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SPHERICAL INTERFACE DYNAMOS: MATHEMATICAL THEORY,
FINITE ELEMENT APPROXIMATION, AND APPLICATION∗

KIT HUNG CHAN† , KEKE ZHANG† , AND JUN ZOU‡

Abstract. Stellar magnetic activities such as the 11-year sunspot cycle are the manifestation
of magnetohydrodynamic dynamo processes taking place in the deep interiors of stars. This paper
is concerned with the mathematical theory and finite element approximation of mean-field spherical
dynamos and their astrophysical application. We first investigate the existence, uniqueness, and
stability of the dynamo system governed by a set of nonlinear PDEs with discontinuous physical
coefficients in spherical geometry, and characterize the system by a saddle-point type variational
form. Then we propose a fully discrete finite element approximation to the dynamo system and
study its convergence and stability. For the astrophysical application, we perform some fully three-
dimensional numerical simulations of a solar interface dynamo using the proposed algorithm, which
successfully generates the equatorially propagating dynamo wave with a period of about 11 years
similar to that of the Sun.
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1. Introduction. Many astrophysical bodies possess intrinsic magnetic fields.
The radio signals in connection with Jupiter’s magnetic field were first observed more
than a half century ago [8] and Jupiter’s magnetic field was later measured by the
Pioneer spacecraft [1]; the Sun’s magnetic field has been observed for a long time [31]
and undergone nearly periodic variations with a period of about 11 years. It has been
widely accepted that large-scale planetary and stellar magnetic activities represent the
manifestation of magnetohydrodynamic dynamo processes taking place in the deep
interiors of planets and stars [23, 34, 36, 4]. Though significant progress has been
made toward the understanding of quantitative features of stellar magnetic activities,
more realistic dynamo simulations in the parameter regime pertaining to stars and
planets remain a tough challenge.

Nearly all current stellar and planetary numerical dynamo models employ spec-
tral methods with spherical harmonic functions [35, 19, 22, 7]. The slow Legendre
transform and its global nature are computationally inefficient and severely limit the
application of spectral methods to general dynamo models, especially to the mod-
els with variable physical parameters of space and time. It is becoming increasingly
clear that, in order to simulate astrophysical and planetary dynamos using more re-
alistic physical parameters [36], developing other numerically more efficient methods
is necessary. The first attempt using finite element methods for numerical dynamo
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simulations was made in [11] and proved to be very promising. The current work
presents the first mathematical theory and numerical analysis for mean-field spherical
dynamos and their application to astrophysical and planetary problems.

Many stars and planets like the Sun and Jupiter are convectively unstable, which
drive small-scale turbulent flows as well as large-scale global circulations in their
interiors. The small-scale turbulent convective flows are capable of generating large-
scale magnetic fields by the complex dynamo processes [24, 9]. A widely accepted
theory for the generation of large-scale magnetic fields through the effect of small-
scale turbulence in a conducting fluid is called the mean-field dynamo theory [23], in
which a key quantity is the turbulent electromotive force defined as

E =< û × B̂ >≈ αB,(1.1)

where < . > indicates an average in the dynamo domain, B is the large-scale mean
field, û and B̂ denote the fluctuating small-scale velocity and magnetic fields, and α is
typically a tensor describing how the small-scale flows generate the large-scale mean
field. Furthermore, the small-scale dynamo simulations suggest that the turbulent
electromotive force obeys the following relation [9]:

E =
α0 B

1 + (R̂m)n|B|2/B2
eq

,(1.2)

where α0 is constant, 0 ≤ n ≤ 2 and Beq is the stellar equipartition field and R̂m

is the magnetic Reynolds number measuring the magnitude of the small-scale flow.
The factor (1 + (R̂m)n|B/Beq|2) represents the nonlinear process of alpha quenching
(the catastrophic quenching) which saturates the growing magnetic field. It should be
noted that the R̂m-dependent quenching expression should be regarded as a simplified
steady state expression for the nonlinear dynamo [4]. On the basis of the quenching
relation (1.2), one can investigate the dynamo process of large-scale stellar magnetic
fields without being complicated by the dynamic effect such as Lorentz forces. In
consequence, (1.2) has been frequently used in the numerical study of astrophysical
dynamos [26].

In the present study, we consider a general nonlinear kinematic dynamo for stars
and planets consisting of three major zones in spherical geometry; see Figure 1.
An inner radiative sphere Ω1 of radius r1, with magnetic diffusivity λ1(x), rotates
uniformly. Magnetic field B1 cannot be generated in the radiative region by dynamo
action. On the top of the radiative core, there exists a turbulent convection zone Ω2,
r1 ≤ r ≤ r2, in which thermal instabilities drive global circulations u and small-scale
turbulent flows û. Note that the effect of the small-scale turbulence in the convec-
tion zone is described by α. In the current mean-field dynamo model, we shall use
a conventional quenching formula by ignoring the R̂m-dependence in the quenching
expression. The magnetic diffusivity in the convection zone is denoted by λ2 while
the nonlinear alpha quenching is assumed to be of the form

α =
α0f(x, t)

1 + σ|B/Beq|2
,(1.3)

where f(x, t) is a model-oriented function, α0 and σ are constant parameters, and B
is the generated large-scale magnetic field in the convection zone. The outer region
Ω3, r2 ≤ r ≤ r3, exterior to the convection zone is assumed to be nearly electrically
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Fig. 1. Domain Ω, with its inner core Ω1, convection zone Ω2, and exterior region Ω3.

insulating. We nondimensionalize length by the thickness of the convection zone
d = (r2 − r1), the magnetic field by the equipartition field Beq, and time by the
magnetic diffusion time d2/λ2 of the convection zone. This leads to the three sets of
dimensionless equations for the three zones in a magnetic star. For the convection
fluid shell zone, we have

∂B2

∂t
+ ∇× (∇× B2) = Rα∇×

( f(x, t)

1 + σ|B2|2
B2

)
(1.4)

+ Rm∇× (u × B2) in Ω2 × (0, T )

∇ · B2 = 0 in Ω2 × (0, T ),(1.5)

where Rα is a dynamo parameter in connection with the generation process of small-
scale turbulence û and Rm is the magnetic Reynolds number associated with the global
circulation. For dynamo action to occur, either Rα or Rm must be sufficiently large.
The diffusion of the magnetic field B1 in the inner radiative core with a magnetic
diffusivity β1 can be described by

∂B1

∂t
+ ∇× (β1(x)∇× B1) = 0 in Ω1 × (0, T ),(1.6)

∇ · B1 = 0 in Ω1 × (0, T ) .(1.7)

The outer exterior region is usually nearly electrically insulating and governed by

∂B3

∂t
+ ∇× (β3(x)∇× B3) = 0 in Ω3 × (0, T ),(1.8)

∇ · B3 = 0 in Ω3 × (0, T ) ,(1.9)

where β3(x) is the magnetic diffusivity of the zone.
The above model system will be complemented with the initial conditions

B(x, 0) = B0(x) in Ω(1.10)
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and the boundary conditions

(β3(x)∇× B3) × n = 0, B3 · n = 0 on ∂Ω × (0, T ),(1.11)

here and in what follows, n stands for the unit outward normal to the boundary ∂Ω
of the entire physical domain Ω, which consists of the inner core Ω1, the convection
zone Ω2, and the outer exterior region Ω3. It should be mentioned that the shear near
the solar surface, the effect of which is neglected in our interface solar dynamo model
in section 6, may play an important role [3].

