))
2
d\sigma zdk

,

and its temporal derivatives:

K\alpha 
\gamma (x, y, t, s) := \partial \gamma t K

\alpha 
0 (x, y, t, s) .

We can readily calculate that

\Delta \alpha 
z \Phi (x - z, t - k)

= \chi t>k(t - k)
1

4\pi a(t - k)
exp

\biggl( 
 - 

| x - z| 2

4a(t - k)

\biggr) \biggl\{ 
| x - z| 2\alpha 

4\alpha a2\alpha (t - k)2\alpha 
+O

\bigl( 
(t - k)2\alpha  - 1

\bigr) \biggr\} 
.(3.11)

From this, we directly get that there exists a large t0 > 0 such that, for all t > t0,

\partial t

\left(  \sqrt{} \int T - \delta 

0

\int 
\Gamma 

(\Delta \alpha 
z\Phi (x - z, t - k))

2
d\sigma zdk

\right)  = O(t - 2\alpha  - 2
0 ) .(3.12)

This provides us the following explicit expression of K\alpha 
\gamma for all \alpha , \gamma \in \BbbN :

(3.13)

K\alpha 
\gamma (x, y, t, s) =

\partial \gamma 
t

\Bigl( \int min\{ t - \delta ,s\} 
0

\int 
\Gamma \Phi (y  - z, s - k)\Delta \alpha 

z \Phi (x - z, t - k)d\sigma zdk
\Bigr) 

\sqrt{} \int t - \delta 
0

\int 
\Gamma (\Delta \alpha 

z \Phi (x - z, t - k))2 d\sigma zdk
+O(t - 2\alpha  - 2

0 ) .

Considering the numerator above, we may directly calculate the temporal deriva-
tive for a fixed pair x, y in \Omega :

\partial t

\Biggl( \int min\{ t - \delta ,s\} 

0

\int 
\Gamma 

\Phi (y  - z, s  - k)\Delta 
\alpha 
z \Phi (x  - z, t  - k)d\sigma zdk

\Biggr) 

=

\Biggl\{ \int t - \delta 
0

\int 
\Gamma \Phi (y  - z, s  - k)\partial t\Delta 

\alpha 
z \Phi (x  - z, t  - k)d\sigma zdk  - 

\int 
\Gamma \Phi (y  - z, s  - t + \delta )\Delta \alpha 

z \Phi (x  - z, \delta )d\sigma z for t  - \delta < s,\int s
0
\int 
\Gamma \Phi (y  - z, s  - k)\partial t\Delta 

\alpha 
z \Phi (x  - z, t  - k)d\sigma zdk for t  - \delta > s ,

=

\left\{     
 - 
\int t - \delta 
0

\int 
\Gamma \partial t\Phi (y  - z, s  - k)\Delta \alpha 

z \Phi (x  - z, t  - k)d\sigma zdk +
\int 
\Gamma \Phi (y  - z, s)\Delta \alpha 

z \Phi (x  - z, t)d\sigma z for t  - \delta < s,

 - 
\int s
0
\int 
\Gamma \partial t\Phi (y  - z, s  - k)\Delta \alpha 

z \Phi (x  - z, t  - k)d\sigma zdk

+
\int 
\Gamma \Phi (y  - z, s)\Delta \alpha 

z \Phi (x  - z, t)d\sigma z  - 
\int 
\Gamma \Phi (y  - z, 0)\Delta \alpha 

z \Phi (x  - z, t  - s)d\sigma z for t  - \delta > s,

=

\Biggl\{ 
 - 
\int t - \delta 
0

\int 
\Gamma \Delta z\Phi (y  - z, s  - k)\Delta \alpha 

z \Phi (x  - z, t  - k)d\sigma zdk +
\int 
\Gamma \Phi (y  - z, s)\Delta \alpha 

z \Phi (x  - z, t)d\sigma z for t  - \delta < s,

 - 
\int s
0
\int 
\Gamma \Delta z\Phi (y  - z, s  - k)\Delta \alpha 

z \Phi (x  - z, t  - k)d\sigma zdk +
\int 
\Gamma \Phi (y  - z, s)\Delta \alpha 

z \Phi (x  - z, t)d\sigma z for t  - \delta > s .
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Hence we have for both cases

\partial t

\Biggl( \int min\{ t - \delta ,s\} 

0

\int 
\Gamma 
\Phi (y  - z, s - k)\Delta \alpha 

z \Phi (x - z, t - k)d\sigma zdk

\Biggr) 

=  - 
\int min\{ t - \delta ,s\} 

0

\int 
\Gamma 
\Delta z\Phi (y  - z, s - k)\Delta \alpha 

z \Phi (x - z, t - k)d\sigma zdk +

\int 
\Gamma 
\Phi (y  - z, s)\Delta \alpha 

z \Phi (x - z, t)d\sigma z .

This, along with the fact that, for all s, t > t0,\int 
\Gamma 

\Phi (y  - z, s)\Delta \alpha 
z\Phi (x - z, t)d\sigma z = O(t - 2\alpha  - 2

0 )

enables us to derive an explicit expression for the kernelK\alpha 
\gamma (x, y; t, s) for all the testing

points (x, t), (y, s) from \Omega \times (t0, T ):

(3.14)

K\alpha 
\gamma (x, y; t, s) =

 - \partial \gamma  - 1
t

\Bigl( \int min\{ t - \delta ,s\} 
0

\int 
\Gamma \Delta z\Phi (y  - z, s - k)\Delta \alpha 

z \Phi (x - z, t - k)d\sigma zdk
\Bigr) 

\sqrt{} \int T - \delta 
0

\int 
\Gamma (\Delta \alpha 

z \Phi (x - z, t - k))2 d\sigma zdk
+O(t - 2\alpha  - 2

0 ) .

Inductively, we can use the same argument as above to calculate the \gamma th derivative
for the denominator in (3.13); then we come to the following approximation for all
test points (x, t), (y, s) from \Omega \times (t0, T ):

(3.15)

K\alpha 
\gamma (x, y; t, s) = ( - 1)\gamma 

\int min\{ t - \delta ,s\} 
0

\int 
\Gamma \Delta \gamma 

z\Phi (y  - z, s - k)\Delta \alpha 
z \Phi (x - z, t - k)d\sigma zdk\sqrt{} \int T - \delta 

0

\int 
\Gamma (\Delta \alpha 

z \Phi (x - z, t - k))2 d\sigma zdk
+O(t - 2\alpha  - 2

0 ) .

