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DOMAIN DECOMPOSITION WITH LOCAL IMPEDANCE
CONDITIONS FOR THE HELMHOLTZ EQUATION WITH

ABSORPTION\ast 

IVAN G. GRAHAM\dagger , EUAN A. SPENCE\dagger , AND JUN ZOU\ddagger 

Abstract. We consider one-level additive Schwarz preconditioners for a family of Helmholtz
problems with increasing wavenumber k. These problems are discretized using the Galerkin method
with nodal conforming finite elements of any (fixed) order on meshes with diameter h = h(k), chosen
to maintain accuracy as k increases. The action of the preconditioner requires the solution of inde-
pendent (parallel) subproblems (with impedance boundary conditions) on overlapping subdomains
of diameter H and overlap \delta \leq H. The solutions of these subproblems are linked together using
prolongation/restriction operators defined using a partition of unity; this formulation was previously
proposed in [J.-H. Kimn and M. Sarkis, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp.
1507--1514]. In numerical experiments (with \delta \sim H) for a model interior impedance problem, we ob-
serve robust (i.e., k-independent) GMRES convergence as k increases, with H \sim k - \alpha and \alpha \in [0, 0.4]
as k increases. This provides a highly parallel, k-robust one-level domain decomposition method. We
provide a supporting theory by studying the preconditioner applied to a range of absorptive prob-
lems, k2 \mapsto \rightarrow k2 + i\epsilon , with absorption parameter \epsilon . Working in the Helmholtz ``energy"" inner product,
and using the underlying theory of Helmholtz boundary-value problems, we prove a k-independent
upper bound on the norm of the preconditioned matrix, valid for all | \epsilon | \lesssim k2. We also prove a strictly
positive lower bound on the distance of the field of values of the preconditioned matrix from the origin
which holds when \epsilon /k is constant or growing arbitrarily slowly with k. These results imply robustness
of the preconditioner for the corresponding absorptive problem as k increases (given an appropriate
choice of H). Since it is known that the absorptive problem provides a good preconditioner for the
pure Helmholtz problem when \epsilon \sim k, our results provide some theoretical support for the observed
robustness of the preconditioner for the pure Helmholtz problem. Since the subdomains used in our
preconditioner shrink only slowly (relative to the fine grid size) as k increases, cheaper approximate
(two- or multilevel) versions of the preconditioner analyzed here are important in practice and are
reviewed here.

Key words. Helmholtz equation, high frequency, preconditioning, GMRES, domain decompo-
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1. Introduction. The efficient solution of the wave equation is of intense cur-
rent interest because of the equation's many applications (in, e.g., computational
medicine, underwater acoustics, earthquake modelling, and seismic imaging). This
paper concerns efficient iterative methods for computing conforming finite-element
approximations of any fixed order of the Helmholtz equation (i.e., the wave equation
in the frequency domain) in two dimensions (2-d) or three dimensions (3-d). We
formulate and analyze parallel preconditioners for use with GMRES and provide the-
ory indicating that our preconditioners should remain effective as the wavenumber k
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2516 IVAN G. GRAHAM, EUAN A. SPENCE, AND JUN ZOU

increases.
As k increases, there are several difficulties that make the Helmholtz problem

hard, both mathematically and numerically: (i) the solution becomes more oscillatory
and, in general, meshes need to be increasingly refined, leading to huge linear systems
with dimension growing at least with \scrO (kd); (ii) the linear systems become more
indefinite; (iii) many ``standard"" preconditioning techniques that are motivated by
positive-definite problems become unusable in practice; (iv) there is relatively little
rigorous theory for justifying effective preconditioning of such large and indefinite
problems. Regarding (i), we recall that [35, Chapter 4] shows that in the linear
finite element method for a one-dimensional (1-d) Helmholtz problem, h \sim k - 3/2 is
necessary to ensure a bounded relative error as k increases; the extension of this result
to higher dimensions is given in [39].

Our analysis is carried out for the model Helmholtz problem with absorption:

(1.1)  - \Delta u - (k2 + i\varepsilon )u = f,

on an open bounded polygonal (for d = 2) or Lipschitz polyhedral (for d = 3) domain
\Omega \subset \BbbR d, with mixed boundary conditions

(1.2)
\partial u

\partial n
 - i\eta u = g on \Gamma I , and u = 0 on \Gamma D,

where the wavenumber is k > 0, and \Gamma = \Gamma I \cup \Gamma D is the boundary of \Omega , partitioned
into \Gamma I and \Gamma D, where \Gamma I has positive surface measure. In applications, k = \omega /c,
with \omega the angular frequency and c the wave speed. Here we restrict ourselves to
the case when c is a positive constant. We allow the absorption parameter \varepsilon to be
negative, zero, or positive (with \varepsilon = 0 corresponding to the ``pure Helmholtz"" case);
more details on \varepsilon and \eta are given in section 2.

In practical wave scattering problems, the PDE (1.1) is commonly posed on the
infinite domain exterior to a bounded scatterer, which is then truncated using an
artificial boundary. The significance of the impedance boundary condition in (1.2) is
that (with \eta =

\surd 
k2 + i\varepsilon ) it is the simplest possible approximation to the Sommerfeld

radiation condition. The problem (1.1), (1.2) can therefore model acoustic scattering
by a sound-soft scatterer. Also included in (1.1), (1.2) is the interior impedance
problem, where \Gamma D = \emptyset , and \Gamma I is the boundary of \Omega . We assume that if \Gamma D \not = \emptyset ,
then the surface measure of \Gamma D is positive.

The standard variational formulation for (1.1), (1.2) is as follows: Given f \in 
L2(\Omega ), g \in L2(\Gamma I), find u \in H1

0,D(\Omega ) :=
\bigl\{ 
v \in H1(\Omega ) : v = 0 on\Gamma D

\bigr\} 
, such that

(1.3) a\varepsilon (u, v) = F (v) for all v \in H1
0,D(\Omega ),

where
(1.4)

a\varepsilon (u, v) :=

\int 
\Omega 

\nabla u \cdot \nabla v  - (k2 + i\varepsilon )

\int 
\Omega 

uv  - i\eta 

\int 
\Gamma I

uv and F (v) :=

\int 
\Omega 

fv +

\int 
\Gamma I

gv;

when \varepsilon = 0 and \eta = k we write a instead of a\varepsilon . We approximate (1.3) using the
Galerkin method in a conforming finite-element space \scrV h \subset H1

0,D(\Omega ) (consisting of
continuous piecewise polynomials of arbitrary fixed order), on a shape-regular mesh
\scrT h with mesh diameter h (assumed to resolve the interface \Gamma I \cap \Gamma D when this is
nonempty and points on the interface are treated as Dirichlet points). This yields the
linear system

(1.5) A\varepsilon U := (S  - (k2 + i\varepsilon )M  - i\eta N)U = F,
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DOMAIN DECOMPOSITION FOR HELMHOLTZ 2517

where U is the vector of nodal values of the finite-element approximation uh \approx u, S is
the stiffness matrix for the negative Laplace operator, M is the domain mass matrix,
and N is the boundary mass matrix (corresponding, respectively, to each of the terms
in a\varepsilon (u, v) in (1.4), and described in more detail in section 2.2). A\varepsilon is large, sparse,
and indefinite. When \varepsilon = 0 and \eta = k, we write A instead of A\varepsilon . In common with
many other investigations in the literature, we consider the situation where, following
point (i) on the previous page, h is chosen as a function of k to maintain accuracy as
k increases (see Remark 2.9 for more details).

One way to understand the essential difficulty in preconditioning A (as k in-
creases) is to recall that the fundamental solution of the operator in (1.1) with \varepsilon = 0
(in three dimensions) is G(x, y) = exp(ikr)/r, where r = | x - y| , with | \cdot | denoting the
Euclidean norm, and so a good preconditioner for (1.1) with \varepsilon = 0 should, roughly
speaking, approximate the integral operator with kernel G. When k = 0 this operator
is ``data-sparse,"" since the jth derivative of G decays with order \scrO (r - (j+1)), when x
and y are well-separated. Thus, a source in a given region is only felt weakly far away,
a fact that underlies many successful preconditioners for Laplace-like problems (e.g.,
multigrid, domain decomposition, or \scrH -matrices). However, when k is large, the jth
derivative of G decays with the much slower rate \scrO (kjr - 1), and the application of
Laplace-like preconditioning strategies becomes problematic. While directional clus-
tering methods (see, e.g., [16], [7], and the references therein) have been developed
for homogeneous Helmholtz problems, formulated using boundary integral equations,
domain-based methods such as those considered here remain of great importance, due
to their applicability to general problems with sources and heterogeneities.

Introducing absorption, \varepsilon \not = 0, has the effect of improving the decay of the Green's
function. While absorptive problems do appear in applications (and our results here
cover these), our deeper motivation for including \varepsilon is that it has proved useful for
both constructing and providing the theory for preconditioners for the case \varepsilon = 0. In
[27] it was proved (subject to certain natural conditions on \Omega , h, and \varepsilon ) that there is
a constant K, independent of h, k, and \varepsilon , such that

\| I  - A - 1
\varepsilon A\| 2 \leq K

| \varepsilon | 
k

.(1.6)

Thus the left-hand side of (1.6) can then be made small by choosing \varepsilon to be a small-
enough multiple of k. However A - 1

\varepsilon is not a practical preconditioner for A, and we
therefore replace it by an approximation B - 1

\varepsilon \approx A - 1
\varepsilon . Using the classical results

about GMRES in [15], we say that B - 1
\varepsilon is a good preconditioner for A if both (i)

the matrix B - 1
\varepsilon A has Euclidean norm bounded above, and (ii) the field of values (in

the Euclidean norm) of B - 1
\varepsilon A is bounded away from the origin, with both bounds

independent of k and \varepsilon . If both (i) and (ii) are satisfied then, by [15], GMRES for
B - 1

\varepsilon A will converge in a number of iterations independent of k and \varepsilon .
In order to characterize good choices of B - 1

\varepsilon , we can write

B - 1
\varepsilon A = B - 1

\varepsilon A\varepsilon  - B - 1
\varepsilon A\varepsilon (I  - A - 1

\varepsilon A).(1.7)

Then (1.6) combined with (1.7) suggests that B - 1
\varepsilon will be a good preconditioner for

A provided that

B - 1
\varepsilon is a good preconditioner for A\varepsilon when | \varepsilon | = ck, with c sufficiently small.(1.8)

(An argument making this statement rigorous is given in Appendix A.)
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2518 IVAN G. GRAHAM, EUAN A. SPENCE, AND JUN ZOU

1.1. The novel results of this paper. We give a new and rigorous proof that
B - 1

\varepsilon is a good preconditioner for A\varepsilon when B - 1
\varepsilon is a simple additive Schwarz precondi-

toner, constructed by solving independent (local) Helmholtz impedance subproblems
on overlapping subdomains of \Omega , linked by prolongation/restriction operators defined
via a partition of unity (see section 1.2).

Theorem 3.12 gives general estimates for the norm and the distance of the field
of values from the origin of B - 1

\varepsilon A\varepsilon , under the general assumption that the local
solvers are sufficiently good approximate inverses for the localized global problem
(assumption (3.43)). The estimates are explicit in the wavenumber k, the fine mesh
diameter h, the number of overlaps \Lambda , the subdomain diameter H, the overlap size \delta ,
and the absorption parameter \varepsilon . Corollaries 3.15 and 3.16 then provide more concrete
estimates under additional conditions on H, \delta and \varepsilon . In particular, we present the
following:

(1) Corollary 3.15 provides conditions under which the norm of B - 1
\varepsilon A\varepsilon is uni-

formly bounded from above for all 0 \leq | \varepsilon | \leq k2.
(2) Corollary 3.16 provides conditions under which the field of values of B - 1

\varepsilon A\varepsilon 

is uniformly bounded away from the origin. These hold (for appropriate
H = H(k)) when | \varepsilon | \sim k1+\beta , with \beta arbitrarily close to 0, or when | \varepsilon | = Ck
for some large enough constant C.