We shall use Γ1 and Γ2 to denote, respectively, the interface between the inner core
and outer convection zone and between the convection zone and the outer exterior; see
Figure 1. Since the magnetic diffusivity β(x) has jumps across the interfaces Γ1 and
Γ2 the magnetic field must fulfill some physical interface conditions. We shall take
the following standard physical jump conditions adopted in the geodynamo modelling
across the interfaces:

[(β(x)∇× B) × n] = 0 , [B] = 0 on (Γ1 ∪ Γ2) × (0, T ),(1.12)

here and in what follows we use [A] to denote the quantity of jumps of A across the
interfaces, and n is the outward normal of ∂Ω2.

Physically speaking, function f(x, t) and the convective flow u in (1.4) appear
only in the fluid shell region. We shall assume that the velocity u is nonslip on the
boundaries of the fluid shell, i.e., both f(x, t) and u vanish on Γ1 and Γ2. Then by
viewing f(x, t) and u to be extended by zero onto the whole physical domain Ω, we
can unify (1.4)–(1.5), (1.6)–(1.7), and (1.8)–(1.9) in three regions Ω1, Ω2, and Ω3 as
the following mean-field dynamo system:

∂B

∂t
+ ∇× (β(x)∇× B) = Rα∇×

( f(x, t)

1 + σ|B|2 B
)

(1.13)

+ Rm∇× (u × B) in Ω × (0, T )

∇ · B = 0 in Ω × (0, T ),(1.14)

where β(x) represents the magnetic diffusivity β1(x), β2(x), and β3(x) in Ω1, Ω2, and
Ω3,respectively, with β2(x) normalized to be 1, so β(x) is piecewise smooth and may
have large jumps across the interfaces.

The rest of this paper is arranged as follows. Section 2 addresses the well-
posedness of the mean-field dynamo system, which is then characterized in terms
of a saddle-point type formulation in section 3 for the convenient approximation by
finite element methods. The existing convergence theory on saddle-point systems is
first generalized in section 4, and a fully discrete finite element method is then pro-
posed and the stability and unique existence are studied. The convergence of the fully
discrete scheme is established in section 5, for which the key steps are the introduction
of a discrete projection operator and a modification of the Scott–Zhang operator as
well as the derivations of their approximation error estimates for piecewise smooth
functions. The application of the proposed numerical method to a solar interface
dynamo is carried out in section 6. Finally some concluding remarks are given in
section 7 to summarize the main contributions of the paper.

2. Well-posedness of the mean-field dynamo system. In this section, we
shall investigate the existence, uniqueness, and stability of the solutions to the mean-
field dynamo system (1.13)–(1.14) with the initial-boundary conditions (1.10)–(1.11)
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and the interface conditions (1.12). Due to space limitations, some proof details may
be omitted from time to time throughout the paper but can be found in [10].

2.1. Preliminaries. The most frequently used spaces in the subsequent analysis
are the following two Sobolev spaces:

H(curl; Ω) =
{
A ∈ L2(Ω)3; curlA ∈ L2(Ω)3

}
,

H(div; Ω) =
{
A ∈ L2(Ω)3; divA ∈ L2(Ω)

}
,

as well as their subspaces

H0(curl; Ω) =
{
A ∈ L2(Ω)3; curlA ∈ L2(Ω)3, A × n = 0 on ∂Ω

}
,

H0(div; Ω) =
{
A ∈ L2(Ω)3 , divA ∈ L2(Ω), A · n = 0 on ∂Ω

}
,

equipped with the norms

‖A‖H(curl;Ω) =
{
‖A‖2 + ‖∇ × A‖2

} 1
2

; ‖A‖H(div;Ω) =
{
‖A‖2 + ‖∇ · A‖2

} 1
2

.

In the case that the magnetic field is continuous across the interfaces, the inter-
section of the spaces H(curl; Ω) and H(div; Ω) is the natural Sobolev space to be
adopted:

H(curl,div; Ω) =
{
A ∈ L2(Ω)3; curlA ∈ L2(Ω)3, divA ∈ L2(Ω)

}
,

H0(curl,div; Ω) =
{
A ∈ H(curl,div; Ω); A · n = 0 on ∂Ω

}
,

both equipped with the norm

‖A‖H(curl,div; Ω) =
{
‖A‖2 + ‖∇ × A‖2 + ‖∇ · A‖2

} 1
2

.

As the spaces H(curl,div; Ω) and H0(curl,div; Ω) will be frequently used, we shall
write

H = H(curl,div; Ω), H0 = H0(curl,div; Ω) .

To treat the constraint equation ∇ · B = 0, we shall need the following subspace
of H0(curl,div; Ω):

V =
{
A ∈ H0(curl,div; Ω); ∇ · A = 0 in Ω

}
.

Due to the smoothness of the spherical domain Ω, it is known that the space H0(curl,
div; Ω) is equivalent to the usual Sobolev space H1(Ω)3 (see, e.g., [18]). Therefore the
Sobolev space V can also be written equivalently as

V =
{
A ∈ H1(Ω)3; ∇ · A = 0 in Ω , A · n = 0 on ∂Ω

}
,(2.1)
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and the following equivalence holds:

‖A‖2
H = ‖A‖2 + ‖∇ × A‖2 + ‖∇ · A‖ =∼ ‖A‖2

1 ∀A ∈ H0 .(2.2)

In the previous statement and what follows, ‖ · ‖s,O are always used to stand for
the norm in Sobolev space Hs(O) or Hs(O)3 for any real number s ≥ 0 and open
bounded domain O. We will simply write ‖·‖s when O = Ω and ‖·‖ when s = 0. The
notation (·, ·) is used for the scalar product in L2(Ω) or L2(Ω)3, while 〈·, ·〉 is used to
denote the dual pairing between any two Hilbert spaces, and it is the extension of the
scalar product (·, ·). For a nonnegative function β(x), we will often use the notation
‖·‖β = (β·, ·)1/2. We may also write QT = Ω×(0, T ) sometimes. In various estimates,
we shall frequently use C to stand for a generic constant that is independent of the
mesh size h, time stepsize τ , and relevant functions involved.