This approximation implies for all x, y such that d(x, \partial \Omega ) > \varepsilon , d(y, \partial \Omega ) > \varepsilon for some
\varepsilon > 0 that

(3.16)

K
\alpha 
\gamma (x, y; t, s) = ( - 1)

\gamma 

\int min\{ t - \delta ,s - \delta \} 
0

\int 
\Gamma 
\Delta \gamma 

z\Phi (y  - z, s  - k)\Delta \alpha 
z \Phi (x  - z, t  - k)d\sigma zdk\sqrt{} \int T - \delta 

0

\int 
\Gamma 
(\Delta \alpha 

z \Phi (x  - z, t  - k))2 d\sigma zdk
+ O(t

 - 2\alpha  - 2
0 ) + O(\delta )

= ( - 1)
\gamma 
\langle \eta \gamma 

y,s, \eta 
\alpha 
x,t\rangle L2((0,T )\times \Gamma )

| \eta \alpha 
x,t| L2((0,T )\times \Gamma )

+ O(t
 - 2\alpha  - 2
0 ) + O(\delta ) .

One can now see from the expression (3.16) for \gamma = \alpha that the kernel K\alpha 
\alpha attains its

maximum magnitude when x \approx y and t \approx s and is small otherwise.
Next, we consider the case with \gamma < \alpha . Using the fact that

\Delta \gamma 
z\Phi (y  - z, s - k) = \Delta \gamma 

y\Phi (y  - z, s - k)

and the expression (3.14), we know that the kernel K\alpha 
\gamma satisfies

( - \Delta y)
(\alpha  - \gamma )K\alpha 

\gamma (x, y, t, s) = K\alpha 
\alpha (x, y, t, s) +O(t - 2\alpha  - 2

0 ).(3.17)

Now we write Ly as the following volume integral operator in the ball BR(0) of a
radius R, i.e.,

[Lyf ](y) =  - 1

2\pi 

\int 
BR(0)

log (| p - y| ) f(p)dp =  - 1

2\pi 
[ log (| \cdot | ) \ast f ] (y)(3.18)
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for all y \in BR(0), as well as the following two boundary integral operators on \partial BR(0):

[SyF ](y) =
1

2\pi 

\int 
\partial BR(0)

log (| y  - p| ) \partial nF (p)d\sigma p(3.19)

and

[DyF ](y) =  - 1

2\pi 

\int 
\partial BR(0)

\partial n log (| y  - p| )F (p)d\sigma p(3.20)

for y \in BR(0). With these notations at hand, we can directly get from (3.17) and the
Green's identity that, for all \gamma < \alpha ,

(3.21)

K\alpha 
\alpha  - 1(x, y; t, s) = [LyK

\alpha 
\alpha ](x, y, t, s) + [SyK

\alpha 
\alpha  - 1](x, y, t, s) + [DyK

\alpha 
\alpha  - 1](x, y, t, s) +O(t - 2\alpha  - 2

0 ).

But, from (3.11), we can directly get that, as y goes to infinity, for all \gamma ,m \in \BbbN ,

\Delta \gamma 
y\Phi (y  - z, s - k) = O(| y|  - m) ;(3.22)

therefore, as y goes to infinity, we get that for all \alpha ,m \in \BbbN ,

K\alpha 
\gamma (x, y, t, s) = O(| y|  - m) .(3.23)

From this, together with (3.21), we deduce that for all m \in \BbbN ,

K\alpha 
\alpha  - 1(x, y; t, s) = [LyK

\alpha 
\alpha ](x, y, t, s) +O(t - 2\alpha  - 2

0 ) +O(R - m) .(3.24)

With the same arguments, we can inductively get that for all \gamma < \alpha ,

K\alpha 
\gamma (x, y; t, s) = [L(\alpha  - \gamma )

y K\alpha 
\alpha ](x, y, t, s) +O(t - 2\alpha  - 2

0 ) +O(R - m) .(3.25)

Recall from (3.16) that K\alpha 
\alpha attains its maximum magnitude when x \approx y and t \approx s

and is small otherwise. On the other hand, we see from (3.25) that K\alpha 
\gamma (x, y, t, s) has

its maximum near x \approx y and t \approx s for \gamma \leq \alpha . However, due to the diffusive nature of
the kernel of the volume integral operator Ly, a successive application of the operator
(i.e., (\alpha  - \gamma ) increases) will make the kernel K\alpha 

\gamma become less and less sharp, and the
maximum may be located further and further away from the set \{ x = y, , t = s\} . This
behavior of the kernel K\alpha 

\gamma , together with (2.7), indicates that the support of our index
function provides a reasonable estimate of the locations of inhomogeneities as soon as
(\alpha  - \gamma ) is small. This also provides a theoretical explanation of why the kernel K2

1

(Figure 2) behaves better than K2
0 (Figure 1).

3.7. More detailed behaviors of the index functions. From the previous
subsection, we have shown that the index function K\alpha 

\gamma attains its maximum around
x \approx y and t \approx s for \gamma \leq \alpha .

Theoretically speaking, from the previous subsection, we can conclude that the
kernel behaves the best when \gamma = \alpha and is less sharp when \gamma < \alpha . However, in
practice, a higher value of \gamma implies a higher order of numerical derivatives, which
is less stable and less robust with the presence of noise. Therefore, in practice, it is
undesirable to have a very large value of \gamma . As we observed numerically in sections
3.3 and 3.4, the index function \^I\alpha \gamma (x, t) works well enough for \alpha = 2 and \gamma = 1. It
is chosen as a balance of the theoretical sharpness of the kernel and the numerical
robustness against noise when numerical derivatives are taken.
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Fig. 3. The graphs of g1, g2, and g3 against the variable \tau x,z,t for a fixed value of | x - z| .

So, in this section, we would like to focus on this special case and study the
behavior of these kernels and how far the maximum of the kernels might deviate from
the set \{ x = y , t = s\} .