Although both the latter requirement in (2) and the requirement in (1.8) suggest we
should take \varepsilon proportional to k, the required constants C, c are not explicitly known
and so a rigorous lower bound on the field of values cannot be deduced in the pure
Helmholtz case. Nevertheless, numerical experiments in section 4 still suggest that
B - 1

0 is a good preconditioner for the pure Helmholtz problem, for certain choices of
H(k), decreasing as k \rightarrow \infty .

Important features of the results of Theorem 3.12 and Corollaries 3.15 and 3.16
are that (a) they hold for bounded polygonal or Lipschitz polyhedral domains and
cover sound-soft scattering problems, truncated using first order absorbing bound-
ary conditions; (b) the theory allows finite element methods of any fixed order on
shape-regular meshes; and general shape-regular subdomains; (c) the proof consti-
tutes a substantial extension of classical Schwarz theory to the non-self-adjoint case;
(d) via a duality argument, the theory covers both left- and right-preconditioning
simultaneously.

To achieve the goal of a highly parallel and provably \scrO (n) solver for the Helmholtz
equation as k increases, one would need the following:

(i) a k-independent (i.e., \scrO (1)) number of iterations,
(ii) the action of the preconditioner to be \scrO (n), and
(iii) (roughly speaking) the preconditioner to be as parallel as possible.

Since we propose here a one-level additive Schwarz method, (iii) is achieved. The main
achievement of our paper is fundamental theory obtaining conditions under which (i) is
achieved for Schwarz methods even without global coarse solver. As can be seen from
the experiments in section 4, the subdomain size H needed to ensure robustness can
shrink to zero as k increases, but remains large relative to the fine grid size h. Further
work is needed to achieve requirement (ii). However, in section 1.4 we briefly discuss
the cost of the subdomain problems, together with ways of reducing this cost (some
of which have been recently implemented and tested [30, 31, 5, 4, 6]). Relatively large
subdomain problems are also encountered in sweeping-style preconditioners, although
in this case they are typically posed on ``quasi (d - 1)-dimensional"" slices of an original
d-dimensional domain, and efficient direct solvers have been developed for these (e.g.,
[51]).
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DOMAIN DECOMPOSITION FOR HELMHOLTZ 2519

Finally, we note that it is perhaps remarkable that this one-level additive Schwarz
method can be robust when the subdomain size H \rightarrow 0. This conflicts with standard
intuition and existing understanding, even for self-adjoint coercive PDEs; there, if
H \rightarrow 0, the condition number of the one-level preconditioned problem grows like
\scrO ((\delta H) - 1). In the Helmholtz case, however, we are solving a family of problems
parametrized by k. Even though the problem itself becomes ``harder"" as k increases,
the results of this paper show that the one-level preconditioner can still remain robust.

1.2. The preconditioner. Our algorithm is a variation of the simple one-
level additive Schwarz method and is based on a set of open polyhedral subdomains
\{ \Omega \ell \} N\ell =1, forming an overlapping cover of \Omega . We assume that each \Omega \ell is nonempty
and is a union of elements of the mesh \scrT h. The key component of the preconditioner
for (1.5) is the solution of discrete ``local"" versions of (1.1):

(1.9)  - \Delta u - (k2 + i\varepsilon )u = f on \Omega \ell ,

subject to boundary conditions

\partial u

\partial n
 - i\eta u = 0 on \partial \Omega \ell \setminus \Gamma D (assumed nonempty), and u = 0 on \partial \Omega \ell \cap \Gamma D.

(1.10)

We assume that if \partial \Omega \ell \cap \Gamma D \not = \emptyset , then it has positive surface measure. Because \Omega \ell 

consists of a union of fine grid elements, \partial \Omega \ell \cap \Gamma D then contains at least one fine grid
element.

To connect these local problems, we use a partition of unity \{ \chi \ell \} N\ell =1 with prop-
erties

for each \ell : \chi \ell : \Omega \rightarrow \BbbR , supp\chi \ell \subseteq \Omega \ell and 0 \leq \chi \ell (\bfitx ) \leq 1, when \bfitx \in \Omega ,

(1.11)

and such that \sum 
\ell 

\chi \ell (\bfitx ) = 1 for all \bfitx \in \Omega .

(Here we define supp\chi \ell := \{ \bfitx \in \Omega : \chi \ell (\bfitx ) \not = 0\} .)
The finite-element space \scrV h \subset H1

0,D(\Omega ) underlying (1.5) is assumed to have

a nodal basis so that each vh \in \scrV h is uniquely determined by its values \{ Vp :=
vh(\bfitx p), p \in \scrI h\} , at nodes \{ \bfitx p : p \in \scrI h\} \subset \Omega (where \scrI h is a suitable index set).
Nodes on the subdomain \Omega \ell are denoted \{ \bfitx p : p \in \scrI h(\Omega \ell )\} . Using this notation, we
can define a restriction matrix R\ell that uses \chi \ell to map a nodal vector defined on \Omega to
a nodal vector on \Omega \ell :

(1.12) (R\ell V)p = \chi \ell (\bfitx p)Vp, p \in \scrI h(\Omega \ell ).

We denote by A\varepsilon ,\ell the matrix obtained by approximating (1.9) and (1.10) in \scrV h

(restricted to \Omega \ell ); this matrix is a local analogue of the matrix A\varepsilon in (1.5). Our
preconditioner for A\varepsilon is then simply

(1.13) B - 1
\varepsilon :=

N\sum 
\ell =1

R\top 
\ell (A\varepsilon ,\ell )

 - 1R\ell ,

where R\top 
\ell is the transpose of R\ell . Hence the action of B - 1

\varepsilon consists of N parallel ``local
impedance solves"" added up with the aid of appropriate restrictions/prolongations.
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B - 1
\varepsilon coincides with the ``OBDD-H"" preconditioner proposed (without theory) by

Kimn and Sarkis in [37] (also called ``SORAS""; see, e.g., [12, section 7.7.2]).
In the analysis we use the k-dependent inner product and norm:

\langle V,W\rangle Dk
:= W\ast DkV, \| V\| Dk

= \langle V,V\rangle 1/2Dk
, where Dk = (S + k2M).(1.14)

In fact, Dk is the stiffness matrix arising from approximating via the Galerkin method
in \scrV h the Helmholtz energy norm

\| v\| 1,k := (v, v)
1/2
1,k , where (v, w)1,k := (\nabla v,\nabla w)L2(\Omega ) + k2(v, w)L2(\Omega ).(1.15)

When \widetilde \Omega is any subdomain of \Omega we write (\cdot , \cdot )1,k,\widetilde \Omega and \| \cdot \| 1,k,\widetilde \Omega for the corresponding

inner product and norm on \widetilde \Omega .
1.3. Related literature. There have been two important recent ideas that have

had a large effect on the field of iterative solvers for the Helmholtz equation. The first
is the ``shifted Laplace"" preconditioner, arising from initial ideas in [1, 41], and then
developed and advocated in [23, 21, 57]. Since the fundamental solution of (1.1) enjoys
``Laplace-like"" decay when \varepsilon is large enough, the ``shifted Laplace"" preconditioner
uses a multigrid approximation of the absorptive problem to precondition the ``pure
Helmholtz"" problem \varepsilon = 0.

The second concerns a class of multiplicative domain decomposition methods
that fall under the general heading of ``sweeping,"" e.g., [17, 18, 19, 54, 9, 51, 58, 26].
Restricting to a simple context, suppose (1.1) is discretized on a tensor product grid
on the unit square and the unknowns are ordered lexicographically, yielding a block
tridiagonal system matrix, each block corresponding to a row of nodes. Sweeping
methods can be thought of as approximate block-elimination methods for this system.
The Schur complement that arises in the block-elimination at a given line corresponds
to the solution of a Helmholtz problem in the domain below that line, and these
problems can be suitably truncated, to thinner strips either by ``moving perfectly
matched layer (PML)"" or \scrH -matrix approximation. The polarized trace algorithm
[58] takes this idea a step further by precomputing and compressing the solution
operators on each strip, expediting the online process.

Both of these ideas have led to computation of challenging industrial strength
applications, but neither of them has a rigorous theory. For ``sweeping,"" the under-
pinning physical principle applies only to rectangular two-dimensional (2-d) domains
and tensor-product discretizations (since the relevant low-rank result [45] does not
hold for general domains and discretizations [20]), and to the elimination of nodes in
blocks, each consisting of a small number of rows. Although the overarching prin-
ciple of sweeping methods is serial, there have been considerable innovations to en-
hance parallel efficiency. For example, [51, 58] propose recursive subdivision of the
inner solves in each multiplicative sweeping step. Very recently, [55] proposed the
``L-sweeps"" algorithm in which information propagates in a 90-degree cone, allowing
checkerboard domain decomposition. In [42] an overlapping domain decomposition
solver is proposed, with independent subdomain solves at each step.

On the other hand, the ``shifted Laplace"" algorithm is not, in general, robust with
respect to k, since the choice | \varepsilon | \sim k2, which is needed to make multigrid work [11],
turns out to be too large a perturbation of the pure Helmholtz problem to remain
robust as k \rightarrow \infty . Although recent enhancements based on deflation [53, 52, 22, 14]
have greatly improved the shifted Laplace preconditioner, a full theory is still missing.
A recent survey of shifted Laplace and related preconditioners is given in [40].
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DOMAIN DECOMPOSITION FOR HELMHOLTZ 2521

Domain decomposition methods offer the attractive feature that their coarse grid
and local problems can be adapted to allow for ``wave-like"" behavior. There is a large
literature (mostly empirical) on this (see, e.g., [3, 24, 25, 37, 38, 33, 34, 28]). A recent
example is [44], which proposes a multiplicative overlapping domain decompositon
method as a smoother in a multigrid algorithm for Helmholtz problems discretized by
the continuous interior penalty method. However, there is no rigorous theory when k
is large for methods with either many subdomains of general shape or coarse grids.
The paper [30] provided the first such rigorous analysis for the problem with absorp-
tion, but the bounds for | \varepsilon | \ll k2 in [30] were very pessimistic. The current paper
extends this line of research to the case when wave-like components are inserted into
the domain decomposition method. The results we obtain for the one-level method
(i.e., with no coarse solver) with impedance boundary conditions on the subdomains
give practical bounds for much lower levels of absorption than in [30].

Finally, we remark that domain decomposition methods (with and without global
coarse solver) for the case when k is fixed and h \rightarrow 0 are, in principle, analyzed in Cai
and Widlund [8], since for small enough h the Laplacian becomes the dominant term
in the discrete Helmholtz equation. However, the current paper concentrates instead
on analysis for the more challenging case that allows k \rightarrow \infty .

1.4. Cost of the preconditioner. Here we discuss the cost of the precondi-
tioner (1.13), along with its possible approximations. We also give a brief comparison
with other preconditioners. The action of (1.13) requires the solution of \scrO (H - d)
subproblems each of size \scrO ((H/h)d), with d being the physical dimension. If h \sim k - \gamma 

with \gamma \geq 1 and H \sim k - \alpha , with 0 < \alpha < \gamma , then the dimension of the global system
grows quickly with k, having dimension n \sim k\gamma d. The action of the preconditioner
then requires the solution of \scrO (k\alpha d) subproblems, each of size \scrO (k(\gamma  - \alpha )d). Since
k \sim n1/\gamma d, this is equivalent to

\scrO (n\alpha /\gamma ) independent subproblems, each of size \scrO (n(1 - \alpha /\gamma )).(1.16)

In the case \alpha = 0.5 (seen in Table 2 in section 4 to have an iteration count
growing slowly with k) and the case \gamma = 1.5 (needed for accuracy of linear elements),
the preconditioner has

\scrO (n1/3) independent subproblems, each of size \scrO (n2/3).(1.17)

In the cases \alpha = 0.5 and \gamma = 1 (e.g., a fixed number of grid points per wave-
length, commonly used in practice and reasonable for higher order methods), the
preconditioner has

\scrO (n1/2) independent subproblems, each of size \scrO (n1/2).(1.18)

These subproblem sizes are comparable to those arising from the (very successful)
sweeping preconditioners, although (as pointed out above) the systems arising in
sweeping are on thin rectangular subdomains and hence have beneficial special struc-
ture. In sweeping methods, an approximate inverse of A is computed by an approxi-
mate LDL\top factorization. In the moving PML variant (formulated for a cubic domain
with tensor product grid and appropriate boundary conditions) one solves sequentially
\scrO (n1/d) subproblems (on slices of the domain), each of dimension \scrO (n(1 - 1/d)). When
d = 3 this coincides with (1.17) and when d = 2 it coincides with (1.18). The sweeping
method in its basic format [18] is multiplicative, whereas our preconditioner is funda-
mentally additive. On the other hand, sweeping provides an approximate inverse of
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2522 IVAN G. GRAHAM, EUAN A. SPENCE, AND JUN ZOU

the Helmholtz operator, while our aim here is only to provide a good preconditioner
(a somewhat weaker requirement). As a result, our method is applicable in much
more general geometrical situations.