We end this subsection with a collection of some auxiliary results and formulae
for later use.

(1) The space V in (2.1) is a closed subspace of H1(Ω)3; see [10].
(2) Young’s inequality:

a b ≤ εa2 +
1

4ε
b2 ∀ a, b ∈ R1 and ε > 0 .

(3) Integration by parts formula which hold for B ∈ H(curl; Ω), A ∈ H1(Ω)3

and q ∈ H1(Ω):∫
Ω

(∇× B) · Adx =

∫
Ω

B · (∇× A)dx −
∫
∂Ω

(B × n) · Ads,(2.3)

∫
Ω

(∇ · B)qdx = −
∫

Ω

B · ∇qdx +

∫
∂Ω

(B · n)qds .(2.4)

(4) Compact embedding lemma [32]. Suppose that X, B, and Y are Banach
spaces satisfying X ⊂ B ⊂ Y with compact embedding X → B. Then for any q > 1,
each set bounded both in Lq(0, T ;X) and W 1,q(0, T ;Y ) is relatively compact in the
space Lq(0, T ;B).

(5) Gronwall’s inequality. Suppose h(t), g(t) are two nonnegative and square
integrable functions on [a, b], c(t) is nondecreasing, and

g(t) ≤ c(t) +

∫ t

a

h(s) g(s)ds ∀ t ∈ [a, b] ,

then the following holds

g(t) ≤ c(t) exp
(∫ t

a

h(s)ds
)

∀ t ∈ [a, b].

2.2. Well-posedness of the mean-field dynamo system. This section is
mainly devoted to the well-posedness of the dynamo system (1.4)–(1.12). Due to
the jumps in the coefficients, it is not desirable for the system to have classical type
solutions. Instead, we shall seek the weak solutions to the mean-field system.

Let us first derive the variational formulation. By multiplying both sides of (1.13)
by an A ∈ V , integrating over Ω and making use of formula (2.3) we obtain
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∫
Ω

∂B

∂t
· Adx +

3∑
i=1

∫
Ωi

(β∇× B) · (∇× A)dx −
3∑

i=1

∫
∂Ωi

(β∇× B) × ni · Ads

= Rα

3∑
i=1

∫
Ωi

( f

1 + σ|B|2 B
)
· (∇× A)dx −Rα

3∑
i=1

∫
∂Ωi

( f

1 + σ|B|2 B × ni

)
· Ads

+ Rm

3∑
i=1

∫
Ωi

(u × B) · (∇× A)dx −Rm

3∑
i=1

∫
∂Ωi

(u × B) × ni · Ads .

Using the boundary and interface conditions (1.11) and (1.12), we deduce the varia-
tional formulation for the dynamo system (1.10)–(1.14).

Find B(t) ∈ V such that B(0) = B0 and for almost all t ∈ (0, T ),

(B′(t),A) + (β∇× B(t),∇× A)

= Rα

( f(t)

1 + σ|B|2 B(t),∇× A) + Rm(u(t) × B(t),∇× A) ∀A ∈ V,(2.5)

here and in what follows, functions of x and t may be written as functions of t only
for simplicity.

The following theorem summarizes the well-posedness of the system (2.5).
Theorem 2.1. Assume that B0 ∈ V , f ∈ H1(0, T ;L∞(Ω)) and u ∈ H1(0, T ;

L∞(Ω)). Then there exists a unique solution B to the system (2.5) with the regularity

B ∈ L∞(0, T ;V ) ∩H1(0, T ;L2(Ω)),(2.6)

and the solution B is stable with the following stability estimate:

‖B‖L∞(0,T ;V ) + ‖B‖H1(0,T ;L2(Ω)3)(2.7)

≤ C (‖∇ × B(0)‖2 + ‖B(0)‖2) max
0≤t≤T

(‖f(t)‖2
L∞(Ω) + ‖u(t)‖2

L∞(Ω))

· exp
(
C

∫ T

0

{
‖f(t)‖2

L∞(Ω) + ‖f ′(t)‖2
L∞(Ω) + ‖u(t)‖2

L∞(Ω) + ‖u′(t)‖2
L∞(Ω)

}
dt
)
,

where the constant C depends only on the magnetic diffusivity coefficient β(x).
Proof. We shall only outline the proof and refer to [10] for the details. As H1(Ω)

is separable, we know that V is separable. Let {wk}∞k=1 be a base of V , and

Vm = {w1,w2, . . . ,wm} , m = 1, 2, 3, . . . .

Choose ψm ∈ Vm such that ψm → B0 in V . Then we consider the following approx-
imation of the problem (2.5): Find Bm(t) ∈ Vm such that Bm(0) = ψm and for any
A ∈ Vm,

(B′
m(t),A) + (β∇× Bm(t),∇× A)

= Rα

(
f

1 + σ|Bm|2 Bm(t),∇× A

)
+ Rm(u × Bm(t),∇× A) .(2.8)

We claim that the sequence {Bm(t)} is well defined. To see this, we write

Bm(t) =

m∑
j=1

αj,m(t)wj , ψm =

m∑
j=1

γj,mwj
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and substitute into (2.8) to get

Mdαm

dt
= G(αm, t) with αm(0) = γm ,(2.9)

where M = (mij) with mij = (wj ,wi), G(αm, t) is a vector-valued function of αm

and t, and

γm(t) = (γ1,m, γ2,m, . . . , γm,m)t, αm(t) = (α1,m, α2,m, . . . , αm,m)t.

As {wm} is linearly independent, the matrix M is symmetric and positive definite,
so it is invertible. Then using the Lipschitz continuity of G(αm, t) with respect to
αm, and our subsequent a priori estimates on the solutions to the system (2.8) that
ensures the boundedness of Bm(t) independent of m, one can show (cf. [10]) that the
solutions {Bm(t)} of the system (2.8) is well defined in [0, T ].

Next, we derive some a priori estimates on the solution to (2.8). By taking
A = Bm(t) in (2.8), then integrating over (0, t) and using the Cauchy–Schwartz and
Gronwall inequality, one can obtain

‖Bm‖2
L∞(0,T ;L2(Ω)3) + ‖∇ × Bm‖2

L2(0,T ;L2(Ω))

≤ ‖Bm(0)‖2
0 exp

(
C

∫ T

0

{
‖f(t)‖2

L∞(Ω) + ‖u(t)|2L∞(Ω)

}
dt
)
.(2.10)

On the other hand, letting A = B′
m(t) in (2.8), then integrating over (0, t), applying

the integration by parts and the Gronwall’s inequality, we have

‖B′
m‖2

L2(QT ) + ‖∇ × Bm‖2
L∞(0,T ;L2(Ω)3)

≤ ‖B(0)‖2 exp
(
C
{
‖f‖2

L∞(QT ) + ‖u|2L∞(QT )

})(2.11)

· exp
(
C

∫ T

0

{
‖f(t)‖2

L∞(Ω) + ‖f ′(t)‖2
L∞(Ω) + ‖u(t)‖2

L∞(Ω) + ‖u′(t)‖2
L∞(Ω)

}
dt
)
.