We shall now examine the cases with \alpha = 2 and \gamma = 0, 1, i.e., the kernels
K2

0 (x, y, t, s) and K2
1 (x, y, t, s) := \partial tK

2
0 (x, y, t, s). For this purpose, we can calcu-

late explicitly as follows:

\Phi (x - z, t - k) = \chi t>k(t - k)
1

4\pi a(t - k)
exp

\biggl( 
 - | x - z| 2

4a(t - k)

\biggr) 
,

\nabla z\Phi (x - z, t - k) = \chi t>k(t - k)
1

4\pi a(t - k)
exp

\biggl( 
 - | x - z| 2

4a(t - k)

\biggr) 
1(x - z)

2a(t - k)
,

\Delta z\Phi (x - z, t - k) = \chi t>k(t - k)
1

4\pi a(t - k)
exp

\biggl( 
 - | x - z| 2

4a(t - k)

\biggr) \biggl( 
| x - z| 2

4a2(t - k)2
 - 1

2a(t - k)

\biggr) 

and

\Delta 
2
z\Phi (x  - z, t  - k)

= \chi t>k(t  - k)
1

4\pi a(t  - k)
exp

\left(   - 
| y  - z| 2

4a(t  - k)

\right)  \left\{   
\left(  | x  - z| 2

4a2(t  - k)2
 - 

1

2a(t  - k)

\right)  2

 - 
| x  - z| 2

2a3(t  - k)3
+

1

2a2(t  - k)2

\right\}   
= \chi t>k(t  - k)

1

4\pi a(t  - k)
exp

\left(   - 
| x  - z| 2

4a(t  - k)

\right)  \left\{   | x  - z| 4

16a4(t  - k)4
 - 

3| x  - z| 2

4a3(t  - k)3
+

3

4a2(t  - k)2

\right\}   .

We now introduce another variable to simplify the notation. For a fixed pair x, z, we
shall rewrite the fundamental solution and its derivatives using the variable \tau x,z,t =
4a(t - k)
| x - z| 2 as

\Phi (x  - z, t  - k) = | x  - z|  - 2
g1(\tau x,z,t) := \chi t<k(\tau x,z,t) | x  - z|  - 2

exp

\biggl( 
 - \tau 

 - 1
x,z,t

\biggr) 
\tau 
 - 1
x,z,t ,

\Delta z\Phi (x  - z, t  - k) = | x  - z|  - 4
g2(\tau x,z,t) := \chi t<k(\tau x,z,t) | x  - z|  - 4

exp

\biggl( 
 - \tau 

 - 1
x,z,t

\biggr) \Biggl\{ 4

\tau 3
x,z,t

 - 
2

\tau 2
x,z,t

\Biggr\} 
,

\Delta 
2
z\Phi (x  - z, t  - k) = | x  - z|  - 6

g3(\tau x,z,t) := \chi t<k(\tau x,z,t) | x  - z|  - 6
exp

\biggl( 
 - \tau 

 - 1
x,z,t

\biggr) \Biggl\{ 16

\tau 5
x,z,t

 - 
48

\tau 4
x,z,t

+
12

\tau 3
x,z,t

\Biggr\} 
.

From these expressions, we can see the clear asymptotic behavior for the functions with
fixed x, z, t as \tau x,z,t goes to 0 or \infty . In Figure 3, we have plotted the three functions
g1, g2, and g3 above, from which we can see that the peaks of gi grow sharper as i

increases, and their peak is attained at either \tau x,z,t = 1, \tau x,z,t =
7 - 

\surd 
33

4 \approx 0.3139, or

\tau x,z,t =
17
9  - 

\surd 
579
9 sin

tan - 1 6
\surd 

7998
2627

3  - 
\surd 
193
9 cos

tan - 1 6
\surd 

7998
2627

3 \approx 0.1693.
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With the help of these notions, we can directly compute that

\int min\{ t - \delta ,s\} 

0

\int 
\Gamma 

\Phi (y  - z, s  - k)\Delta 
2
z\Phi (x  - z, t  - k)d\sigma zdk =

\int 
\Gamma 

\int min\{ t - \delta ,s\} 
0 g1(\tau y,z,s) g3(\tau x,z,t)dk

| y  - z| 2| x  - z| 6
d\sigma z ,

\int min\{ t - \delta ,s\} 

0

\int 
\Gamma 

\Delta z\Phi (y  - z, s  - k)\Delta 
2
z\Phi (x  - z, t  - k)d\sigma zdk =

\int 
\Gamma 

\int min\{ t - \delta ,s\} 
0 g2(\tau y,z,s) g3(\tau x,z,t)dk

| y  - z| 4| x  - z| 6
d\sigma z ,\int t - \delta 

0

\int 
\Gamma 

\Bigl( 
\Delta 

2
z\Phi (x  - z, t  - k)

\Bigr) 2
d\sigma zdk =

\int t - \delta 

0

\int 
\Gamma 

| x  - z|  - 12| g3(\tau x,z,t)| 2d\sigma zdk .

Then a change of variables for the integrant gives\int min\{ t - \delta ,s\} 

0

\int 
\Gamma 

\Phi (y  - z, s - k)\Delta 2
z\Phi (x - z, t - k)d\sigma zdk

=

\int 
\Gamma 

| y  - z|  - 2| x - z|  - 4

\Biggl( \int 4a(t - \delta )

| x - z| 2

0

g1

\biggl( 
| x - z| 2

| y  - z| 2
\tau  - 4a(t - s)

| y  - z| 2

\biggr) 
g3(\tau )d\tau 

\Biggr) 
d\sigma z ,

(3.26) \int min\{ t - \delta ,s\} 

0

\int 
\Gamma 

\Delta z\Phi (y  - z, s - k)\Delta 2
z\Phi (x - z, t - k)d\sigma zdk

=

\int 
\Gamma 

| y  - z|  - 4| x - z|  - 4

\Biggl( \int 4a(t - \delta )

| x - z| 2

0

g2

\biggl( 
| x - z| 2

| y  - z| 2
\tau  - 4a(t - s)

| y  - z| 2

\biggr) 
g3(\tau )d\tau 

\Biggr) 
d\sigma z ,

(3.27) \int 4a(t - \delta )

| x - z| 2

0

\bigl( 
\Delta 2

z\Phi (x - z, t - k)
\bigr) 2
d\sigma zdk

=
1

4a

\int 
\Gamma 

| x - z|  - 10

\int 4a(t - \delta )

| x - z| 2

0

| g3(\tau )| 2d\tau d\sigma z ,

(3.28)

where it holds for t > t0 that\int t - \delta 

0

\int 
\Gamma 

\bigl( 
\Delta 2

z\Phi (x - z, t - k)
\bigr) 2
d\sigma zdk =

1

4a

\int 
\Gamma 

| x - z|  - 10

\int \infty 

0

| g3(\tau )| 2d\tau d\sigma z +O(t - 6
0 )

or

C1(t0)

\int 
\Gamma 

| x - z|  - 10d\sigma z \leq 
\int t - \delta 

0

\int 
\Gamma 

\bigl( 
\Delta 2

z\Phi (x - z, t - k)
\bigr) 2

d\sigma zdk \leq C2(t0)

\int 
\Gamma 

| x - z|  - 10d\sigma z ,

where the difference C1  - C2 tends to 0 as t0 \rightarrow \infty . This indicates that the denomi-
nator of (3.14) gives only a spatial weighting independent of time.