Several other practical implementations of the preconditioner analyzed here have
been tested. For example, [5] reduced the subproblem size and added a coarse grid
solver to reduce iteration count. Although, now not completely robust as k (and hence
n) increases, a slow growth of iteration count of about \scrO (n0.1) for three-dimensional
(3-d) Helmholtz problems of size up to n = 107 was observed. A similar method
was used for 3-d Maxwell systems in [4, 6], where good parallel performance was
reported on systems of size up to 1 billion. Here, the fact that absorption is added
into the preconditioner turns out to be advantageous in practice, since the absorptive
coarse grid problem can be quickly solved with an inner iterative method and does
not dominate the overall cost.

Another approach to reduce the cost of the preconditioner is to observe that the
local impedance solves are local copies of the original problem (but on smaller domains
and hence with smaller effective wavenumber). This allows them to be quickly resolved
by an (inner) preconditioned GMRES combined with the same preconditioner. A
preliminary (serial) implementation of this method is given in [31, section 5.2.2] where,
on a 2-d domain of size \scrO (1), the outer preconditioner was formulated on subdomains
of size \scrO (k - 0.4) and the inner preconditioner on subdomains of size \scrO (k - 0.8). This
was implemented on a fine discretization with ten grid points per wavelength, in which
only very small problems of size \scrO ((k - 0/8/k - 1)2) = \scrO (k0.4) had to be solved directly.
Results for k up to 300 are given in [31, section 5.2.2], showing very low inner iteration
counts and outer iteration counts growing slowly (\sim \scrO (n0.2)). For k = 300, direct
solvers were needed for systems of a size of only a few hundred. The idea of recursive
subdivision of subdomains also features heavily in efficient versions of sweeping [43],
and also in the polarized trace algorithm [58].

1.5. Structure of the paper. In subsections 2.1 and 2.2 we provide key esti-
mates for the local impedance solution operator at the continuous PDE level, and its
discretization. The properties of the preconditioner are established via its interpreta-
tion as a sum of projections; this is set up in section 2.3. We prove the main results
in section 3 and present numerical experiments in section 4. In Appendix A we give
a rigorous basis for the discussion around (1.8).

2. Preliminaries. Throughout we write a \lesssim b when there exists a C > 0,
independent of all parameters of interest (here \varepsilon , k, h,H, \delta , \Lambda , and \ell , with some of
these defined later), such that a \leq Cb. We write a \sim b if a \lesssim b and b \lesssim a. We make
the following basic assumptions on k, \varepsilon , and \eta throughout this paper.

Assumption 2.1. The parameters k, \varepsilon , and \eta satisfy

k \gtrsim 1, 0 \leq | \varepsilon | \leq k2, and | \eta | \sim k.(2.1)

We recall the inequalities (valid for all a, b > 0 and \epsilon > 0)

(2.2) 2ab \leq a2

\epsilon 
+ \epsilon b2, and

1\surd 
2
(a+ b) \leq 

\sqrt{} 
a2 + b2 \leq a+ b.

2.1. A priori estimates. The basic well-posedness of (1.3) is classical.

Proposition 2.2. If either (i) \varepsilon > 0 and \Re (\eta ) > 0, or (ii) \varepsilon < 0 and \Re (\eta ) < 0,
or (iii) \varepsilon = 0 and \Re (\eta ) \not = 0, the problem (1.4) has a unique solution.
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DOMAIN DECOMPOSITION FOR HELMHOLTZ 2523

Sketch proof. For cases (i) and (ii), uniqueness can be established by taking v = u
and F = 0 in the weak form (1.3) and then taking the imaginary part to show that
u = 0. Case (iii) is the standard ``pure Helmholtz"" case; uniqueness can be obtained by
the unique continuation principle (e.g., [46, Remark 8.1.1], [29, section 3]). Existence
then follows for all cases via the Fredholm alternative, since a\varepsilon satisfies a G\r arding
inequality.

In the domain decomposition method below we will be interested in local imped-
ance solves on subdomains that may shrink in diameter as k \rightarrow \infty . For this reason
we introduce the following.

Definition 2.3 (characteristic length scale). A domain has characteristic length
scale L if its diameter \sim L, its surface area \sim Ld - 1, and its volume \sim Ld.

Lemma 2.4 (continuity and coercivity of the sesquilinear form a\varepsilon ).
(i) Assume that \Omega has characteristic length scale L and that \varepsilon and \eta satisfy (2.1).

Then the sesquilinear form a\varepsilon is continuous, i.e.,

| a\varepsilon (u, v)| \leq Ccont\| u\| 1,k\| v\| 1,k, with Ccont \lesssim 
\bigl( 
1 + (kL) - 1

\bigr) 
for all u, v \in H1(\Omega ).

(ii) Let
\surd 
k2 + i\varepsilon be defined via the square root with the branch cut on the positive

real axis. If \eta satisfies

(2.3) \Re 
\bigl( 
\eta 
\sqrt{} 
k2 + i\varepsilon 

\bigr) 
\geq 0,

then a\varepsilon is coercive, i.e.,

| a\varepsilon (v, v)| \gtrsim Ccoer\| v\| 21,k, with Ccoer \sim 
| \varepsilon | 
k2

for all v \in H1(\Omega ).

Proof. The assertion (ii) is Lemma 2.4 in [30] (note that the omitted constants in
that result do not depend on L). The assertion (i) follows from the Cauchy--Schwarz
inequality and the multiplicative trace inequality,

\| v\| 2L2(\Gamma ) \lesssim 

\biggl( 
1

L
\| v\| 2L2(\Omega ) + \| \nabla v\| L2(\Omega ) \| v\| L2(\Omega )

\biggr) 
(see, e.g., [32, last equation on p. 41]), and the inequalities (2.2).

Remark 2.5 (adjoint coercivity). The definition of
\surd 
k2 + i\varepsilon implies that when

\eta is chosen to satisfy (2.3), the coercivity constant for a\varepsilon is exactly the same as
the coercivity constant for the sesquilinear form for the adjoint problem obtained by
replacing \varepsilon by  - \varepsilon and \eta by  - \eta .

Definition 2.6. A Lipschitz open set D is called starshaped with respect to a
ball if there exist a point \bfitx 0 \in D and a \gamma > 0 such that the position vector of any
point \bfitx \in D satisfies (\bfitx  - \bfitx 0) \cdot n(\bfitx ) \geq \gamma when the normal vector n(\bfitx ) is defined; see,
e.g., [49, Lemma 5.4.1].

Theorem 2.7 (a priori bound on solution of (1.3)). Let \Omega be starshaped with
respect to a ball and have characteristic length scale L, and recall that we have assumed
that \Gamma I has positive measure. Let u be either the solution to (1.3) with f \in L2(D)
and g = 0, or the solution to the adjoint problem under the same assumptions on f
and g. Then, there exist C1, C2 (independent of k, \varepsilon , \eta , and L) such that

(2.4) \| u\| 1,k \leq C1L \| f\| L2(\Omega ) , provided that
| \varepsilon | L
k

\leq C2.
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2524 IVAN G. GRAHAM, EUAN A. SPENCE, AND JUN ZOU

Proof. This result is essentially given by [27, Theorem 2.9 and Remark 2.5], except
the dependence of the constants on L is not kept track of there. To see that the
condition | \varepsilon | /k \leq c in [27, Theorem 2.9] is really the right-hand inequality in (2.4),
one needs to examine the argument near the end of the proof of [27, Theorem 2.9] (just
before Remark 2.16) and observe that R (:= sup\bfitx \in \Omega | \bfitx | ) \sim L. To see why the bound
(2.4) has the factor of L on the right-hand side, observe that choosing \delta 3 = 1/(2R)
and \delta 4 \sim k2 in the proof of [27, Theorem 2.9] means that, in [27, eq. (2.29)], the factor

multiplying \| f\| 2L2(\Omega ) is \sim L2. (The L-explicit bound (2.4) in the case \varepsilon = 0 is also

obtained in [50, Remark 3.6].)

For simplicity, in the rest of this paper we assume that either \eta = sign(\varepsilon )k or
\eta =

\surd 
k2 + i\varepsilon ; observe that both of these choices satisfy the requirements on \eta in

(2.1), the conditions for uniqueness of the solution of (1.3) in Proposition 2.2, and
the more-restrictive condition for coercivity (2.3) (see [30, Remark 2.5]).

2.2. Finite element method and subproblems. Let \scrT h be a family of con-
forming simplicial meshes that are shape regular as the mesh diameter h \rightarrow 0. A
typical element of \scrT h is written \tau \in \scrT h and is considered as a closed subset of \Omega .
Our approximation space \scrV h is then the space of all continuous functions on \Omega that
are polynomial of (total) degree r  - 1 with r \geq 2 (when restricted to any \tau ) and
vanish on \Gamma D. We assume we have a nodal basis for this space (for example, the
standard Lagrange basis), i.e., with nodes \scrN h = \{ \bfitx q : q \in \scrI h\} , where \scrI h is a suit-
able index set and corresponding basis \{ \phi p : p \in \scrI h\} with \phi p(\bfitx q) = \delta p,q. For any
continuous function g on \Omega , we introduce the standard nodal interpolation operator
\Pi hg =

\sum 
p\in \scrI h g(\bfitx p)\phi p , and we assume the standard error estimate (e.g., [10, section

3.1]):

\| (I  - \Pi h)v\| L2(\tau ) + h| (I  - \Pi h)v| H1(\tau ) \leq Chr| v| Hr(\tau ) for all v \in Hr(\Omega ),(2.5)

for each \tau \in \scrT h, with C independent of \tau , provided v \in Hr(\tau ). The Galerkin
approximation of (1.3) in the space \scrV h is equivalent to the linear system (1.5) where
F\ell :=

\int 
\Omega 
f\phi \ell +

\int 
\Gamma I

g\phi \ell , and

(2.6) S\ell ,m =

\int 
\Omega 

\nabla \phi \ell \cdot \nabla \phi m, M\ell ,m =

\int 
\Omega 

\phi \ell \phi m, N\ell ,m =

\int 
\Gamma 

\phi \ell \phi m, \ell ,m \in \scrI h .

We assume that the subdomains \Omega \ell introduced in section 1.2 are Lipschitz poly-
hedra (polygons in 2-d) that are shape regular with parameter H\ell in the sense that
each \Omega \ell has characteristic length scale H\ell , and we set H = max\ell H\ell . In our analysis
we allow H to depend on k in such a way that H could approach 0 as k \rightarrow \infty . Some
of the results below require that each \Omega \ell is starshaped with respect to a ball, with
the corresponding parameters \gamma = \gamma \ell in Definition 2.6 satisfying \gamma \ell \geq \gamma \ast > 0 for all \ell .
We describe this property by saying that the \Omega \ell are starshaped with respect to a ball,
uniformly in \ell .

Concerning the overlap, for each \ell = 1, . . . , N , let \r \Omega \ell denote the part of \Omega \ell that
is not overlapped by any other subdomains. (Note that \r \Omega \ell = \emptyset is possible.) For \mu > 0
let \Omega \ell ,\mu denote the set of points in \Omega \ell , every element of which is a distance no more
than \mu from the interior boundary \partial \Omega \ell \setminus \Gamma . Then we assume that there exist constants
0 < \delta \ell \lesssim H and 0 < b < 1 such that, for each \ell = 1, . . . , N ,

(2.7) \Omega \ell ,b\delta \ell \subset \Omega \ell \setminus \r \Omega \ell \subset \Omega \ell ,\delta \ell .
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DOMAIN DECOMPOSITION FOR HELMHOLTZ 2525

The case when \delta \ell \geq cH\ell for some constant c independent of \ell is called generous over-
lap. In Figure 1 we depict a typical subdomain, with its parts which are overlapped
by its neighbors and its (possibly) nonoverlapped part.