Using the estimates (2.10)–(2.11), we can extract a subsequence {Bn} from {Bm}
such that

Bn → B weakly star in L∞(0, T ;V ); B′
n → B̃ weakly in L2(0, T ;L2(Ω)3) .(2.12)

By the compact embedding lemma of subsection 2.1, we know that H1(0, T ;V ′) ∩
L2(0, T ;V ) is compactly embedded in L2(0, T ;L2(Ω)3), so we have

Bn → B in L2(0, T ;L2(Ω)3).(2.13)

We can show that this B(t) solves the system (2.5). Therefore (2.5) has at least one
solution B, which has the regularity (2.6).

3. Characterization of the dynamo system in terms of a saddle-point
type problem. The Sobolev space V in the weak formulation (2.5) involves the
solenoidal functions, and it is well known that the solenoidal conditions are difficult to
enforce in finite element spaces, especially in three dimensions. Hence the variational
formulation (2.5) is inconvenient and ineffective for the use in a fully discrete finite
element approximation. Instead, we shall transform the variational problem (2.5)
into an equivalent saddle-point type system, which can be more easily adopted for its
approximations by finite element methods.
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3.1. Characterization of solenoidal functions. Let D(Ω) be the set of all
infinitely differentiable functions with compact supports in Ω, and V be the subspace
of D with all solenoidal functions:

V =
{
w ∈ D(Ω); divw = 0 in Ω

}
.

We start with the characterization of the gradient of a distribution. For any
distribution function p in Ω, written as p ∈ D′(Ω), it is easy to verify that

〈∇p,w〉 =
n∑

i=1

〈∂xip, wi〉 = −
n∑

i=1

〈p, ∂xiwi〉 = 〈p,∇ · w〉 = 0 ∀w ∈ V.

That is, ∇p lies in the polar set of V. The following lemma indicates that the converse
of this property is also true (cf. [18]).

Lemma 3.1. Let Ω be a bounded Lipschitz domain in Rn and f = (f1, f2, . . . , fn)t

with fi ∈ D′(Ω). Then f = ∇p for some p ∈ D′(Ω) if and only if

〈f ,w〉 = 0 ∀w ∈ V.

If ∂xip ∈ H−1(Ω), then p ∈ L2(Ω) and

‖p‖L2(Ω)/R ≤ C(Ω)‖∇p‖H−1(Ω).

Moreover, if ∂xi
p ∈ L2(Ω), then p,∇p ∈ L2(Ω) and

‖p‖L2(Ω)/R ≤ C(Ω)‖∇p‖L2(Ω).

3.2. Saddle-point formulation of the mean-field dynamo system. In this
subsection, we are going to show that the solution B(t) of the system (2.5) also solves
the following saddle-point type problem for some p ∈ L2(0, T ;L2(Ω)):

∂B

∂t
+ ∇× (β(x)∇× B) + ∇p

= Rα∇×
( f(x, t)

1 + σ|B|2 B
)

+ Rm∇× (u × B) in Ω × (0, T );(3.1)

∇ · B = 0 in Ω × (0, T ),(3.2)

where a pressure-like term, namely a Lagrange multiplier p, is introduced in (3.1) to
ensure that the divergence condition (3.2) is satisfied. This formulation is done purely
for the convenience of the subsequent construction of some stable and convergent finite
element approximations; the approach is widely employed in numerical solutions of
Maxwell equations (see, e.g., [2]).

To do so, we introduce

B̃(t) =

∫ t

0

B(t)dt, F̃(t) =

∫ t

0

f

1 + σ|B|2 B(t)dt, Ũ(t) =

∫ t

0

u(t) × B(t)dt .

Using the regularity of B(t) from Theorem 2.1 we have

B̃(t) ∈ H1(0, T ;V ), F̃(t) ∈ H1(0, T ;L2(Ω)3), Ũ(t) ∈ H1(0, T ;V ) .
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Clearly, both B̃(t) and F̃(t) are absolutely continuous with respect to t as B(t) and
f B(t)/(1 + σ|B|2) are integrable in L1(0, T ), and we have

B̃′(t) = B(t), F̃′(t) =
f

1 + σ|B|2 B(t), Ũ′(t) = u × B(t) .

Now, integrating both sides of (2.5), we obtain for all t ∈ [0, T ] and A ∈ V that

(B(t) − B0,A) + (β∇× B̃(t),∇× A) = Rα(F̃(t),∇× A) + Rm(Ũ,∇× A) .(3.3)

We remark that this equation is defined for every t ∈ [0, T ] as B(t), B̃(t), and F̃(t)
are all continuous with respect to t. This is why we do not treat the system (2.5)
directly but instead its integrated form.

For all t ∈ [0, T ], (3.3) can be written as

〈B(t) − B0 + ∇× (β∇× B̃(t)) −Rα∇× F̃(t) −Rm∇× Ũ(t),A〉 = 0 ∀A ∈ V,

this with Lemma 3.1 indicates that there exists a P (t) ∈ L2(Ω), for every t ∈ [0, T ],
such that

B(t) − B0 + ∇× (β∇× B̃(t)) + ∇P (t) = Rα∇× F̃(t) + Rm∇× Ũ(t),(3.4)

or we can write

∇P (t) = B0 − B(t) −∇× (β∇× B̃(t)) + Rα∇× F̃(t) + Rm∇× Ũ(t).(3.5)

Noting the right-hand side of (3.5) lies in (H0(curl,div; Ω))′, we have

∇P (t) ∈ H1(0, T ;H0(curl,div; Ω)′) ⊂ H1(0, T ;H−1(Ω)),(3.6)

then by Lemma 3.1 we obtain

‖P (t)‖L2(Ω)/R ≤ C‖∇P (t)‖H−1(Ω) ∀ t ∈ [0, T ],

this proves P (t) ∈ H1(0, T ;L2(Ω)).

Now (3.1) follows immediately by letting p(t) = ∂P (t)
∂t and differentiating (3.4)

with respect to t, and p(t) ∈ L2(0, T ;L2(Ω)).
Adding a term γ(∇ · B,∇ · A) for some constant γ > 0 in (2.5), an important

stabilization term in the subsequent numerical approximation, we are then led to the
following theorem.