Now we can directly see from (3.26)--(3.28) that since g1's peak is not steep,
with a slowly decaying tail, the correlation between the function g1 and the sharp
peaked function g3 does not give a sharp maximum even when the peaks of g1 and g3
coincide. Hence K2

0 (see (3.14)) does not have a very sharp maximum sitting near the
set \{ x = y, , t = s\} . On the other hand, as g2's peak is much sharper, the correlation
between two very sharp peaked functions g2 and g3 provides a much sharper maximum
when both peaks of g2 and g3 are close. Therefore, the maximum of K2

1 provides a
clearer and sharper peak sitting near the set \{ x = y, t = s\} .

Next, we would like to focus on a possible time delay for the index functions,
i.e., the discrepancy of the maxima of the two indices K2

0 and K2
1 at s = t. We have
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already shown that the maxima of the kernels are near each other but may deviate
from the set \{ x = y, t = s\} .

Let C1 > 0 be given. For any small \varepsilon > 0, we now fix x, y in \Omega such that
d(x,\Gamma ) > \varepsilon , d(y,\Gamma ) > \varepsilon , and | x - y| < C1\varepsilon 

2; then, for any z \in \Gamma , we have\bigm| \bigm| \bigm| \bigm| | y  - z| 
| x - z| 

 - 1

\bigm| \bigm| \bigm| \bigm| \leq | y  - x| 
| x - z| 

\leq C1\varepsilon .

From (3.26)--(3.28), we can directly see with this fixed pair of x, y that the correlation
between a scaled g1 and g3 in the integrand (3.26) attains a maximum when the

maxima of functions g1
\bigl( | x - z| 2
| y - z| 2 (\cdot ) - 

4a(t - s)
| y - z| 2

\bigr) 
and g3(\cdot ) coincide, i.e., when

4a(t - s)

| y  - z| 2
= 1\times | y  - z| 2

| x - z| 2
 - 0.1693 < 0.8307 + 3max\{ C1, C

2
2\} \varepsilon ,

with C2 = diam(\Omega )2. Therefore, the whole integral of (3.26) reaches a maximum
when

t - s <
C2

a

\bigl( 
0.8307 + 3max\{ C1, C

2
2\} \varepsilon 
\bigr) 
.(3.29)

Similarly, we can see for this fixed pair of x, y that the correlation between a scaled

g2 and g3 attains the maximum when g1
\bigl( | x - z| 2
| y - z| 2 (\cdot )  - 

4a(t - s)
| y - z| 2

\bigr) 
and g3(\cdot ) coincide, i.e.,

when

4a(t - s)

| y  - z| 2
= 0.3139\times | y  - z| 2

| x - z| 2
 - 0.1693 < 0.1446 + 3max\{ C1, C

2
2\} \varepsilon .

Therefore, the whole integral (3.27) reaches a maximum when

t - s <
C2

a

\bigl( 
0.1446 + 3max\{ C1, C

2
2\} \varepsilon 
\bigr) 
.(3.30)

In summary, we may see from above that, although K2
\gamma in (3.16) attains a max-

imum when s \approx t, x \approx y, as was argued in the previous section, there is a possible
shift of the maximum for different K2

\gamma . Also, as we know from (3.12) that the value
of the denominator is nearly a constant with respect to t for large t > t0, so we do
not need to take care of it. Now, for a given source time s > t0, comparing the upper
bounds provided by (3.29) and (3.30), we know that the sampling time t that brings
K2

\gamma to a maximum is allowed to have a magnitude of delay different from s, and the
delay is much more significant in K2

0 than in K2
1 .

The above analysis helps us understand the following behaviors of the index func-
tions in terms of their sharpness and time delay: the maximum is much shifted for
K2

0 and not sharp, while the maximum is much less shifted for K2
1 , close to s = t, but

it is much sharper.
Similar analysis can be carried out for different \alpha and \gamma \leq \alpha to provide a similar

generic conclusion that the maximum is increasingly shifted from t = s and also loses
its sharpness as \gamma decreases from \alpha .

3.8. Alternative characterization of the index functions. In this subsec-
tion, we would like to provide an alternative characterization of our newly developed
index functions and explain the new DSM in the concept of a forward-projection
technique.
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Although this new way of understanding does not, for now, bring forth new com-
putational techniques for evaluating our index function, it brings us to a new and
deeper understanding of our method, which might possibly suggest further modifica-
tion of the index function or the extension of our method to a more general case.

For this purpose, we first define an auxiliary function \psi (x, t), which meets the
initial condition \psi (x, 0) = 0 in \Omega and solves the equation

\partial t\psi (x, t) = a\Delta x\psi (x, t) in \Omega ,

with the boundary condition \partial n\psi (x, t) = (f  - f0)(x, t) for x \in \Gamma , t \in (0, T ). Then we
readily get

\psi (x, t) =

\int t

0

\int 
\Gamma 

(f  - f0)(y, s)G(x, t; y, s)d\sigma yds ,(3.31)

where G(x, t; y, s) is the Neumann Green's function for the heat equation

\partial tG(x, t; y, s) - a\Delta xG(x, t; y, s) = \delta s(t)\delta y(x) in \Omega ,

with the boundary condition \partial nG(x, t; y, s) = 0 for x \in \Gamma . Clearly, we can write

\partial t (\Phi (x - y, t - s) - G(x, t; y, s)) - a\Delta x (\Phi (x - y, t - s) - G(x, t; y, s)) = 0 in \Omega ,

with the boundary condition \partial n (\Phi (x - y, t - s) - G(x, t; y, s)) =  - \partial n\Phi (x  - y, t  - s)
for x \in \Gamma . For a fixed y \in \Omega , we have for m \in \BbbN ,

 - \Phi (x - y, t - s) = O
\bigl( 
R - m

\bigr) 
as 2R \geq diam(\Omega ) .

This implies the estimate

| | \Phi (x - y, t - s) - G(x, t; y, s)| | L2((0,T )\times \Gamma ) = O
\bigl( 
R - m

\bigr) 
.