Ω

Ω̊
Ω

δ

cδ

Fig. 1. The overlap parameter \delta \ell , the ``interior"" \r \Omega \ell , and the ``near-boundary subset"" \Omega \ell ,c\delta \ell 
for a particular example of a subdomain \Omega \ell being overlapped by its neighbors.

We introduce the parameter

\delta := min
\ell =1,...,N

\delta \ell .(2.8)

We make the finite-overlap assumption. There exists a finite \Lambda > 1 independent
of N such that

(2.9) \Lambda = max
\bigl\{ 
\#\Lambda (\ell ) : \ell = 1, . . . , N

\bigr\} 
, where \Lambda (\ell ) =

\bigl\{ 
\ell \prime : \Omega \ell \cap \Omega \ell \prime \not = \emptyset 

\bigr\} 
.

It follows immediately from (2.9) that, for all v \in L2(\Omega ),
(2.10)

N\sum 
\ell =1

\| v\| 2L2(\Omega \ell )
\leq \Lambda \| v\| 2L2(\Omega ) and

N\sum 
\ell =1

\| v\| 21,k,\Omega \ell 
\leq \Lambda \| v\| 21,k , when v \in H1(\Omega ).

For each \ell , we introduce the space of finite-element functions on \Omega \ell given by
\scrV h
\ell := \{ vh| \Omega \ell 

: vh \in \scrV h\} . Recalling that functions in \scrV h vanish on the (outer)

Dirichlet boundary \Gamma D, functions in \scrV h
\ell also vanish on \partial \Omega \ell \cap \Gamma D (which contains

at least one element if it is nonempty), but are otherwise unconstrained. The local
impedance sesquilinear form on \Omega \ell is

(2.11) a\varepsilon ,\ell (v, w) :=

\int 
\Omega \ell 

\Bigl( 
\nabla v \cdot \nabla w  - (k2 + i\varepsilon )vw

\Bigr) 
 - i\eta 

\int 
\partial \Omega \ell \setminus \Gamma D

vw

for v, w \in H1
D(\Omega \ell ) := \{ z \in H1(\Omega \ell ) : z = 0 on \partial \Omega \ell \cap \Gamma D\} . For general F\ell \in (H1(\Omega \ell ))

\prime ,
the continuous local impedance problem is as follows: find u\ell \in H1

D(\Omega \ell ) such that

(2.12) a\varepsilon ,\ell (u\ell , v\ell ) = F\ell (v\ell ) for all v\ell \in H1
D(\Omega \ell );

this problem is well-posed by Proposition 2.2 and its finite-element approximation is
as follows: find uh,\ell \in \scrV h

\ell such that

a\varepsilon ,\ell (uh,\ell , vh,\ell ) = F\ell (vh,\ell ) for all vh,\ell \in \scrV h
\ell .(2.13)

The system matrix arising from (2.13) is
\bigl( 
A\varepsilon ,\ell 

\bigr) 
i,j

:= a\varepsilon ,\ell (\phi j , \phi i) for i, j \in \scrI h(\Omega \ell ).
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Theorem 2.8 (bounds on the solutions of the local problems (2.13)).
(i) For all | \varepsilon | > 0, and for any mesh size h, (2.13) has a unique solution uh,\ell 

which satisfies

\| uh,\ell \| 1,k,\Omega \ell 
\lesssim \Theta (\varepsilon ,H\ell , k) max

vh\in \scrV h
\ell 

\biggl( 
| F (vh)| 

\| vh\| 1,k,\Omega \ell 

\biggr) 
,(2.14)

with

(2.15) \Theta (\varepsilon ,H\ell , k) = k2/| \varepsilon | .

(ii) If each \Omega \ell is starshaped with respect to a ball uniformly in \ell , then for all
| \varepsilon | \geq 0, there exists a mesh threshold function h(k, r) such that when h \leq h(k, r),
(2.13) has a unique solution uh,\ell which satisfies (2.14) with

\Theta (\varepsilon ,H\ell , k) = min
\bigl\{ 
(1 + kH\ell ), k

2/| \varepsilon | 
\bigr\} 
,(2.16)

where we adopt the convention that \Theta (0, H, k) = 1 +Hk.

Proof. The result (i) is a consequence of Lemma 2.4 and the Lax--Milgram lemma.
The result (ii) follows from the fact (used in the case of Helmholtz problems by the
authors of [47, 48] and their associated work) that when a sesquilinear form satisfies
a G\r arding inequality and the solution of the variational problem is unique, a ``Schatz-
type"" argument obtains quasi-optimality under conditions on the approximability of
the adjoint problem, and then the G\r arding inequality can be used to verify a discrete
inf-sup condition. Indeed, following the proof of [47, Theorem 4.2] and using the
bound (2.4) and the fact that \Omega \ell has characteristic length scale H\ell , we find that,
when | \varepsilon | H\ell /k \leq C2,

inf
0\not =vh\in \scrV h

\ell 

sup
0 \not =wh\in \scrV h

\ell 

| a\varepsilon ,\ell (vh, wh)| 
\| vh\| 1,k\| wh\| 1,k

\geq 1

2 + C - 1
cont + C1kH\ell 

.(2.17)

Then, from (2.13),

(2.18) \| uh,\ell \| 1,k,\Omega \ell 
\lesssim (1 + kH\ell ) sup

0 \not =vh\in \scrV h
\ell 

| F (vh)| 
\| vh\| 1,k,\Omega \ell 

,

when | \varepsilon | H\ell /k \leq C2. If | \varepsilon | H\ell /k > C2, then 1 + H\ell k > C2k
2/| \varepsilon | and (2.16) follows

from (2.14).

Remark 2.9 (the mesh-threshold function h(k, r)). Bounds on h(k, r) are dis-
cussed in detail in [48, subsections 5.1.2 and 5.2]. For 2-d polygonal domains, k(hk/(r - 
1))r - 1 is required to be sufficiently small (see [48, eq. (5.13)]), equivalently h is a suf-
ficiently small multiple of (r  - 1)k - (r/(r - 1)). Therefore, when r = 2 we require hk2

small, but the requirement relaxes as r increases. In one dimension (1-d), numeri-
cal experiments indicate that the requirement hk2 sufficiently small is necessary for
quasi-optimality [36, Figures 7--9], [35, section 4.5.4 and Figure 4.12]. The theoretical
benefit of requiring h \leq h(k, r) is that the estimate (2.14) holds uniformly over all
choices of overlapping star-shaped subdomains \Omega \ell , each of which has characteristic
length H\ell . However, to the best of our knowledge, the requirement h \sim k - 2 is never
imposed in practical computations.

If one is only concerned with ensuring solvability, a weaker requirement on h
arises. In 1-d, the relative error in both the H1-seminorm and the L2-norm is bounded
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independently of k if hk3/2 is sufficiently small [36, eq. (3.25)], [35, eq. (4.5.15)],
with numerical experiments indicating that this is sharp [36, Figure 11], [35, Figure
4.13]. Numerical experiments in [2, section 3] showed that, at least for certain 2-d
problems, the relative error in the L2-norm is bounded independently of k if hk3/2

is sufficiently small; this fact has recently been proved in [39]. In [13], under certain
regularity assumptions, it has been proved (in 2-d and 3-d) that, if h2(r - 1)k2r - 1 is
small enough, then the H1 error is of order h2(r - 1)k2r - 1. Thus, e.g., when r = 2,
taking h \lesssim k - 3/2 ensures that the problem is solvable and the error remains bounded
as k increases. This discussion is all for domains of diameter \scrO (1); for subdomains of
decreasing diameter \scrO (H\ell ), the effective wavenumber is reduced to \scrO (kH\ell ), and so
the requirement on h is even weaker.

2.3. Projection operators. We now give more detail about the partition of
unity \{ \chi \ell \} and the restiction and prolongation matrices R\ell , R

\top 
\ell discussed in section

1.2. Note that since the subdomains are assumed to be unions of fine grid elements,
their boundaries (and the boundaries of their supports) are fine-grid dependent. This
is standard for domain decomposition methods (e.g., [56, p. 57]). We choose the
functions \chi \ell to be continuous piecewise linear on the mesh \scrT h, satisfying

(2.19) \| \nabla \chi \ell \| \infty ,\tau \lesssim \delta  - 1
\ell for all \tau \in \scrT h,

where the hidden constant is also required to be independent of the element \tau . A
partition of unity satisfying this condition is explicitly constructed in [56, section 3.2].

We will use the operator \Pi h \circ \chi \ell . In fact, if wh,\ell \in \scrV h
\ell with nodal values W, then

\Pi h
\bigl( 
\chi \ell wh,\ell 

\bigr) 
=

\sum 
p\in \scrI h

\bigl( 
RT

\ell W
\bigr) 
p
\phi p,

where R\ell is defined by (1.12), and thus \Pi h \circ \chi \ell defines a prolongation from \scrV h
\ell to \scrV h.

To analyze the preconditioner (1.13), we define the projections Qh
\varepsilon ,\ell : H1(\Omega ) \rightarrow 

\scrV h
\ell , by requiring that, given v \in H1(\Omega ), Qh

\varepsilon ,\ell v \in \scrV h
\ell satisfies

(2.20) a\varepsilon ,\ell (Q
h
\varepsilon ,\ell v, wh,\ell ) = a\varepsilon (v,\Pi 

h(\chi \ell wh,\ell )) for all wh,\ell \in \scrV h
\ell .

For | \varepsilon | > 0, Q\varepsilon ,\ell is well-defined by part (i) of Theorem 2.8. For \varepsilon = 0, Q\varepsilon ,\ell is well-
defined for all h \leq h(k, r) by part (ii) of Theorem 2.8. To combine the actions of
these local projections additively, we define the global projection by

Qh
\varepsilon :=

N\sum 
\ell =1

\Pi h(\chi \ell Q
h
\varepsilon ,\ell ),(2.21)

where again each term in the sum can be interpreted as an element of H1(\Omega ). The
following theorem shows that the matrix representation of Qh

\varepsilon restricted to \scrV h co-
incides with the preconditioned matrix B - 1

\varepsilon A\varepsilon . This result uses the weighted inner
product defined in (1.14).

Theorem 2.10 (from projection operators to matrices). Let vh \in \scrV h, with nodal
values given in the vector V. Then, for any \ell , when the function Qh

\varepsilon ,\ell vh \in \scrV h
\ell is well-

defined it has nodal vector

W = A - 1
\varepsilon ,\ell R\ell A\varepsilon V.(2.22)

Consequently, for any uh, vh \in \scrV h,

(uh, Q
h
\varepsilon vh)1,k = \langle U, B - 1

\varepsilon A\varepsilon V\rangle Dk
.(2.23)
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Proof. With W as given in (2.22), we have (A\varepsilon ,\ell W)q = (R\ell AV)q, for all q \in 
\scrI h(\Omega \ell ), and so (recalling the definition of R\ell in (1.12)),\sum 

p\in \scrI h(\Omega \ell )

a\varepsilon ,\ell (\phi p, \phi q)Wp = \chi \ell (xq)
\sum 

p\in \scrI h(\Omega )

a\varepsilon (\phi p, \phi q)Vp for each q \in \scrI h(\Omega \ell ).

Then, letting wh \in \scrV h
\ell , vh \in \scrV h be defined by the nodal values W, V, we have

a\varepsilon ,\ell (wh, \phi q) = a\varepsilon (vh, \chi \ell (\bfitx q)\phi q) for each q \in \scrI h(\Omega \ell ).

By multiplying by vh(\bfitx q) and using the definition of \Pi h and summing over q, we then
have that

a\varepsilon ,\ell (wh, vh) = a\varepsilon (vh,\Pi 
h(\chi \ell vh)) for all vh \in \scrV h .