Theorem 3.1. The system (2.5) is equivalent to the following variational prob-
lem:

Find B(t) ∈ H0 ≡ H0(curl,div; Ω) and p(t) ∈ L2
0(Ω) such that B(0) = B0 and⎧⎪⎨

⎪⎩
(B′(t),A) + (β∇× B(t),∇× A) + γ(∇ · B(t),∇ · A) + (p,∇ · A)

= Rα

(
f

1+σ|B|2 B(t),∇× A) + Rm(u × B(t),∇× A) ∀A ∈ H0

(∇ · B, q) = 0 ∀ q ∈ L2
0(Ω)

(3.7)

for a.e. t ∈ (0, T ). Moreover, we have the following stability estimates for the solution
(B, p):

‖B‖L∞(0,T ;V ) + ‖B‖H1(0,T ;L2(Ω)3) + ‖p‖L2(0,T ;L2
0(Ω))(3.8)

≤ C (‖∇ × B(0)‖2 + ‖B(0)‖2) max
0≤t≤T

(‖f(t)‖2
L∞(Ω) + ‖u(t)‖2

L∞(Ω))

· exp
(
C

∫ T

0

{
‖f(t)‖2

L∞(Ω) + ‖f ′(t)‖2
L∞(Ω) + ‖u(t)‖2

L∞(Ω) + ‖u′(t)‖2
L∞(Ω)

}
dt
)
.
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Proof. From the previous derivations, we know the solution (B, p) to (2.5) also
satisfies (3.1)–(3.2). Then using the interface conditions (1.12), we can directly derive
(3.7) from (3.1)–(3.2) by integration by parts. On the other hand, one can readily
check by integration by parts that a solution (B, p) of (3.7) is a solution of (3.1)–(3.2)
or (2.5). This proves the equivalence of (2.5) and (3.7).

The uniqueness of the solutions to (3.7) can be done similarly to the proof of
Theorem 2.1 (cf. [10]).

The estimates of the first two terms on the left-hand side of (3.8) follow from
Theorem 2.1. We next derive the estimate of the last term on the left of (3.8) for p.
For this, we introduce a φ ∈ H1(Ω) ∩ L2

0(Ω) which satisfies

Δφ = p in Ω;
∂φ

∂n
= 0 on ∂Ω.

Then it is easy to see by Poincare’s inequality that

‖∇φ‖2 ≤ ‖φ‖ ‖p‖ ≤ C‖p‖ ‖∇φ‖,
which gives

‖∇φ‖ ≤ C ‖p‖.
Letting b(A, q) =

∫
Ω
q∇ ·Adx for any A ∈ H0 and q ∈ L2

0(Ω), then we take a special
A = ∇φ. It is easy to verify that A ∈ H0, and

‖A‖H0(curl,div;Ω) =
(
‖∇φ‖2 + ‖p‖2

) 1
2 ≤ C‖p‖ ,(3.9)

b(A, p)

‖A‖H0

=
(p, p)

‖A‖H0

≥ C‖p‖ .(3.10)

But we know from (3.7) that

b(A, p) = Rα

( f

1 + σ|B|2 B(t),∇× A
)

+ Rm(u × B(t),∇× A)

− (B′(t),A) − (β∇× B(t),∇× A) ,

from which and the Cauchy–Schwarz inequality, we obtain

b(A, p) ≤ Rα‖f(t)‖L∞(Ω)‖B(t)‖ ‖∇ × A‖ + Rm‖u × B(t)‖ ‖∇ × A‖
+ ‖B′(t)‖ ‖A‖ + ‖∇ × B(t)‖β ‖∇ × A‖β

≤ C (‖f(t)‖L∞(Ω)‖B(t)‖ + ‖u(t)‖L∞(Ω)|B(t)| + ‖B′(t)‖ + ‖∇ × B(t)‖)‖A‖H0
.

Now the estimate for p follows from this, (3.10), and the estimates of first two terms
in (3.8).

4. Finite element approximations. In this section we shall address the fi-
nite element approximation of the nonlinear dynamo system (1.4)–(1.12), based on
its saddle-point type variational formulation (3.7). As we know, the so-called edge
element methods are widely used in numerical solutions of the Maxwell systems
[12, 13, 14]. Their main advantages lie in the convenience to incorporate the diver-
gence constraints implicitly and the easy satisfaction of the usual interface conditions
which involve tangential components of the fields. But the nonlinear geodynamo
system of our current interest requires the continuity of all the components of the
magnetic field across the interfaces (see (1.12)), not just the tangential components
as in other nondynamo modelling systems. This fact makes the edge element methods
inconvenient for the approximation of the geodynamo system (1.4)–(1.12). Instead
we shall make use of the standard Lagrange nodal finite element methods.
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4.1. Saddle-point system and its approximation. We first recall some ex-
isting well-posedness about the general saddle-point system and its approximation.
Let X and M be two Hilbert spaces, with scalar products (·, ·)X and (·, ·)M , respec-
tively, and a(v, w) and b(v, q) be two continuous bilinear forms on X×X and X×M ,
i.e., there exist two positive constants ‖a‖ and ‖b‖ such that

|a(v, w)| ≤ ‖a‖ ‖v‖X‖w‖X ∀ v, w ∈ X,(4.1)

|b(v, q)| ≤ ‖b‖ ‖v‖X‖q‖M ∀ v ∈ X, q ∈ M.(4.2)

We shall need the kernel space V associated with b(·, ·) and the polar set of V :

V = {w ∈ X; b(w, q) = 0 ∀ q ∈ M}, V 0 = {g ∈ X ′; 〈g, v〉 = 0 ∀ v ∈ X} .

Consider the saddle-point system: Find (u, p) ∈ X ×M such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ X,(4.3)

b(u, q) = g(q) ∀ q ∈ M,(4.4)

where f ∈ X ′ and g ∈ M ′. The following well-posedness results about this saddle-
point system can be found in [6, 18].

Lemma 4.1. Assume (4.1) and (4.2), and

sup
w∈V

a(v, w)

‖w‖X
≥ α‖v‖X ∀ v ∈ V ;(4.5)

sup
v∈V

a(v, w) > 0 ∀w ∈ V, w �= 0,(4.6)

sup
v∈X

b(v, q)

‖v‖X‖q‖M
≥ β ∀ q ∈ M, q �= 0 .(4.7)

Then there exists a unique solution (u, p) ∈ X×M to the saddle-point problem (4.3)–
(4.4).

Now we discuss the approximation of the saddle-point system (4.3)–(4.4). Let
Xh ⊂ X and Mh ⊂ M be two finite dimensional spaces, and define

Vh = {wh ∈ Xh; b(wh, qh) = 0 ∀ qh ∈ Mh} .