Using this, we can write

\psi (x, t) =

\int t

0

\int 
\Gamma 

(f  - f0)(y, s)\Phi (x - y, t - s)d\sigma yds+O
\bigl( 
R - m

\bigr) 
=

\int t - \delta 

0

\int 
\Gamma 

(f  - f0)(y, s)\Phi (x - y, t - s)d\sigma ydt+O
\bigl( 
R - m

\bigr) 
+O(\delta ) .(3.32)

Similarly, we can derive

(3.33)

\Delta \alpha 
x\psi (x, t) =

\int t - \delta 

0

\int 
\Gamma 

(f  - f0)(y, s)\Delta 
\alpha 
x\Phi (x - y, t - s)d\sigma zdt+O

\bigl( 
R - m

\bigr) 
+O(\delta )

= \langle \eta \alpha x,t, f  - f0\rangle L2((0,T )\times \Gamma ) +O
\bigl( 
R - m

\bigr) 
+O(\delta ) .(3.34)

This observation suggests that we use the auxiliary function \psi for an alternative
characterization of the index function I\alpha 0 :

I\alpha 0 (x, t) =
\Delta \alpha 

x\psi (x, t)

| \eta \alpha x,t| L2((0,T )\times \Gamma )
+O

\bigl( 
R - m

\bigr) 
+O(\delta ) .(3.35)
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It follows from the same argument as used above that, for all t > t0,

I\alpha \gamma (x, t) =
\partial \gamma t \Delta 

\alpha 
x\psi (x, t)

| \eta \alpha x,t| L2((0,T )\times \Gamma )
+O

\bigl( 
R - m

\bigr) 
+O(\delta ) +O

\bigl( 
t - 2\alpha  - 2
0

\bigr) 
.(3.36)

We notice that the denominator | \eta \alpha x,t| L2((0,T )\times \Gamma ) may be calculated beforehand. There-
fore, the formulas (3.35) and (3.36) provide an efficient alternative mean to compute
the index functions when the radius of the domain is large and the cut-off parameter
\delta is small.

The above characterization of I\alpha \gamma using the auxiliary function \psi may help us
illustrate our new DSM as a forward-projection process. To see this, we introduce a
linear operator L:

(3.37)

[L(h)](x, t) =

\int t

0

\int 
\BbbR 2

\Phi (x - y, t - s)h(y, s) dyds for all h \in L2((0, T )\times \Omega ),

where \Phi is the fundamental solution to the heat equation, and the trace operator
E : H1(\partial \Omega ) \rightarrow L2(\Gamma ). Then we can restate (2.2) as

[E \circ L](c) = f  - f0 .(3.38)

Here we would like to remark that, for the recovery of the source c from the
scattered field f  - f0, the popular back-projection technique or time reversal method
is to perform the action of the adjoint [E \cdot L]\ast on both sides of the equation after
applying a weighting operator W to f  - f0:

(3.39)

[E \circ L]\ast W [E \circ L](c) = [E \circ L]\ast W (f  - f0) =

\int T

\tau 

\int 
\Gamma 
\Phi (z  - y, s - \tau )[W (f  - f0)](y, s) dyds .

Hence the function \phi := [E \circ L]\ast W (f  - f0) satisfies a time-reversed heat equation

\partial t\phi =  - a\Delta x\phi in \Omega ,

with some appropriate boundary conditions related to f - f0 and a final time condition
at t = T .

However, the construction of our auxiliary function \psi is quite different. In fact,
\psi satisfies a forward heat equation

\partial t\psi = a\Delta x\psi in \Omega .

Therefore, the linear operatorQ: (f - f0) \mapsto \rightarrow \psi can be regarded as a forward-projection
operator, and our indices I\alpha \gamma can be calculated as the spatial-temporal derivatives of
the forward projection Q(f  - f0).

4. Stabilization techniques in numerical implementations. In this sec-
tion, we discuss several numerical strategies and the detailed numerical implementa-
tion of the newly developed DSM method.

4.1. Numerical stabilization of the index function. For a stable computa-
tion of our time-dependent index function \^I21 , we now consider some postprocessing
stabilization steps to improve the location estimates by the index \^I21 . As we have
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seen in the previous sections, the sharpness of I\alpha \gamma increases with increasing \gamma (up to
\alpha ) while the possible shift of the maximum (i.e., the time delay) decreases. How-
ever, increasing \gamma implies taking more temporal derivatives of the index I\alpha 0 , which is
evaluated as an inner product between the measurement data and probing functions.
Hence the index I\alpha \gamma becomes more expensive computationally with increasing \gamma and
is also more sensitive to noise in the data numerically. Therefore, we suggest choosing
the index I21 (with \alpha = 2 and \gamma = 1) to balance the computational efficiency and
numerical stability.

The following two forms of cut-offs appear to be very helpful for increasing the nu-
merical stability of the index function and improve the reconstruction profile sharply:

(1) As we locate the inclusions by evaluating the index function, which gives
large values near the exact inclusion, we choose a threshold C and determine the
reconstructed inclusion as the support of the index function according to the threshold.

(2) We notice some instability at the origin, i.e., the center of the domain, from
our numerical experiments. This is mainly caused by the very weak signal from the
center of the domain. Therefore, we truncate the index value at the center to zero (and
only at the center). This is to make a prior assumption that the exact inclusion does
not hit the center of the domain. In fact, such an assumption is not too restrictive. It
is thanks to the fact that the computation of an index function at a particular time
t0 does not depend on the index function before t0 or after t0. Therefore, even when
the assumption is violated at a particular time interval [t1, t2], only the frames where
the inclusions hit the center during [t1, t2] will be affected, and those frames before
t < t1 or after t > t2 will not be affected, and the index function will still work.

Next, we apply a temporal mollifier for the index function \^I\alpha \gamma to smoothen any
possible sudden jump of the index function due to the numerical instability from
the noise. It might happen that at some particular time frame the index function
may differ from several previous ones with the presence of noise, and then, after that
particular frame, it will come back to its previous position. To stabilize, the following
simple linear mollifier with a kernel g under some numerical quadrature rule,

\~I\alpha \gamma (\cdot , t) =
\int t

0

\^I\alpha \gamma (\cdot , s)g(s)ds \approx 
\sum 
i

ai \^I\alpha \gamma (\cdot , t - hi) ,(4.1)

is a natural choice, but this does not work very well because this linear mollification
does not add any credit to the support of \~I\alpha \gamma (\cdot , t) that is stable over time. Our aim
is to sort out the path of motion for the inclusion which moves stably over time.
Therefore, we should seek a mollification process which credits this stability over time
and magnifies a value of the function \~I\alpha \gamma (\cdot , t) at a point x when the previous values

of \~I\alpha \gamma (x, s) are large for t - \delta t < s < t for some \delta t. This property of the mollification
process that we hope to acquire reflects the fact that, when the location is marked by
a large value for a period of time (t - \delta t, t), this location should be more likely to give
a better estimate of the location of inhomogeneity. A technique for actualizing such a
property is also called a fading-memory technique, where the previous ``memories"" are
used together with existing received signals to determine the current reconstruction.
In our numerical implementation, we notice that the following nonlinear mollification
process provides such an aforementioned advantage:

(4.2)

\~I\alpha \gamma (\cdot , t) = a0
\prod 
i

\chi supp(I\alpha \gamma (\cdot ,t - hi))
\^I\alpha \gamma (\cdot , t) +

\Biggl( 
1 - 

\prod 
i

\chi supp( \^I\alpha \gamma (\cdot ,t - hi))
I\alpha \gamma (\cdot , t)

\Biggr) \sum 
i

ai \^I\alpha \gamma (\cdot , t - hi) ,
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where we always choose all weights ai = 0, except that a0 = 0.75 and ai = 0.05 for
i = 1, 2, . . . , 5. The effect of this mollification is that it only favors a maximum value
that stays there for five consecutive frames. Then we normalize this mollified new
index as before:

\^\~I\alpha \gamma (x, t) =
| \^\~I\alpha \gamma (x, t)| 

maxx\in \Omega | \^\~I\alpha \gamma (x, t)| 
.(4.3)

This mollification strategy takes into account the information from the previous time
frames, so it can greatly stabilize the numerical reconstructions over the time and
provide a reasonable estimate of the inhomogeneous inclusions at the correct time.

To be more precise, we formulate an algorithm for computing the index \^\~I\alpha \gamma .
Algorithm II

1. Choose \alpha , \gamma \in \{ 0, 1, 2\} , small \delta > 0; set a0 = 0.75, ai = 0.05 for i = 1, . . . , 5
and ai = 0 for i > 5.

2. For t = ta \in [0, T ], a = 1, 2, . . . , n,
\bullet Obtain measurements u(xi, sj) where xi \in \Gamma , 0 < sj < ta  - \delta .

\bullet For each sampling point xb \in \Omega , b = 1, 2, . . . , compute \^I\alpha \gamma (xb, ta) by
Algorithm I.

3. For t = ta \in [0, T ], a = 1, 2, . . . , n,
\bullet For each sampling point xb \in \Omega , b = 1, 2, . . . , compute

\~I\alpha \gamma (xb, ta)= a0
\prod 
i

\chi supp(I\alpha 
\gamma (\cdot ,ta - hi))

\^I\alpha \gamma (xb, ta)

+

\biggl\{ 
1 - 

\prod 
i

\chi supp( \^I\alpha 
\gamma (\cdot ,ta - hi))

I\alpha \gamma (xb, ta)

\biggr\} \sum 
i

ai \^I\alpha \gamma (xb, ta  - hi) .

\bullet For each sampling point xb \in \Omega , b = 1, 2, . . . , compute

\^\~I\alpha \gamma (xb, ta) =
| \^\~I\alpha \gamma (xb, ta)| 

maxx\in \Omega | \^\~I\alpha \gamma (x, ta)| 
.

Figure 4 shows the value of the kernel
\^\~I21 (\cdot , t) at t = 0.5, 0.75, 1.0, 1.25 coming from

a point potential q = \delta (0.5,0)(x)\delta 1(t). From the plots in Figure 4, we can see that,
after the stabilization process and thresholds, the index function provides a very sharp
maximum attained very close to x = (0.5, 0) at t = 1 and an accurate estimate of the
location of the space-time inclusion.

4.2. Locating inhomogeneities from index functions and stabilization
processes. We now discuss the issue of locating inhomogeneous inclusions from the
index functions and establish some further stabilization techniques.

The reconstruction of the inhomogeneities can be done practically by a greedy
search algorithm for possible clusters of I\alpha \gamma , and then the location of the inhomogeneity
corresponding to each cluster can be pinpointed by calculating the corresponding
centers of mass for each cluster from the values of the index function. The trajectory
of each reconstructed inclusion \Gamma recon(t) is then given by the center of mass of each
cluster at a different time t.

As we have already noticed in subsection 3.6, our verifications (3.16)--(3.25) indi-
cate that the index is accurate only for t > t0 with large t0.
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Fig. 4. \^\~I\alpha \gamma (\cdot , t) for t = 0.5, 0.75, 1.0, 1.25, \alpha = 2, \gamma = 1, with the scattered field by a point
potential q = \delta (0.5,0)(x)\delta 1(t), with (0.5, 0) marked by a green star. Color is available online only.

Indeed, this observation that the index is not accurate for t < t0 can be explained
physically by the fact that the diffusion equation is forward-propagating and we do not
have information of the heat distribution before t < 0 to give sufficient information
altogether for the location of the inclusions for t < t0.

The formula (3.16)--(3.25) tells us that the error decays quickly with the order
O(t - 2\alpha  - 2

0 ). With such an error order in (3.16)--(3.25), the error can be practically
small enough with a constant t0 just slightly larger than 1. Therefore, it is numerically
practical to consider only I\alpha \gamma for t > t0 with a threshold t0 which may need not be too
large. From our numerical experiments, we usually notice that the index for t < 0.5
is quite unstable and deviates from the exact trajectory. With this observation, we
shall make a prior assumption that we know the initial positions (and only the initial
positions) of the inclusions and define a prior-corrected trajectory as

\Gamma recon
prior (t) :=

\bigl( 
1 - exp

\bigl( 
 - \lambda 2t2

\bigr) \bigr) 
\Gamma recon(t) + exp

\bigl( 
 - \lambda 2t2

\bigr) 
\Gamma exact(0) ,(4.4)

where \lambda is a constant which is selected to be not too small so that the exact initial
location \Gamma exact(0) does not dominate the estimate \Gamma recon

prior (t). We shall take \lambda in the
range 1/2 < \lambda < 2.

In order to enhance numerical stability, after acquiring the trajectory of the recon-
structed inclusion \Gamma recon

prior (t), we further perform an H1-regularization of the trajectory,
i.e., minimizing the functional

J(\Gamma ) :=
1

2
| | \Gamma  - \Gamma recon

prior | | 2L2((0,t)) +
\beta 

2
| | \partial s\Gamma | | 2L2((0,t)) ,(4.5)

where \beta is a given regularization parameter [18].
This minimization can be efficiently solved, e.g., by applying a standard central



A TIME-DEPENDENT DIRECT SAMPLING METHOD A2741

finite difference scheme to its equivalent one-dimensional elliptic equation:

 - \beta \partial 2s\Gamma (s) + \Gamma (s) = \Gamma recon
prior (s) , \partial s\Gamma (0) = \partial s\Gamma (t) = 0 .(4.6)

We denote the minimizer (the regularized version of \Gamma recon
prior ) as \Gamma 

recon
prior,reg.