The definition of Qh
\varepsilon ,\ell (2.20) and uniqueness then imply that wh = Qh

\varepsilon ,\ell vh which
proves (2.22). Recalling (1.14) and (2.21), we obtain as a consequence of (2.22) that

(uh, Q
h
\varepsilon vh)1,k =

\sum 
\ell 

(uh,\Pi 
h(\chi \ell Q

h
\varepsilon ,\ell vh))1,k

=
\sum 
\ell 

\langle U, R\top 
\ell A

 - 1
\varepsilon ,\ell R\ell A\varepsilon V\rangle Dk

= \langle U, B - 1
\varepsilon A\varepsilon V\rangle Dk

.

3. The main results.

3.1. Estimates involving the overlapping decomposition.

Lemma 3.1 (estimates on norms involving \chi \ell ). With \delta \ell as defined in (2.7),

\| \chi \ell v\| 21,k,\Omega \ell 
 - 2\| v\| 21,k,\Omega \ell 

\lesssim 
1

(k\delta \ell )2
\| v\| 21,k,\Omega \ell 

for all v \in H1(\Omega \ell ),(3.1)

N\sum 
\ell =1

\| \chi \ell v\| 21,k,\Omega \ell 
\lesssim \Lambda 

\biggl( 
1 +

1

(k\delta )2

\biggr) 
\| v\| 21,k for all v \in H1(\Omega ),(3.2)

N\sum 
\ell =1

\| \chi 2
\ell v\| 21,k,\Omega \ell 

\lesssim \Lambda 

\biggl( 
1 +

1

(k\delta )2

\biggr) 2

\| v\| 21,k for all v \in H1(\Omega ).(3.3)

N\sum 
\ell =1

\| \chi \ell f\| 2L2(\Omega \ell )
\geq 1

\Lambda 
\| f\| 2L2(\Omega ) for all f \in L2(\Omega ),(3.4)

N\sum 
\ell =1

\| \chi \ell f\| 21,k,\Omega \ell 
\geq 1

\Lambda 
\| f\| 21,k  - C

\Lambda 

k\delta 
\| f\| 21,k for all f \in H1(\Omega ),(3.5)

where C denotes a parameter-independent constant.

Proof. Using \nabla (\chi \ell v) = (\nabla \chi \ell )v+\chi \ell \nabla v, (1.11), and (2.19), we have that, for some
constant C,

| \nabla (\chi \ell v)(\bfitx )| 2 \leq 2

\biggl( 
C

\delta 2\ell 
| v(\bfitx )| 2 + | \nabla v(\bfitx )| 2

\biggr) 
for all \bfitx \in \Omega \ell . Then

\| \chi \ell v\| 21,k,\Omega \ell 
\leq 2C

\delta 2\ell 
\| v\| 2L2(\Omega \ell )

+ 2| v| 2H1(\Omega \ell )
+ k2\| v\| 2L2(\Omega \ell )

\leq 2

\biggl( 
1 +

C

(k\delta \ell )2

\biggr) 
\| v\| 21,k,\Omega \ell 

,
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which yields the estimate (3.1).
From (2.10) and (2.8), we see that (3.2) follows from (3.1). The estimate (3.3)

follows from two successive applications of (3.1), summing both sides of the resulting
estimate over \ell , and then using (2.10).

To prove (3.4), first define, for each \bfitx \in \Omega , a positive integer m = m(\bfitx ) by

(3.6) m(\bfitx ) := \#
\bigl\{ 
\ell \in \{ 1, . . . , N\} : \bfitx \in supp\chi \ell 

\bigr\} 
.

Note that, because supp(\chi \ell ) \subseteq \Omega \ell , the assumption (2.9) ensures 1 \leq m(\bfitx ) \leq \Lambda 
for all \bfitx \in \Omega . Then, for any integer j \in \{ 1, . . . ,\Lambda \} , we define the subset of \Omega :
Dj := \{ \bfitx \in \Omega : m(\bfitx ) = j\} , so that \bfitx \in Dj if and only if \bfitx lies in the supports of
exactly j of the partition of unity functions \{ \chi \ell \} . Corresponding to these we also
define the index sets:

\scrD (j) =
\bigl\{ 
\ell \in \{ 1, . . . , N\} : supp\chi \ell \cap Dj \not = \emptyset 

\bigr\} 
.(3.7)

This notation is illustrated in section 4 in the context of the particular overlapping
cover used there. As that example shows, some of the sets Dj can have zero Lebesgue
measure as subsets of \Omega .

Then, we have

\Omega =

\Lambda \bigcup 
j=1

Dj and Di \cap Dj = \emptyset if i \not = j .(3.8)

Moreover, for all j = 1, . . . ,\Lambda ,

(3.9)
\sum 

\ell \in \scrD (j)

\chi \ell (\bfitx ) = 1 when \bfitx \in Dj .

Then, noting that \#\{ \ell \in \scrD (j) : \chi \ell (\bfitx ) \not = 0\} = j \leq \Lambda and using (3.9) and the
Cauchy--Schwarz inequality we obtain, for all \bfitx \in Dj ,

(3.10) 1 =

\left(  \sum 
\ell \in \scrD (j)

\chi \ell (\bfitx )

\right)  2

\leq j
\sum 

\ell \in \scrD (j)

\chi 2
\ell (\bfitx ) \leq \Lambda 

\sum 
\ell \in \scrD (j)

\chi 2
\ell (\bfitx ) .

Using (3.8), (3.10), and (3.7), we find

N\sum 
\ell =1

\int 
\Omega \ell 

\chi 2
\ell (\bfitx )| f(\bfitx )| 2d\bfitx =

\Lambda \sum 
j=1

N\sum 
\ell =1

\int 
\Omega \ell \cap Dj

\chi 2
\ell (\bfitx )| f(\bfitx )| 2d\bfitx 

=

\Lambda \sum 
j=1

\sum 
\ell \in \scrD (j)

\int 
\Omega \ell \cap Dj

\chi 2
\ell (\bfitx )| f(\bfitx )| 2d\bfitx 

=

\Lambda \sum 
j=1

\int 
Dj

\biggl( \sum 
\ell \in \scrD (j)

\chi 2
\ell (\bfitx )

\biggr) 
| f(\bfitx )| 2d\bfitx \geq 1

\Lambda 

\Lambda \sum 
j=1

\int 
Dj

| f(\bfitx )| 2d\bfitx =
1

\Lambda 

\int 
\Omega 

| f(\bfitx )| 2d\bfitx ,

which is (3.4). Finally, for (3.5), we use (1.11) and (2.19) to obtain

\| \chi \ell f\| 21,k,\Omega \ell 
= k2\| \chi \ell f\| 2L2(\Omega \ell )

+ \| \chi \ell | \nabla f | \| 2L2(\Omega \ell )
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2530 IVAN G. GRAHAM, EUAN A. SPENCE, AND JUN ZOU

+ 2Re

\int 
\Omega \ell 

\chi \ell f\nabla \chi \ell .\nabla f + \| f | \nabla \chi \ell | \| 2L2(\Omega \ell )

\geq k2\| \chi \ell f\| 2L2(\Omega \ell )
+ \| \chi \ell | \nabla f | \| 2L2(\Omega \ell )

 - C

k\delta \ell 
\| f\| 21,k,\Omega \ell 

,

and the result is obtained by summing, and using (3.4), (2.10), and (2.8).

Remark 3.2. The estimate (3.2) provides a ``stable splitting,"" i.e., any v \in H1(\Omega )
has a decomposition into components \chi \ell v \in H1(\Omega \ell ), with v =

\sum 
\ell \chi \ell v, so that sum

of the squares of the energies of the components is bounded in terms of the square
of the energy of v, with a constant that is independent of k, h,H, and \delta , provided
only that k\delta \gtrsim 1. Corollary 3.5 provides an analogous stable splitting for finite-
element functions. This result is perhaps a little surprising since, for positive-definite
elliptic problems, families of subdomains with decreasing diameter do not enjoy this
property (and a coarse space is needed to restore it) [56]. Here the stable splitting
holds without coarse space as k \rightarrow \infty (i.e., for a family of Helmholtz problems of
increasing difficulty). This includes, for example, subdomains of diameter H \sim k - \alpha 

with \alpha \in [0, 1] and overlap k - 1 \lesssim \delta \leq H.

Lemma 3.3 (error in interpolation of \chi \ell wh). Given \ell \in \{ 1, . . . , N\} , suppose
vh \in \scrV h

\ell . Then

\| (I - \Pi h)(\chi lvh)\| 1,k,\Omega l
<\sim (1 + kh\ell )

\biggl( 
h\ell 

\delta \ell 

\biggr) 
\| vh\| H1(\Omega l),(3.11)

where h\ell := max\tau \subset \Omega \ell 
h\tau , and the hidden constant is independent of \ell .

Proof. For each element \tau \in \scrT h with \tau \subset \Omega \ell , from (2.5) we have

\| (I - \Pi h)(\chi lvh)\| L2(\tau ) + h\tau | (I  - \Pi h)(\chi lvh)| H1(\tau )
<\sim hr

\tau | \chi lvh| Hr(\tau ).(3.12)

Let \alpha be any multi-index of order | \alpha | = r. Since, on \tau , \chi \ell is of degree 1 and vh is of
degree r - 1, the Leibnitz formula tells us that D\alpha (\chi \ell vh) consists of only a linear com-
bination of functions of the form (D\beta \chi \ell )(D

\alpha  - \beta vh), for all multi-indices with | \beta | = 1
(with coefficients independent of \tau ). Combining this with (2.19) leads to

| \chi \ell vh| Hr(\tau ) \lesssim \delta  - 1
\ell | vh| Hr - 1(\tau ).(3.13)

Then, using (3.12) and an elementwise inverse estimate for shape regular elements,

k\| (I - \Pi h)(\chi lvh)\| L2(\tau )
<\sim kh\tau 

h\tau 

\delta \ell 
hr - 2
\tau | vh| Hr - 1(\tau )

<\sim kh\tau 
h\tau 

\delta \ell 
\| vh\| H1(\tau ).(3.14)

Similarly,

(3.15) | (I - \Pi h)(\chi lvh)| H1(\tau )
<\sim 

h\tau 

\delta \ell 
hr - 2
\tau | vh| Hr - 1(\tau ) \lesssim 

h\tau 

\delta \ell 
\| vh\| H1(\tau ).

Combining (3.14) and (3.15) yields the result.

We now specify a simplifying assumption on h, k, and \delta .

Assumption 3.4. We have

kh \lesssim 1 and k\delta \gtrsim 1.(3.16)
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The left-hand inequality in (3.16) simply says that the fine mesh resolves the
oscillatory solution (which is always needed for an accuracy anyway; see Remark
2.9), while the right-hand inequality requires that the overlap contains at least one
oscillation. Clearly, (3.16) is equivalent to

kh\ell \lesssim 1 and k\delta \ell \gtrsim 1 for each \ell ,(3.17)

provided the hidden constants are independent of \ell , and this, in turn, implies that
h\ell /\delta \ell \lesssim 1. This latter inequality requires that the overlapped part of any subdomain
need only be large enough with respect to the local fine mesh diameter h\ell . We retain
the ratio h\ell /\delta \ell in the error estimate (3.11), since in many situations this can approach
0 as k \rightarrow \infty .

Corollary 3.5. Under Assumption 3.4, for vh \in \scrV h,

vh =

N\sum 
\ell =1

\Pi h(\chi \ell vh) and

N\sum 
\ell =1

\| \Pi h(\chi \ell vh)\| 21,k,\Omega \ell 
\lesssim \Lambda \| vh\| 21,k,\Omega .

Proof. Using the triangle inequality, and then (3.1), (3.11), and (3.17), we have

\| \Pi h(\chi \ell vh)\| 1,k,\Omega \ell 
\leq \| \chi \ell vh\| 1,k,\Omega \ell 

+ \| (I  - \Pi h)(\chi \ell vh)\| 1,k,\Omega \ell 

\lesssim \| vh\| 1,k,\Omega \ell 
+ \| vh\| H1(\Omega \ell ) \lesssim \| vh\| 1,k,\Omega \ell 

,(3.18)

and the result follows by squaring, summing, and applying (2.10).