We then introduce a bilinear form ah(·, ·) defined on Xh ×Mh satisfying

ah(vh, vh) ≥ α∗‖vh‖2
X ∀vh ∈ Vh ,(4.8)

|ah(vh, wh)| ≤ ‖ah‖ ‖vh‖X‖wh‖X ∀ vh, wh ∈ Xh(4.9)

for two positive constants α∗ and ‖ah‖. In our later applications, ah(·, ·) comes from
some approximation of a(·, ·) and is formed from a(·, ·) in such a way that numerical
integrations on polyhedra with curved faces are replaced by much easier integrations
on polyhedra with planar faces.

Then we introduce the approximation of the saddle-point system (4.3)–(4.4).
Find (uh, ph) ∈ Xh ×Mh such that

ah(uh, vh) + b(vh, ph) = f(vh) ∀ vh ∈ Xh(4.10)

b(uh, qh) = g(qh) ∀ qh ∈ Mh .(4.11)
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We have the following convergence theorem (cf. [6]), whose detailed proof can be
found in [10].

Theorem 4.1. In addition to the assumptions (4.8)–(4.9), we assume that the
inf-sup condition

sup
vh∈Xh

b(vh, qh)

‖vh‖X‖qh‖M
≥ β∗ ∀ qh ∈ Mh, qh �= 0 .(4.12)

is also satisfied. Then the system (4.10)–(4.11) has a unique solution (uh, ph) ∈
Xh ×Mh and the following error estimate holds:

‖u− uh‖X ≤
(
1 +

‖ah‖
α∗

)(
1 +

‖b‖
β∗

)
inf

vh∈Xh

‖u− vh‖X + ‖b‖ inf
μh∈Mh

‖p− μh‖M

+
1

α∗ sup
vh∈Vh

a(u, vh) − ah(u, vh)

‖vh‖X
.(4.13)

4.2. A fully discrete finite element method and its stability. In this
section, we will propose a fully discrete finite element method for the variational
system (3.7). For this purpose, we have to approximate the problem in both time
and space. We shall use the backward Euler scheme for time discretization and the
popular Hood–Taylor finite elements (cf. [20]) for space discretization.

We start with the partition of the time interval [0, T] and the triangulation of
the physical spherical domain Ω. We divide the time interval [0, T] into M equally
spaced subintervals using the following nodal points:

0 = t0 < t1 < t2 < · · · < tM = T,

where tn = n τ for n = 0, 1, . . . ,M and τ = T/M . For any given discrete time
sequence {un}Mn=0 with each un lying in L2(Ω) or L2(Ω)3, we define the first order
backward finite differences and the averages as follows:

∂τu
n =

un − un−1

τ
, ūn =

1

τ

∫ tn

tn−1

u(·, s)ds.

If u(x, t) is a function which is continuous with respect to t, we shall often write
un(·) = u(·, tn) for n = 0, 1, . . . ,M . For the ease of exposition, we may also use the
function values for t ≤ 0, by assuming the convention that u(x, t) = u(x, 0) for all
t ≤ 0.

We now introduce the triangulation of the domain Ω, consisting of the inner core
Ω1, the outer core Ω2, and the exterior zone Ω3. For the sake of technical treatments,
we shall assume that the outer boundary of the exterior zone Ω3 is a closed convex
polygon; the actual curved boundary case can be treated in the same manner as we
handle in this and next section the curved interfaces Γ1 and Γ2; see Figure 1.

We first triangulate the inner core Ω1 using a quasi-uniform triangulation T 1
h with

tetrahedral elements of mesh size h, which form a polyhedral domain Ω1
h ⊂ Ω1. The

triangulation is done such that the boundary vertices of Ω1
h all lie on the boundary

of Ω1.
Then we triangulate the exterior zone Ω3 using a triangulation T 3

h with tetrahedral
elements, which form a polyhedral domain Ω3

h. The triangulation is done such that
all the vertices on the outer polygonal boundary ∂Ω are also vertices of Ω3

h, and the
inner boundary vertices of Ω3

h all lie on the inner boundary of Ω3.
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Finally we triangulate the outer core Ω2 using a triangulation T 2
h with tetrahedral

elements, which form a polyhedral domain Ω2
h. The triangulation is done such that all

the vertices on the outer boundary of Ω2
h match those vertices on the inner boundary

of Ω3
h, while all the vertices on the inner boundary of Ω2

h match the boundary vertices
of Ω1

h.
Now the three individual triangulations T 1

h , T 2
h , and T 3

h form a global triangula-
tion Th of Ω. By Nh we shall denote the set of all the nodal points of the triangulation
Th, and by Fh the set of all faces of elements in Th.

For convenience, any element K of Th whose interior has nonempty intersection
with the interface Γ1 and Γ2 will be called an interface element. The set of all interface
elements is denoted by T ∗

h . Let us introduce some notation needed in the subsequent
error estimates. For each interface element K ∈ T ∗

h , we know that K must lie either
in Ωh

2 or Ωh
3 according to the construction of the triangulation Th. And each interface

element K is divided by the interface into two parts, written as K1 and K2. Since the
interfaces Γ1 and Γ2 are smooth spheric surfaces, one can show (cf. [17]) that one of
the two parts K1 and K2, denoted always by K, has a volume of order h4

K , that is,

|K| =∼ h4
K .(4.14)

Here and in what follows, we shall often use the symbols <∼ and =∼, and x <∼ y means

that x ≤ Cy for some generic constant C, and x =∼ y means x <∼ y and y <∼ x.

Also we may absorb in the generic constant C the upper and lower bounds βm,
βM , fM , and uM of the functions β(x), f(x, t), and u(x, t) over Ω × (0, T ):

βm ≤ β(x) ≤ βM ; |f(x, t)| , |ft(x, t)| ≤ fM ; |u(x, t)| , |ut(x, t)| ≤ uM .

Noting the coefficient β(x) in (1.13) has large jumps across the interfaces Γ1 and
Γ2, hence it may be strongly discontinuous inside each interface element K ∈ T ∗

h ,
namely when crossing the (curved) common face of two curved polyhedra parts K1

and K2 of K. To avoid numerical integrations on polyhedra with curved faces in
forming the finite element stiffness matrix, we introduce the following approximations
of the coefficients β(x), f(x, t), and u(x, t):

βh(x) = β(x), x ∈ K ∈ Th \ T ∗
h ; βh(x) = βi(x), x ∈ K ∈ T ∗

h ∩ Ωh
i (i = 2 or 3) ,

fh(x, t) =

{
0, x ∈ K ∈ T ∗

h ∩ Ωh
3 ;

f(x, t), otherwise
uh(x, t) =

{
0, x ∈ K ∈ T ∗

h ∩ Ωh
3

u(x, t), otherwise
.