We would like to emphasize that we are not suggesting solving the original inverse
problem with a minimization of a least-squared residual functional because such a
method is highly unstable and slow, owing to the high nonlinearity of the functional
as well as the high dimensionality of the problem. Instead, the regularization step
(4.5) is only to smooth the curve \Gamma recon

prior , which is already obtained from the index
function computed by the previous procedures.

This regularized reconstruction provides a smooth and stable estimate of the
trajectory of each exact inclusion, as confirmed in the numerical experiments in the
next section.

5. Numerical experiments. In this section, we shall present several numerical
examples to illustrate the effectiveness of the newly proposed DSM method for the
potential identification in the heat equation.

We will take the computing domain G = [ - 2, 2]2 and set the absorption coefficient
and the potential of the homogeneous background to a = 0.01 and q0 = 0, respectively,
in \BbbR 2. We then consider the sampling region as the unit ball \Omega = B0(1). In each
of the following examples, there are some moving inhomogeneous inclusions placed
inside \Omega , with their potential coefficients always set to q = 5. The objects B in
motion are always set as balls of radius 0.025. Our choice of measurement surface \Gamma 
is \Gamma = \partial \Omega = \BbbS 1.

In order to collect our observed data of the forward problem, we solve (1.1) with
the standard Crank--Nicolson scheme with a fine mesh of size 0.02 in space (namely
with 200 grid points in each direction) and 0.025 in time and a first-order absorbing
boundary condition on \partial G to model the heat equation in the free space, with initial
condition u0 as

u0(x, y) = 3 + sin(5x) cos(5y) , (x, y) \in G ,

and a given final time T to be specified in each example.
The scattered field fs := f - f0 is then measured along \Gamma . We emphasize that, for

all our subsequent examples, we collect the scattered potential only from a single set
of boundary measurement for our reconstruction. Together with the diffusive nature
of the forward problem, the resulting inverse problem is severely ill posed.

In order to test the robustness of our reconstruction algorithm, we introduce some
multiplicative random noise in the scattered potential as follows:

(5.1) f\delta s (x, t) = fs(x, t)(1 + \varepsilon \Delta (x, t)) ,

where \Delta is uniformly distributed between  - 1 and 1 and \varepsilon corresponds to the noise
level in the data, which is always set to \varepsilon = 5\% in all our examples.

From the noisy observed data f\delta s , we then use our DSM method as in Algorithm II
to recover the moving potential (1.3) by calculating the time-dependent index function
\^\~I21 introduced in (4.3), which is a stabilized version of \^I21 introduced in (3.8). The

stabilization procedure for obtaining
\^\~I21 follows the descriptions in section 4.1 with

a threshold C to be specified in each example. The mesh size in our reconstruction
process is chosen to be 0.025.
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As explained in section 4.2, we locate each inclusion by the center of mass of

each cluster
\^\~I21 , and our index function is not accurate for an initial period, and the

diffusion equation is forward-propagating and we do not have information of the heat
distribution before t < 0 to give enough information for the location of the inclusions.
Indeed, we observe from our numerical experiments that the index is very unstable
with noise and jumping around for t < 0.5. Therefore, we follow the stabilization pro-

cedures described in section 4.2 to obtain \Gamma recon
prior,reg(t) from

\^\~I21 for each inclusion in each
example, with the prior parameter \lambda and regularization parameter \beta to be specified.

We recall that the stabilization procedures make use of the following prior knowl-
edge: the inclusions never pass through the center (0, 0) of the domain, and the initial
positions of the inclusions are known.

Example 1. In this example, we consider a curve of the form

\Gamma (t) =

\biggl( 
t

8T
+ 0.25

\biggr) \biggl( 
cos

\biggl( 
t\pi 

3

\biggr) 
, sin

\biggl( 
t\pi 

3

\biggr) \biggr) 
, t \in (0, T ) ,(5.2)

which represents the motion of an object inside \Omega with the terminal time T = 5; see
Figure 5 (green curve).

The reconstructed images from the index
\^\~I21 at different times t are presented in

Figure 5. The truncation parameter is chosen as C = 85\%, and the current location
of the inclusion is marked with a yellow star. The trajectory of the reconstructed
inclusion is given by the yellow curve, with the prior parameter \lambda = 1 and regular-
ization parameter \beta = 0.05. A magenta circle is drawn from the center of the yellow
star with a radius just to enclose the cluster representing the reconstructed inclusion.
From the figure, we can see that with this appropriate cut-off, the exact location of
the inclusion is always located near the point marked by the yellow star as the center
of mass of the reconstructed inclusion. Although there is always a time lag between
the reconstructed inclusion and the exact one, it is surprising that the reconstructed
trajectory closely follows that of the exact trajectory from t = 1 onward.

As our analyses in sections 3.6 and 3.7 demonstrated, the original index function
\^\~I20 may present a more delayed time in its reconstructed trajectories than the index
\^\~I21 . To verify this, we have run the numerical reconstructions by

\^\~I20 also for Example

1 and listed the results in Figure 6. Comparing the reconstructions by
\^\~I21 (Figure 5)

and by
\^\~I20 (Figure 6), we can see the obvious difference in their delay effects. The

reconstructed trajectories by
\^\~I20 show a significant delay, and it appears they are

moving in less than half the speed as the exact ones. These comparisons have shown

the clear outperformance of
\^\~I21 over

\^\~I20 .
Example 2. In this example, we consider another curve of the form

\Gamma (t) =

\biggl( 
 - t

5
+

1

2
+

1

40
cos (t\pi ) , - t

20
+

2

3
 - 1

0
cos (t\pi )

\biggr) 
, t \in (0, T ) ,(5.3)

which represents the motion of an object inside \Omega with the terminal time T = 5; see
Figure 7 (green curve).

The reconstructed images from the index
\^\~I21 at different times t are presented in

Figure 7. The truncation, prior, and regularization parameters C, \lambda , and \alpha are set to
85\%, 1, and 0.05, respectively. The current location of the inclusion is marked with
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Fig. 5. Reconstructed inclusion from the index
\^\~I21 and trajectories at t = 1, 2, . . . , 5 in Example

1. Green curve: exact \Gamma (0, t); green star: exact \Gamma (t). Yellow curve: reconstructed \Gamma recon
prior,reg(0, t);

yellow star: reconstructed \Gamma recon
prior,reg(t). Color is available online only.

a yellow star, and the trajectory of the reconstructed inclusion is given by the yellow
curve. A magenta circle is drawn from the center of the yellow star with a radius just
to enclose the cluster representing the reconstructed inclusion.