The next result is a kind of converse to the stable splitting result discussed in
Remark 3.2.

Lemma 3.6. For each \ell = 1, . . . , N , choose any functions v\ell \in H1(\Omega ), with
supp v\ell \subset \Omega \ell . Then

(3.19)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 
\ell =1

v\ell 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

1,k

\leq \Lambda 

N\sum 
\ell =1

\| v\ell \| 21,k,\Omega \ell 
.

Proof. The proof follows almost verbatim from [30, Lemma 4.2], with a little
extra care needed to obtain the explicit constant \Lambda on the right-hand side.

3.2. Results about the projection operators. In this subsection, we study
the projection operators Qh

\varepsilon ,\ell which were defined in (2.20). Our goal is a bound on the

operator Qh
\varepsilon ,\ell  - \Pi h\chi \ell with respect to the Helmholtz energy norm \| \cdot \| 1,k; see Lemma

3.8. This bound is a key ingredient of our main results---Theorem 3.11 (for projection
operators) and Theorem 3.12 (for matrices).

We first note that, when wh,\ell \in \scrV h
\ell , \Pi 

h(\chi \ell wh,\ell ) is supported on \Omega \ell and vanishes
on \partial \Omega \ell . Thus, by (2.20), for all wh,\ell \in \scrV h

\ell and v \in H1(\Omega ),

a\varepsilon ,\ell (Q
h
\varepsilon ,\ell v, wh,\ell ) = a\varepsilon ,\ell (v,\Pi 

h(\chi \ell wh,\ell ))

and hence

(3.20) a\varepsilon ,\ell (Q
h
\varepsilon ,\ell v  - \Pi h(\chi \ell v), wh,\ell ) = a\varepsilon ,\ell (v,\Pi 

h(\chi \ell wh,\ell )) - a\varepsilon ,\ell (\Pi 
h(\chi \ell v), wh,\ell ).

This shows that Qh
\varepsilon ,\ell v  - \Pi h(\chi \ell v) satisfies a local impedance problem with ``data""

given by the ``commutator"" (appearing on the right-hand side of (3.20)). To estimate
this commutator we write

a\varepsilon ,\ell (v,\Pi 
h(\chi \ell wh,\ell )) - a\varepsilon ,\ell (\Pi 

h(\chi \ell v), wh,\ell ) = a\varepsilon ,\ell ((I  - \Pi h)(\chi \ell v), wh,\ell )(3.21)
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 - a\varepsilon ,\ell (v, (I  - \Pi h)(\chi \ell wh,\ell ))

+ b\ell (v, wh,\ell ),

where

b\ell (v, w) := a\varepsilon ,\ell (v, \chi \ell w) - a\varepsilon ,\ell (\chi \ell v, w) = (v, \chi \ell w)1,k,\Omega \ell 
 - (\chi \ell v, w)1,k,\Omega \ell 

=

\int 
\Omega \ell 

\nabla \chi \ell .(w\nabla v  - v\nabla w) .(3.22)

The following lemma provides estimates for each of the terms on the right-hand side
of (3.2).

Lemma 3.7. (i) For all v, w \in H1(\Omega \ell ),

| b\ell (v, w)| \lesssim (k\delta \ell )
 - 1 \| v\| 1,k,\Omega \ell 

\| w\| 1,k,\Omega \ell 
.

(ii) For all vh, wh \in \scrV h
\ell ,

max
\Bigl\{ 
| a\varepsilon ,\ell (vh, (I - \Pi h)(\chi \ell wh))| , | a\varepsilon ,\ell ((I - \Pi h)(\chi \ell vh), wh)| 

\Bigr\} 
\lesssim 

\biggl( 
1 +

1

kH\ell 

\biggr) 
h\ell 

\delta \ell 
\| vh\| 1,k,\Omega \ell 

\| wh\| 1,k,\Omega \ell 
.

Proof. Applying the Cauchy--Schwarz inequality to (3.22) and using (2.19), we
obtain

| b\ell (v, w)| \lesssim (k\delta \ell )
 - 1

\Bigl( 
k\| w\| L2(\Omega \ell )| v| H1(\Omega \ell ) + k\| v\| L2(\Omega \ell )| w| H1(\Omega \ell )

\Bigr) 
,

and the result (i) follows after an application of the Cauchy--Schwarz inequality with
respect to the Euclidean inner product in \BbbR 2.

For (ii), recall Assumption 2.1, and use the continuity of a\varepsilon ,\ell (from Lemma 2.4)
and the fact that \Omega \ell has characteristic length scale H\ell to obtain

| a\varepsilon (vh, (I - \Pi h)(\chi \ell wh))| \lesssim (1 + (kH\ell )
 - 1)\| vh\| 1,k,\Omega \ell 

\| (I - \Pi h)(\chi \ell wh)\| 1,k,\Omega \ell 
;(3.23)

the result then follows on applying Lemma 3.3.

Combining (3.20) with Lemma 3.7 and Theorem 2.8, we obtain the following
estimate for the quantity Qh,\ell vh  - \Pi h(\chi \ell vh). As we will see in (3.46), this quantity
is related to the quality of the preconditioner on the subdomain \Omega \ell .

Lemma 3.8. Under Assumption 3.4 and the assumptions of Theorem 2.8, for all
vh \in \scrV h

\ell , and for all \ell ,

(3.24) \| Qh
\varepsilon ,\ell vh  - \Pi h(\chi \ell vh)\| 1,k,\Omega \ell 

\lesssim 
1

k\delta \ell 
\Theta (\varepsilon ,H\ell , k) \| vh\| 1,k,\Omega \ell 

,

and

(3.25) \| Qh
\varepsilon ,\ell vh\| 1,k,\Omega \ell 

\lesssim 

\biggl[ 
1 +

1

k\delta \ell 
\Theta (\varepsilon ,H\ell , k)

\biggr] 
\| vh\| 1,k,\Omega \ell 

.

Proof. Let vh \in \scrV h
\ell . By (3.20) and (3.2), we have

a\varepsilon ,\ell (Q
h
\varepsilon ,\ell vh  - \Pi h\chi \ell vh, wh,\ell ) = F (wh,\ell ), wh,\ell \in \scrV h

\ell ,(3.26)
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where

F (wh,\ell ) := a\varepsilon ,\ell ((I  - \Pi h)(\chi \ell vh), wh,\ell ) - a\varepsilon ,\ell (vh, (I  - \Pi h)(\chi \ell wh,\ell )) + b\ell (vh, wh,\ell ).

Using Lemma 3.7 and (3.16), we have, for any wh,\ell \in \scrV h
\ell ,

| F (wh,\ell )| \lesssim 

\biggl( \biggl( 
1 +

1

kH\ell 

\biggr) 
h\ell 

\delta \ell 
+

1

k\delta \ell 

\biggr) 
\| vh\| 1,k,\Omega \ell 

\| wh,\ell \| 1,k,\Omega \ell 
(3.27)

=
1

k\delta \ell 

\biggl( 
kh\ell +

h\ell 

H\ell 
+ 1

\biggr) 
\| vh\| 1,k,\Omega \ell 

\| wh,\ell \| 1,k,\Omega \ell 

\lesssim 
1

k\delta \ell 
\| vh\| 1,k,\Omega \ell 

\| wh,\ell \| 1,k,\Omega \ell 
,

where we have used (3.16) and the fact that h\ell \leq H\ell . Then (3.24) follows from
Theorem 2.8. To obtain (3.25), we write \| Q\varepsilon ,\ell vh\| 1,k,\Omega \ell 

\leq \| Q\varepsilon ,\ell vh - \Pi h(\chi \ell vh)\| 1,k,\Omega \ell 
+

\| \Pi h(\chi \ell vh)\| 1,k,\Omega \ell 
, and then use (3.18) and (3.24).

Combining Lemma 3.8 with the definition of \Theta in (2.15), (2.16), we have the
immediate corollary.

Corollary 3.9. Under the assumptions of Theorem 2.8, we get the following:
(i) If | \varepsilon | > 0, then

(3.28) \| Qh
\varepsilon ,\ell vh  - \chi \ell vh\| 1,k,\Omega \ell 

\lesssim 
k

| \varepsilon | \delta \ell 
\| vh\| 1,k,\Omega \ell 

.

(ii) If | \varepsilon | \geq 0, h \leq h(k, r), and each \Omega \ell is starshaped with respect to a ball
uniformly in \ell , then

(3.29) \| Qh
\varepsilon ,\ell vh  - \chi \ell vh\| 1,k,\Omega \ell 

\lesssim 

\biggl( 
H\ell 

\delta \ell 
+

1

k\delta \ell 

\biggr) 
\| vh\| 1,k,\Omega \ell 

uniformly in \ell .

3.3. Bounds on the norm and field of values. To aid the reader, we recap
all the assumptions made so far: Both the fine mesh \scrT h and the subdomains \{ \Omega \ell \} are
assumed shape-regular and have overlap described in (2.7) and (2.8), with \delta > 0. We
make the finite-overlap assumption (2.9) and the partition of unity functions \{ \chi \ell \} are
assumed to be continuous, piecewise linear, and satisfy (2.19). We assume that k and
\varepsilon satisfy Assumption 2.1, and either \eta = sign(\varepsilon )k or \eta =

\surd 
k2 + i\varepsilon . All of these will

be assumed without comment in what follows, but we will explicitly state when we
need Assumption 3.4 and the following slightly stronger assumption.

Assumption 3.10. We have

k\delta \rightarrow \infty as k \rightarrow \infty .(3.30)

This assumption requires the overlap to contain an increasing number of oscilla-
tions as k increases (although the rate of increase can be arbitrarily slow).

Theorem 3.11. Let Assumption 3.4 hold and suppose that for each \ell = 1, . . . , N
there exists \sigma \ell > 0 such that
(3.31)\bigm\| \bigm\| Qh

\varepsilon ,\ell vh  - \Pi h(\chi \ell vh)
\bigm\| \bigm\| 
1,k,\Omega \ell 

\leq \sigma \ell \| vh\| 1,k,\Omega \ell 
for all vh \in \scrV h, \ell = 1, . . . , N.

Set \sigma = max\{ \sigma \ell : \ell = 1, . . . , N\} .
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(i) Then,

(3.32) max
vh\in \scrV h

\bigm\| \bigm\| Qh
\varepsilon vh

\bigm\| \bigm\| 
1,k

\| vh\| 1,k
\lesssim \Lambda (1 + \sigma ) .

(ii) If, in addition, Assumption 3.10 holds, then, for k sufficiently large,

(3.33) min
vh\in \scrV h

\bigm| \bigm| (vh, Qh
\varepsilon vh)1,k

\bigm| \bigm| 
\| vh\| 21,k

\geq 
\biggl( 
1

\Lambda 
 - 

\surd 
2\sigma \Lambda 

\biggr) 
+ R,

where the remainder R satisfies the estimate

(3.34) | R| \leq C
\Lambda 

k\delta 
(1 + \sigma ) ,

where C is a constant independent of all parameters. Note that (3.33) is a genuine
lower bound, and the unspecified constant C appears only in R.

Proof. Throughout the proof, we use the notation

(3.35) zl := Qh
\varepsilon ,\ell vh  - \Pi h(\chi \ell vh), so that, by (3.31), \| z\ell \| 1,k,\Omega \ell 

\leq \sigma \ell \| vh\| 1,k,\Omega \ell 
.

To obtain (3.32), we use the triangle inequality, then (3.18) and (3.31), to obtain

(3.36) \| Qh
\varepsilon ,\ell vh\| 1,k,\Omega \ell 

\leq \| \Pi h(\chi \ell vh)\| 1,k,\Omega \ell 
+ \| zl\| 1,k,\Omega \ell 

\leq (1 + \sigma \ell ) \| vh\| 1,k,\Omega \ell 
.