We shall use the Hood–Taylor finite elements (cf. [18, 15, 33]) to approximate
the system (3.7), namely the piecewise quadratic polynomials for the magnetic field
B and the piecewise linear polynomials for the Lagrange multiplier p. These spaces
can be defined as follows:

Hh =
{
w ∈ C(Ω̄) : w|K ∈ P2(K)3 ∀ K ∈ Th

}
,

H0h =
{
w ∈ Hh; w · nF = 0 ∀F ∈ Fh ∩ ∂Ω

}
,

Qh =
{
qh ∈ C(Ω̄); qh|K ∈ P1(K) ∀ K ∈ Th

}
,

where nF is the unit normal vector of a face F ∈ Fh. And the following subspaces of
H0h and Qh will be also needed:

H̃0h =
{
wh ∈ H0h; wh = 0 on ∂Ω

}
, Q0h =

{
qh ∈ Qh;

∫
Ω

qhdx = 0
}
.
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Now, we are ready to propose the fully discrete finite element approximation of
the variational problem (3.7) using the approximate functions βh, fh, and uh.

Find Bn
h ∈ H0h, pnh ∈ Q0h for n = 1, 2, . . . ,M such that B0

h = ShB0 and

⎧⎪⎨
⎪⎩

(∂τB
n
h,Ah) + (βh ∇× Bn

h,∇× Ah) + γ(∇ · Bn
h,∇ · Ah) + (pnh,∇ · Ah)

= Rα

(
fn
h

1+σ|Bn−1
h |2 B

n
h,∇× Ah

)
+ Rm(un

h × Bn
h,∇× Ah

)
∀Ah ∈ H0h;

(∇ · Bn
h, qh) = 0 ∀ qh ∈ Q0h,

(4.15)

where Sh is the modified Scott-Zhang interpolation to be defined in section 5. One
may replace Sh here by the computationally less expensive standard interpolation
operator Πh induced by the finite element space Hh, but as it will be seen in the
subsequent analysis, with Πh one requires a stronger regularity on the initial data B0.

We remark that the discrete system (4.15) cannot ensure ∇ · Bn
h = 0, different

from the continuous case. The next lemma verifies the well-posedness of the fully
discrete scheme (4.15).

Lemma 4.2. There exists a unique solution (Bn
h, p

n
h) to the discrete system (4.15)

for each fixed n (1 ≤ n ≤ M) and the sequence {Bn
h}Mn=0 has the following stability

estimates:

max
1≤n≤M

‖Bn
h‖2 + τ

M∑
n=1

(‖∇ × Bn
h‖2 + ‖∇ · Bn

h‖2) <∼ ‖B0
h‖2.(4.16)

Proof. Inequality (4.16) follows by taking Ah = τBn
h in (4.15) and the discrete

Gronwall’s inequality.
We now verify the existence of solutions to (4.15) for each fixed n = T/M and

h by applying the Brouwer fixed point theorem. To this aim, we define a mapping
Fh : (B̄h, p̄h) → (Bh, ph) by{

ãh(Bh,Ah) + b̃(Ah, ph) = g̃(B̄h,Ah) ∀Ah ∈ H0h,

b̃(Bh, qh) = 0 ∀ qh ∈ Q0h,
(4.17)

where ãh, b̃ and g̃ are given by

ãh(B,A) = (B,A) + τ(βh∇× B,∇× A) + γτ(∇ · B,∇ · A), b̃(A, q) = τ(q,∇ · A) ,

g̃(B,A) = (Bn−1
h ,A) + τ Rα

( fn
h

1 + σ|Bn−1
h |2

B,∇× A
)

+ τRm (un
h × B,∇× A).

By applying Theorem 4.1 one can show that the mapping Fh is well defined; see [10]
for details.

We next show that Fh maps a bounded subset of H0h ×Q0h into itself. In fact,
taking Ah = Bh in the first equation of (4.17), using the second equation and Young’s
inequality we can obtain

‖Bh‖2 + τ‖∇ × Bh‖2
βh

+ γτ‖∇ · Bh‖2 ≤ ‖Bn−1
h ‖2 +

2τ

βm
(R2

αf
2
M + 4R2

mu2
M )‖B̄h‖2 .

Thus for any B̄h lying in the ball B(0, r0) = {Ah; ‖Ah‖H0
≤ r0} with r0 =√

2‖Bn−1
h ‖, we have

‖Bh‖2 + τ‖∇ × Bh‖2
βh

+ γτ‖∇ · Bh‖2 ≤ r2
0
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when τ is appropriately small such that 4τ(R2
αf

2
M + 4R2

mu2
M ) ≤ βm. Next we show

that ph lies in the ball B(0, r̄0) with

r̄0 = C−1
0

(2

τ
+

√
γ +

√
βM√

τ
+ RαfM + 2RmuM

)
r0 .

To see this, for any Ah ∈ H0h, we obtain from (4.17) using the Cauchy–Schwarz
inequality that

τ(∇ · Ah, ph) ≤
(
‖Bh‖ + τβ

1/2
M ‖∇ × Bh‖β + γτ‖∇ · Bh‖

+ ‖Bn−1
h ‖ + τRαfM‖B̄h‖ + 2τRmuM‖B̄h‖

)
‖Ah‖H0

.

This, combined with the inf-sup condition for b̃(·, ·) (cf. [10]), leads to the conclusion
that ph lies in the ball B(0, r̄0). Thus we have proved that Fh maps the bounded
subset B(0, r0) × B(0, r̄0) of H0h × Q0h into itself. Therefore by the Brouwer fixed
point theorem, Fh has a fixed point (Bh, ph) ∈ B(0, r̄0) × B(0, r̄0). This proves the
existence of solutions to the system (4.15).

The uniqueness of the solutions can be shown in the same manner as in Theo-
rem 3.1.

5. Convergence analysis of the fully discrete finite element method.
This section will be devoted to the convergence analysis on the fully discrete finite
element approximation (4.15) to the variational problem (3.7). As we shall see, one of
the crucial tools in the analysis relies on the following projection operator Ph which
maps functions from the space H0 ×Q0 ≡ H0(curl,div; Ω) × L2

0(Ω) into H0h ×Q0h:
for any (B, p) ∈ H0 × Q0, (Bh, ph) = Ph(B, p) ∈ H0h × Q0h solves the following
saddle-point system:⎧⎨

⎩
(Bh,Ah) + ah(Bh,Ah) + (ph,∇ · Ah)

= (B,Ah) + a(B,Ah) + (p,∇ · Ah) ∀Ah ∈ H0h,
(∇ · Bh, qh) = 0 ∀ qh ∈ Q0h,

(5.1)

where for any B,A ∈ H0, a(B,A) and ah(B,A) are given by

a(B,A) = (β∇× B,∇× A) + γ(∇ · B,∇ · A) ,

ah(B,A) = (βh ∇× B,∇× A) + γ(∇ · B,∇ · A) .