From the figure, we can see that, at the initial period, say for t < 2, the recon-
structed inclusion tries to find the exact inclusion. Although the signal is sometimes
quite weak and the reconstructed inclusion is not always apparent, the reconstruction
result is still quite satisfactory. Once it succeeds in approaching the exact inclusion
for t > 2, it starts to follow the exact path and traces it. The recovered trajectory
can even follow some very fine turnings as in the exact one from t > 4 onwards.

This is a quite challenging example since the trajectory of the exact inclusion is
itself quite oscillatory. In fact, as stated in section 1, theoretically speaking, a time-
dependent potential q(x, t) can be uniquely determined by the full lateral Dirichlet-
to-Neumann map, i.e., \Lambda : (u(\cdot , 0), u| \Gamma \times (0,T )) \mapsto \rightarrow (u(\cdot , T ), \partial nu| \Gamma \times (0,T )). Therefore, one
single incidence of u| \Gamma \times (0,T ) is far from sufficient to uniquely determine q, not to say
that it guarantees any stable reconstruction process. However, it is quite surprising
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Fig. 6. Reconstructed inclusion from the original index
\^\~I20 (without temporal derivative) and

trajectories at t = 1, 2, . . . , 5 in Example 1. Green curve: exact \Gamma (0, t); green star: exact \Gamma (t). Yellow
curve: reconstructed \Gamma recon

prior,reg(0, t); yellow star: reconstructed \Gamma recon
prior,reg(t). Color is available online

only.

that the reconstruction results by a DSM seem to be very promising in the sense that
the reconstructed path follows the exact one from t > 2 onward very well. This is
indeed a promising result, considering the fact that the measurement is so far from
sufficient to even locate the inhomogeneities theoretically.

In order to demonstrate the importance and necessity of the stabilization, we

have run the numerical reconstructions by \^I21 (Algorithm I without stabilization) also
for Example 2 and listed the results in Figure 8. Comparing the reconstructions by
\^\~I21 (Figure 7) and by \^I21 (Figure 8), the reconstructions by \^I21 are more sensitive to
noise, as it may recover some false inclusion components from time to time; e.g., it
has a total of four inclusion components at t = 3. This is because the previous time

frames are not taken into account by the index \^I21 , and therefore it is difficult to
screen the constructed inclusions that are inconsistent with a previous time frame.
The consequences of the false inclusion components may lead to a serious misjudgment
of the true moving target in applications.
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Fig. 7. Reconstructed inclusion from the index
\^\~I21 and trajectories at t = 1, 2, . . . , 5 in Example

2. Green curve: exact \Gamma (0, t); green star: exact \Gamma (t). Yellow curve: reconstructed \Gamma recon
prior,reg(0, t);

yellow star: reconstructed \Gamma recon
prior,reg(t). Color is available online only.

Example 3. In this example, we consider two curves given by

\Gamma 1(t) =

\biggl( 
2

3
cos

\biggl( 
t\pi 

10

\biggr) 
,
1

2
sin

\biggl( 
t\pi 

10

\biggr) \biggr) 
, t \in (0, T ) ,(5.4)

\Gamma 2(t) =

\biggl( 
 - 2

3
cos

\biggl( 
2t\pi 

15

\biggr) 
,  - 1

2
sin

\biggl( 
2t\pi 

15

\biggr) \biggr) 
, t \in (0, T ) ,(5.5)

which represent the motions of two objects inside \Omega with a terminal time T = 7; see
Figure 9 (green curves).

The reconstructed images from the index
\^\~I21 at different times t are presented in

Figure 9. The truncation parameter is set to C = 70\%, and the current locations of
the inclusions are marked by two yellow stars. The trajectories of the reconstructed
inclusions are described by two yellow curves, with the prior and regularization pa-
rameters \lambda = 1/2 and \beta = 0.1, respectively. Magenta circles are drawn from the
centers of two yellow stars with radii just to enclose the reconstructed inclusions.

From the plots in Figure 9, we can see that from t = 1 to t = 2, the reconstructions
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Fig. 8. Reconstructed inclusion from the index \^I21 (without stabilization) and trajectories at
t = 1, 2, . . . , 5 in Example 2. Green curve: exact \Gamma (0, t); green star: exact \Gamma (t). Yellow curve:
reconstructed \Gamma recon

prior,reg(0, t); yellow star: reconstructed \Gamma recon
prior,reg(t) without stabilization. Color is

available online only.

are quite deeply coupled and therefore tend to merge together in the center of the
circle. They even permuted in the center of the circle, owing to the indistinguishability
between the two inclusions when the coupling effect is strong. However, starting from
t = 2, the reconstructed inclusions try to trace the trajectories. Nonetheless, since
the two inclusions are still coupled, we can always see that the reconstructions shift a
bit inwards and try to move towards each other sometimes. Again, as observed in the
previous examples, there is always a time lag between the reconstructed inclusions
and the exact ones. But, still, it is quite surprising that the reconstructed trajectories
still try their best to follow the exact trajectories, and they are doing a decent job
and give us a fair trend of the movements of the inclusions, providing a legitimate
estimate for the trace of the exact trajectories.

After the tracing time is long enough, say for time t between 5 and 7, the initial
heat potential u0 dissipates gradually and the signal to noise ratio becomes weaker.
With a weaker signal from the inclusions, the reconstructed inclusions are less stable
and more disturbed by noise, and sometimes they disappear in some specific time
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Fig. 9. Reconstructed inclusions from the index
\^\~I21 and trajectories at t = 1, 2, . . . . , 5 in Ex-

ample 3. Green curve: exact \Gamma i(0, t), i = 1, 2; green star: exact \Gamma i(t), i = 1, 2. Yellow curves:
reconstructed \Gamma recon

i,prior,reg(0, t), i = 1, 2; yellow star: reconstructed \Gamma recon
i,prior,reg(t), i = 1, 2. Color is

available online only.

period with the dominance of noise, while there are some other time periods when
they form fragments. Generally, we can still see the trajectories try to trace the
moving inclusions up to time t = 7, but the curve starts to oscillate around the exact
trajectories due to the disturbance by noise.

This is indeed a very challenging example since we are aiming to simultaneously
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locate two objects moving with different velocities in a severely ill posed inverse prob-
lem, with only a single set of boundary measurements. Considering the fact that
the measurement data is so far from sufficient to uniquely determine q theoretically
speaking (not to say so far from a possible stable reconstruction), it is quite surpris-
ing that the reconstruction results by a DSM can still locate the two objects with
considerable accuracy. In view of these facts, we find the reconstructed trajectories
quite encouraging.
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