Then, using Lemma 3.6, (3.18), and (3.36),

\| Qh
\varepsilon vh\| 21,k =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
\ell 

\Pi h
\bigl( 
\chi \ell Q

h
\varepsilon ,\ell vh

\bigr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

1,k

\leq \Lambda 
\sum 
\ell 

\bigm\| \bigm\| \Pi h
\bigl( 
\chi \ell Q

h
\varepsilon ,\ell vh

\bigr) \bigm\| \bigm\| 2
1,k,\Omega \ell 

\lesssim \Lambda 
\sum 
\ell 

\bigm\| \bigm\| Qh
\varepsilon ,\ell vh

\bigm\| \bigm\| 2
1,k,\Omega \ell 

\lesssim \Lambda (1 + \sigma )
2
\sum 
\ell 

\| vh\| 21,k,\Omega \ell 

and (3.32) then follows on using (2.10).
To obtain (3.33), we first use Lemma 3.3 and (3.16) to obtain

(vh,\Pi 
h(\chi \ell Q

h
\varepsilon ,\ell vh))1,k,\Omega \ell 

= (vh, \chi \ell Q
h
\varepsilon ,\ell vh)1,k,\Omega \ell 

+\scrO 
\biggl( 
h

\delta 

\biggr) 
\| vh\| 1,k,\Omega \ell 

\| Qh
\varepsilon ,\ell vh\| 1,k,\Omega \ell 

.

(3.37)

Also, using (3.22) and Lemma 3.7, we have that\bigm| \bigm| (vh, \chi \ell Q
h
\varepsilon ,\ell vh)1,k,\Omega \ell 

 - (\chi \ell vh, Q
h
\varepsilon ,\ell vh)1,k,\Omega \ell 

\bigm| \bigm| = \bigm| \bigm| b\ell (vh, Qh
\varepsilon ,\ell vh)

\bigm| \bigm| 
\lesssim \scrO 

\biggl( 
1

k\delta 

\biggr) 
\| vh\| 1,k,\Omega \ell 

\| Qh
\varepsilon ,\ell vh\| 1,k,\Omega \ell 

.(3.38)

Moreover, by the definition of zl and Lemma 3.3,

(\chi \ell vh, Q
h
\varepsilon ,\ell vh)1,k,\Omega \ell 

= \| \chi \ell vh\| 21,k,\Omega \ell 
+ (\chi \ell vh, z\ell )1,k,\Omega \ell 

+
\bigl( 
\chi \ell vh,\Pi 

h(\chi \ell vh) - \chi \ell vh
\bigr) 
1,k,\Omega \ell 

= \| \chi \ell vh\| 21,k,\Omega \ell 
+ (\chi \ell vh, z\ell )1,k,\Omega \ell 

+\scrO 
\biggl( 
h

\delta 

\biggr) 
\| \chi \ell vh\| 1,k,\Omega \ell 

\| vh\| 1,k,\Omega \ell 
.(3.39)
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Combining (3.37), (3.38), and then using (3.39), we obtain

(vh, Q
h
\varepsilon vh)1,k =

\sum 
\ell 

\bigl( 
vh,\Pi 

h(\chi \ell Q
h
\varepsilon ,\ell vh)

\bigr) 
1,k,\Omega \ell 

=
\sum 
\ell 

\biggl[ 
(\chi \ell vh, Q

h
\varepsilon ,\ell vh)1,k,\Omega \ell 

+\scrO 
\biggl( 

1

k\delta 
+

h

\delta 

\biggr) 
\| vh\| 1,k,\Omega \ell 

\| Qh
\varepsilon ,\ell vh\| 1,k,\Omega \ell 

\biggr] 
=

\sum 
\ell 

\Bigl[ 
\| \chi \ell vh\| 21,k,\Omega \ell 

+ (\chi \ell vh, zl)1,k,\Omega \ell 

\Bigr] 
+
\sum 
\ell 

\biggl[ 
\scrO 
\biggl( 

1

k\delta 
+

h

\delta 

\biggr) 
\| vh\| 1,k,\Omega \ell 

\| Qh
\varepsilon ,\ell vh\| 1,k,\Omega \ell 

+ \scrO 
\biggl( 
h

\delta 

\biggr) 
\| vh\| 1,k,\Omega \ell 

\| \chi \ell vh\| 1,k,\Omega \ell 

\biggr] 
.(3.40)

Using (3.16), (3.36), (3.1), and (2.10), the second sum in (3.40) can be estimated by

1

k\delta 

\sum 
\ell 

(1 + \sigma \ell )\| vh\| 21,k,\Omega \ell 
\lesssim 

\Lambda (1 + \sigma )

k\delta 
\| vh\| 21,k.

Also, using the Cauchy--Schwarz inequality, and then (3.1) and (3.35), the mod-
ulus of the first sum in (3.40) can be estimated from below by

\sum 
\ell 

\| \chi \ell vh\| 21,k,\Omega \ell 
 - 

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
\ell 

(\chi \ell vh, z\ell )1,k,\Omega \ell 

\bigm| \bigm| \bigm| \bigm| \bigm| \geq 
\sum 
\ell 

\bigl( 
\| \chi \ell vh\| 21,k,\Omega \ell 

 - \| \chi \ell vh\| 1,k,\Omega \ell 
\| z\ell \| 1,k,\Omega \ell 

\bigr) (3.41)

\geq 
\sum 
\ell 

\| \chi \ell vh\| 21,k,\Omega \ell 
 - 
\surd 
2\sigma 

\sum 
\ell 

\| vh\| 21,k,\Omega \ell 
+\scrO 

\Bigl( \sigma 

k\delta 

\Bigr) \sum 
\ell 

\| vh\| 21,k,\Omega \ell 
.

(3.42)

The result (3.33) then follows from using (3.5) and (2.10).

Using Theorem (2.10), we now convert this to a statement about matrices.

Theorem 3.12. Let Assumption 3.4 hold, and let \sigma > 0 be such that

\| A - 1
\varepsilon ,\ell R\ell A\varepsilon  - R\ell \| Dk

\leq \sigma , \ell = 1, . . . , N.(3.43)

Then

\| B - 1
\varepsilon A\varepsilon \| Dk

\lesssim \Lambda (1 + \sigma ) .(3.44)

If, in addition, Assumption 3.10 holds, then for k sufficiently large,

min
\bfV \in \BbbC n

\bigm| \bigm| \langle V, B - 1
\varepsilon A\varepsilon V\rangle Dk

\bigm| \bigm| 
\| V\| 2Dk

\geq 
\biggl( 
1

\Lambda 
 - 

\surd 
2\sigma \Lambda 

\biggr) 
+R,(3.45)

with R satisfying (3.34).

Proof. First note that, from (1.14) and (1.15), if vh \in \scrV h is a finite-element
function with nodal vector V, then \| vh\| 1,k = \| V\| Dk

. By Theorem 2.10, the nodal
vectors of Qh

\varepsilon ,\ell vh and Qh
\varepsilon vh are A - 1

\varepsilon ,\ell R\ell A\varepsilon V and B - 1
\varepsilon A\varepsilon V, respectively. By (1.12),

the nodal vector of \Pi h(\chi \ell vh) is R\ell V. Thus
(3.46)
\| Qh

\varepsilon \| 1,k = \| B - 1
\varepsilon A\varepsilon \| Dk

and \| Qh
\varepsilon ,\ell vh  - \Pi h(\chi \ell vh)\| 1,k = \| A - 1

\varepsilon ,\ell R\ell A\varepsilon V  - R\ell V\| Dk
.

From these relations, and also (2.23), Theorem 3.11 implies Theorem 3.12.
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2536 IVAN G. GRAHAM, EUAN A. SPENCE, AND JUN ZOU

This theorem immediately yields the following corollary about the convergence of
GMRES.

Corollary 3.13. Suppose Assumptions 3.4 and 3.10 hold and that (3.43) holds,
with

\sigma <
1\surd 
2\Lambda 2

.(3.47)

If GMRES is applied to (1.5) in the inner product induced by Dk with B - 1
\varepsilon as a left

preconditioner, then the number of iterations needed to achieve a prescribed accuracy
remains bounded as k \rightarrow \infty .

Proof. This follows directly from Theorem 3.12 and the GMRES convergence
theory in [15].

As explained above, Assumptions 3.4 and 3.10 are quite mild requirements. How-
ever (3.47) is a stronger constraint and may lead to restrictions on \varepsilon and H. Essen-
tially, it says that for each \ell , the ``local impedance solve"" A - 1

\varepsilon ,\ell should be a sufficiently

good left inverse for A\varepsilon when it is restricted to \Omega \ell . In the following corollary, whose
proof follows from Corollary 3.9, part (i) gives conditions under which \sigma can be
bounded (hence useful for the upper bound (3.44)), while parts (ii) and (iii) give
conditions for \sigma to be small (and hence are relevant to ensuring (3.45)).

Corollary 3.14. Let the assumptions of Theorem 3.11 hold.
(i) Assume that h \leq h(k, r), and each \Omega \ell is starshaped with respect to a ball

uniformly in \ell . Then, for all \varepsilon with 0 \leq | \varepsilon | \leq k2, we have \sigma \lesssim H/\delta .
(ii) If | \varepsilon | > 0, \varepsilon \sim k1+\beta for 0 < \beta < 1, \delta \sim H \sim k - \alpha for 0 < \alpha < 1, then

\sigma \lesssim k\alpha  - \beta .
(iii) If | \varepsilon | > 0 and \delta is fixed, then there exist constants C and k0 so that when

\varepsilon = Ck and k \geq k0,

\sigma \leq 1

2
\surd 
2\Lambda 2

.

Using the bounds of Corollary 3.14 in Theorem 3.12, we obtain the following
results about B - 1

\varepsilon A\varepsilon .

Corollary 3.15 (upper bound on the norm of B - 1
\varepsilon A\varepsilon ). Assume that h \leq 

h(k, r), and each \Omega \ell is starshaped with respect to a ball uniformly in \ell . Assume that
\delta \sim H. Then, for all 0 \leq | \varepsilon | \leq k2,

\| B - 1
\varepsilon A\varepsilon \| Dk

\lesssim 1.

Corollary 3.16 (lower bound on the distance of the field of values from the
origin).

(i) If | \varepsilon | \sim k1+\beta for 0 < \beta < 1, \delta \sim H, and H \sim k - \alpha for 0 < \alpha < 1, then

min
\bfV \in \BbbC n

\bigm| \bigm| \langle V, B - 1
\varepsilon A\varepsilon \rangle Dk

\bigm| \bigm| 
\| V\| 2Dk

\geq 1 - \scrO (k\alpha  - \beta ) as k \rightarrow \infty .

(ii) If \delta is fixed, then there exist constants C and k0 so that when | \varepsilon | = Ck and
k \geq k0,

min
\bfV \in \BbbC n

\bigm| \bigm| \langle V, B - 1
\varepsilon A\varepsilon \rangle Dk

\bigm| \bigm| 
\| V\| 2Dk

\geq 1

2\Lambda 
.
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Remark 3.17 (right preconditioning). The results in [30, Theorem 5.8]---see also
[31, section 3]---show how results about right preconditioning (working in the D - 1

k

inner product) can be obtained from analogous results about left preconditioning of
the adjoint problem (working in the Dk inner product). The results in section 2
and subsections 3.1 and 3.2 all hold when the problem (1.1), (1.2) is replaced by its
adjoint (see, in particular, Remark 2.5); therefore, the results in this section about
left preconditioning (in the Dk inner product) also hold for right preconditioning (in
the D - 1

k inner product).

Remark 3.18 (Dirichlet boundary conditions). Some parts of the analysis pre-
sented in this paper hold in the case when the boundary conditions on the subdomains
are changed from impedance to Dirichlet, i.e., when the integral over \partial \Omega \ell \setminus \Gamma D is re-
moved from (2.11). However, parts (ii) of Theorem 2.8 and Corollary 3.9 no longer
hold in this case. Additionally, the upper bound on the norm for \varepsilon = 0 in Corollary
3.15 does not hold either. We see in Experiment 5 that when the impedance boundary
conditions are replaced by Dirichlet, the preconditioner performs poorly for the pure
Helmholtz equation.

4. Numerical experiments. In this section we give numerical experiments il-
lustrating the performance of the preconditioners defined in section 1.2 and analyzed
in section 3.3. We consider problem (1.1)--(1.2) with \Omega being the unit square in 2-d.
We first choose a uniform coarse mesh \scrT H of equal square elements of side length
H = 1/M on \Omega . Let \bfitx \ell ,m = (\ell H,mH), \ell ,m = 0, . . . ,M , denote the coarse mesh
nodes. We introduce subdomains \Omega \ell ,m, defined to be interior of the union of all the
coarse mesh elements that touch \bfitx \ell ,m for \ell ,m = 0, . . . ,M . These subdomains have
generous overlap in the sense of (2.7). Let \chi \ell ,m denote the piecewise bilinear nodal
basis functions with respect to the coarse mesh, i.e., \chi \ell ,m is bilinear with respect to
the coarse mesh and \chi \ell ,m(\bfitx \ell \prime ,m\prime ) = \delta \ell  - \ell \prime ,m - m\prime . Then \{ \chi \ell ,m : \ell ,m = 0, . . . ,M\} form
a partition of unity and we use this to define the preconditioner (1.13).

Illustration of the notation used in the proof of (3.4). Recalling (1.11),
we can see that for each \ell ,m \in \{ 0, . . . ,M\} , supp\chi \ell ,m \subseteq \Omega \ell ,m. Moreover, for \bfitx \in \Omega 
and m(\bfitx ) defined by (3.6), we have

m(\bfitx ) = 1 when \bfitx is a node \bfitx \in \{ \bfitx \ell ,m : \ell ,m \in \{ 0, . . . ,M\} \} ,
m(\bfitx ) = 2 when \bfitx is an interior point of any edge of the coarse mesh,

m(\bfitx ) = 4 when \bfitx is an interior point of any coarse mesh element.

Hence \Lambda = 4. Note that D1 contains all the nodes of the coarse grid, D2 contains
all interior points of edges of the coarse grid, and D4 contains all interior points of
coarse grid elements. Note \mu (D1) = \mu (D2) = 0, with \mu denoting Lebesgue measure,
and \mu (D4) = \mu (\Omega ). Moreover, the index sets \scrD (1),\scrD (2), and \scrD (4) actually contain
all indices (\ell ,m) with \ell ,m \in \{ 0, . . . ,M\} .

The coarse mesh is then refined uniformly to obtain a fine triangular mesh \scrT h.
The space \scrV h which is used to obtain the linear system (1.5) is the space of piecewise-
linear finite-element functions on \scrT h. The linear system (1.5) is therefore charac-
terized by two parameters: the fine mesh diameter h and \varepsilon in (1.1) denoted by
hprob and \varepsilon prob, respectively. In all of the experiments here we choose h \sim k - 3/2 (the
level of refinement generally believed to keep the relative error of the finite-element
solution bounded independently of k as k \rightarrow \infty ; see Remark 2.9). Although these
are 2-d problems, the dimension n = (k3/2)2 = k3 of the systems grows very quickly
with k, and is well over 106 when k = 140 (considered below). The preconditioner is

D
ow

nl
oa

de
d 

07
/1

9/
22

 to
 1

37
.1

89
.4

9.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2538 IVAN G. GRAHAM, EUAN A. SPENCE, AND JUN ZOU

characterized by the coarse grid diameter and the level of absorption used, denoted
by H and \varepsilon prec, respectively.

In Experiments 1 and 2, we verify the theory by illustrating the performance of
the preconditioner on some problems with \varepsilon prob > 0. In Experiments 3, 4, and 5,
we solve the ``pure Helmholtz"" problem, i.e., \varepsilon prob = 0. Unless otherwise stated, the
data f, g in (1.5) is chosen so that the exact solution of (1.3)--(1.4) is a plane wave

u(x) = exp(ikx.\widehat d), where \widehat d = (1/
\surd 
2, 1/

\surd 
2)\top . Note that oscillations in the solution

are resolved by the fine grid but are not resolved by the subdomains. We choose
\Gamma D = \emptyset , so that \Gamma = \Gamma I . Except in Experiment 4, the initial guess for GMRES is
chosen to be a random (uniformly distributed in [0, 1]m) vector in \BbbR n. In all cases the
GMRES stopping criterion is based on requiring the initial residual to be reduced by
10 - 6. Standard GMRES (with residual minimization in the Euclidean norm) is used,
even though the estimates in Theorem 3.12 are with respect to the norm induced by
Dk; the numerical experiments in [30, 6] (for a similar method) found the iteration
counts to be essentially identical when minimization in the Euclidean norm is replaced
by minimization in the norm induced by Dk.

Experiment 1. We choose

hprob \sim k - 3/2, \varepsilon prob = \varepsilon prec = k1+\beta , Hprec = k - \alpha , where \beta = \alpha + 0.1.(4.1)

Corollary 3.14 predicts a wavenumber-independent iteration count for GMRES,
and this behavior is clearly visible in Table 1(a). Reading across this table, for fixed
k, larger \alpha corresponds to smaller subdomains (and thus the preconditioner becomes
cheaper per iterate). The number of iterations increases (slightly) as \alpha increases but
remains bounded as k increases for fixed \alpha . We also note that if we read diagonally
across Table 1(a) (thus increasing the rate of decrease of H as k increases), we see
roughly logarithmic growth in the number of iterations, although the analogous growth
is somewhat faster in later tables.

Table 1

k\setminus \alpha 0.2 0.3 0.4 0.5
40 4 6 7 9
60 4 5 7 10
80 3 6 8 9
100 5 6 7 9
120 4 5 7 9
140 4 5 7 9

(a) GMRES iterations for case
(4.1).

k\setminus \alpha 0.2 0.3 0.4 0.5
40 4 7 10 17
60 4 7 12 22
80 4 9 13 21
100 6 8 13 23
120 5 8 15 24
140 5 7 13 25

(b) GMRES iterations for case
(4.2).

Based on Experiment 1, and recalling the discussion in the introduction (in partic-
ular, (1.8)), we now investigate how well the preconditioner performs when we reduce
the absorption in the problem being solved to \varepsilon prob = k.

Experiment 2. We choose

hprob \sim k - 3/2, \varepsilon prob = \varepsilon prec = k, and Hprec = k - \alpha .(4.2)

Comparing Tables 1 (left and right), we see an increase in the iteration numbers
(especially for larger \alpha ), but growth with k appears to be avoided provided \alpha \leq 0.4.
This shows that B - 1

k is a good preconditioner for Ak, and so by the heuristic argument
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DOMAIN DECOMPOSITION FOR HELMHOLTZ 2539

centered on (1.8), we expect B - 1
k to be a good preconditioner for A. Experiment 3

shows this to be true. Here \varepsilon prob is reduced from k to 0; we see a slight increase in
iteration numbers compared to \varepsilon prob = k, but still apparent robustness to increasing
k, for fixed \alpha \leq 0.4.

Experiment 3. We choose

hprob \sim k - 3/2, \varepsilon prob = 0, and Hprec = k - \alpha .(4.3)

Table 2
Number of GMRES iterations for the case (4.3).

\varepsilon prec = k \varepsilon prec = 0
k\setminus \alpha 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
40 6 8 12 20 5 8 11 19
60 5 8 14 25 5 7 14 25
80 5 10 15 25 4 10 15 24
100 7 9 15 27 7 9 15 27
120 6 9 17 29 6 9 17 29
140 6 9 17 31 6 8 16 31

We make two observations from the results of Experiments 1--3.
1. The one-level Schwarz method provides an optimal preconditioner for the pure

Helmholtz problem---the iteration numbers appear bounded independently of
k (and hence n) as k increases---provided the subdomain diameter does not
shrink too quickly. Robustness is maintained when the subdomain diameters
shrink no faster than \scrO (k - 0.4).

2. The performance of the preconditioner is virtually the same whether it is
built from the absorptive system \varepsilon prec = k or from the pure Helmholtz system
\varepsilon prec = 0. While the results of the present paper give theoretical support for
the observed robustness when \varepsilon prec = k (see the discussion in section 1 and
Appendix A), with existing theoretical tools it seems very difficult to prove
results for the case \varepsilon prec = 0.

Experiment 4. As a more extreme case we consider subdomains which are fixed
as h \rightarrow 0. While this is not a practical method (the subproblems have the same order
of complexity as the global problem), it can provide a useful starting point for methods
based on recursive application of the one-level method, as described in section 1.4. We
therefore consider

h \sim k - 3/2, \varepsilon prob = 0, H = 1/M.(4.4)

In the left-hand panel of Table 3, \varepsilon prec = k and a random starting guess is chosen. In
the middle panel, \varepsilon prec = 0 and a random starting guess is chosen. In the right-hand
panel, \varepsilon prec = k and a zero starting guess is chosen. Again, there is little effect from
switching off the absorption in the preconditioner. Surprisingly, a random starting
guess leads to consistently lower iteration counts than a zero starting guess; we have
no explanation for this observation.

Finally, we study the effect of changing the boundary condition on the subdomains
from impedance to Dirichlet (recall Remark 3.18).

Experiment 5. We choose Dirichlet conditions on subdomains with

hprob \sim k - 3/2, \varepsilon prob = 0, and Hprec = k - \alpha .(4.5)
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Table 3
Number of GMRES iterations for the case (4.4).

Random Random Zero
starting guess starting guess starting guess

\varepsilon prec = k \varepsilon prec = 0 \varepsilon prec = k
k\setminus M 4 8 16 4 8 16 4 8 16
40 12 27 61 11 27 61 16 36 82
60 11 25 56 10 25 56 15 36 81
80 10 22 52 10 22 52 15 33 75
100 9 21 48 9 21 48 15 33 71
120 9 20 45 9 20 45 15 31 69
140 8 18 41 8 18 41 14 31 70

In Table 4 we see that this yields a very poor preconditioner for the pure Helmholtz
problem (compare Experiment 5 with Experiment 3). Similar observations are made
in [30], where coarse grids were also used to improve the robustness.

Table 4
Number of GMRES iterations for the case (4.5) with homogeneous Dirichlet condition on sub-

domain boundaries.

\varepsilon prec = k \varepsilon prec = 0
k\setminus \alpha 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
10 7 7 12 12 6 6 15 15
20 7 7 17 25 5 5 20 29
40 6 16 34 86 5 22 43 110
60 6 16 68 102 5 25 83 121
80 5 46 127 239 5 78 173 256
100 14 58 130 242 22 121 222 429

Appendix A. A rigorous basis for the discussion around (1.8).

Lemma A.1. Let (\cdot , \cdot ) be an inner product with associated norm \| \cdot \| . Assume
that (1.6) holds with \| \cdot \| 2 replaced by \| \cdot \| and with K > 0 independent of \varepsilon and k.
Assume also that for all \varepsilon in some neighbourhood of the origin, there exist positive
numbers C1(\varepsilon ) and C2(\varepsilon ) (which may depend on \varepsilon but are independent of all other
parameters), such that

\| B - 1
\varepsilon A\varepsilon \| \leq C1(\varepsilon ) and

| (V, B - 1
\varepsilon A\varepsilon V)| 

\| V\| 2
\geq C2(\varepsilon ) for all V \in \BbbC n.(A.1)

Then

\| B - 1
\varepsilon A\| \leq C1(\varepsilon )

\biggl( 
1 +K

| \varepsilon | 
k

\biggr) 
and

| (V, B - 1
\varepsilon AV)| 

\| V\| 2
\geq C2(\varepsilon ) - K C1(\varepsilon )

| \varepsilon | 
k

(A.2)

for all V \in \BbbC n.

Remark A.2. Observe that for the norm in (A.2) to remain bounded we simply
need C1(\varepsilon ) to be bounded, while for the field of values to be bounded away from the
origin we need the stronger condition

C2(\varepsilon ) > KC1(\varepsilon )
| \varepsilon | 
k
.
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Proof of Lemma A.1. The first bound in (A.2) follows from (1.7), (1.6), and the
first equation in (A.1). To obtain the second bound in (A.2), we use (1.7), the first
bound in (A.2), and the inverse triangle inequality to obtain

\bigm| \bigm| (V, B - 1
\varepsilon AV)

\bigm| \bigm| \geq 
\bigm| \bigm| (V, B - 1

\varepsilon A\varepsilon V)
\bigm| \bigm|  - KC1(\varepsilon )

| \varepsilon | 
k
\| V\| 2,

and we then use the second equation in (A.1).
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