By taking Ah = Bh in (5.1) and using Young’s inequality and the bounds of β(x)
and βh(x), we can directly establish the following stability estimates on the projection
Ph (cf. [10]):

Lemma 5.1. For any B ∈ H0 and p ∈ Q0, let (Bh, ph) be the projection of (B, p)
defined by (5.1), then we have

‖Bh‖H0(curl,div;Ω)
<∼ ‖B‖H0(curl,div;Ω) + ‖p‖ .

Considering the discontinuity of coefficient β(x) across the interfaces Γ1 and Γ2,
the solution (B, p) to the system (3.7) often has higher regularity locally inside each
medium subdomain Ωi (i = 1, 2, 3) than in the entire domain Ω. To make full use of
the better local regularities of (B, p) to establish the error estimates of the projection
Ph, we can introduce a specially constructed interpolation operator by modifying the
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Scott–Zhang operator [29] such that it preserves the boundary condition in H0: for
any B ∈ H0, we have ShB ∈ H0h (see [10] for details); and Sh has the following local
approximation property (cf. [29, 10]):

‖w − Shw‖Wm,p(K)
<∼ hl−m

K ‖w‖W l,p(SK) ∀w ∈ W l,p(SK),(5.2)

where 0 < m ≤ l and SK is the union of all elements in Th, whose closure has
nonempty intersection with K. We now establish the error estimates of form (5.2) in
the entire domain Ω for functions with higher regularities locally in each subdomain
Ωk (k = 1, 2, 3).

Lemma 5.2. For any s ≥ 0, and u ∈ X = H1(Ω) ∩H1+s(Ωk) (k = 1, 2, 3),

‖u− Shu‖ <∼ h1+ 2s
3

3∑
k=1

‖u‖1+s,Ωk
, ‖u− Shu‖1

<∼ h
2s
3

3∑
k=1

‖u‖1+s,Ωk
.

Proof. For any u ∈ X, let uk be the restriction of u on Ωk (k = 1, 2, 3). Noting
the interfaces Γ1 and Γ2 are smooth, one can extend (cf. [30]) uk ∈ H1+s(Ωk) onto
the whole domain Ω such that the extended function ũk ∈ H1+s(Ω) and

‖ũk‖1+s,Ω <∼ ‖uk‖1+s,Ωk
for k = 1, 2, 3.(5.3)

First, we consider the estimate on any noninterface element K �∈ T ∗
h . Since u has

H1+s-regularity in such element K, one can follow the standard error estimate in [29]
and make use of our construction of the face τi associated with each node ai to derive

‖u− Shu‖μ,K <∼ h1+s−μ
3∑

i=1

‖u‖1+s,SK∩Ωi , μ = 0, 1 .(5.4)

The tricky case happens to the interface elements. Without loss of generality, consider
an interface element K ∈ T ∗

h near the interface Γ1. We analyze the errors in K1 and
K2 separately. Clearly, K1 ⊂ Ω1, K2 ⊂ Ω2, |K1| =∼ h4

K by (4.14). Then by Hölder’s

inequality, Sobolev embedding, and (5.2), we derive for any 2 ≤ p ≤ 6/(3 − 2s) and
μ = 0, 1 that

‖u− Shu‖2
μ,K1

<∼ h
4(p−2)

p

K ‖u− Shu‖2
Wμ,p(K1)

<∼ h
4(p−2)

p

K ‖u− Shu‖2
Wμ,p(K)

<∼ h
6−2μ− 8

p

K ‖u‖2
W 1,p(SK) .

But on K2, by the choice of the face τi associated with the node ai in the definition
of Sh we know that

ũ2 = u2 on K2, Sh ũ2 = Sh u on K2 .

Using this and (5.2), we derive

‖u− Shu‖2
μ,K2

<∼ ‖ũ2 − Shũ2‖2
μ,K2

<∼ ‖ũ2 − Shũ2‖2
μ,K

<∼ h
2(1+s−μ)
K ‖ũ2‖2

1+s,SK
,(5.5)

combined with the previous estimate on K1 and (5.3) yields

∑
K∈T ∗

h

‖u− Shu‖2
μ,K

<∼ h2(1+s−μ)
3∑

k=1

‖ũk‖2
1+s,Ωk

+
∑

K∈T ∗
h

h
6−2μ− 8

p

K ‖u‖2
W 1,p(SK) .(5.6)
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Then by Hölder’s inequality and the fact that the number of interface elements in
T ∗
h
<∼ h−2,

∑
K∈T ∗

h

‖u− Shu‖2
μ,K

<∼ h2(1+s−μ)
3∑

k=1

‖u‖2
1+s,Ωk

+ h4−2μ− 4
p

( ∑
K∈T ∗

h

‖u‖pW 1,p(SK)

)2/p

.

Now the desired estimate follows by taking p = 6/(3−2s) above and using (5.4).
The following lemma provides a crucial observation needed in the subsequent

analysis.
Lemma 5.3. Let K be the interface part of any interface element K ∈ T ∗

h such
that |K| =∼ h4

K (cf. (4.14)), then the following estimates hold:

‖∇ × Ah‖2
0,K <∼ hK ‖∇ × Ah‖2

0,K , ‖Ah‖2
0,K <∼ hK ‖Ah‖2

0,K ∀Ah ∈ H0h.(5.7)

Proof. We prove only the first inequality in (5.7), the second is similar. Let K be
an interface element with 4 vertices, v1, v2, v3, and v4, and dK be the largest distance
from the curved side of K to its opposite face of K. Since the interfaces Γ1 and Γ2

are C∞-smooth, we can easily show that dK ≤ Ch2
K . Then we can construct a cube

C(K) such that K ⊂ C(K) and C(K) has a height dK and a rectangular base of length
α1hK and width α2hK , where α1 and α2 are two positive constants independent of
mesh size h. Then we divide C(K) into 6 small tetrahedra K1, . . . ,K6.

By scaling arguments, one can easily verify the equivalence

‖q‖2
0,A

=∼ |A|
4∑

i=1

(q(ai))
2 ∀ q ∈ P1(A)(5.8)

for any tetrahedron A with vertices a1, a2, a3, and a4. Let p be a component of
∇× Ah for some Ah ∈ H0h, then p ∈ P1(K). Clearly we also see p ∈ P1(K), and p
can be naturally extended to p̃ ∈ P1(C(K)), thus

‖p‖2
0,K ≤ ‖p̃‖2

0,C(K) ≤
6∑

i=1

‖p̃‖2
0,Ki .

But using (5.8) and the fact that the value p̃ at any point in Ki can be expressed as
a convex combination of the values of p at the 4 vertices of K, we obtain

‖p‖2
0,K <∼ h4

K

4∑
j=1

(p(vj))
2 =∼ hK |K|

4∑
j=1

(p(vj))
2 =∼ hK‖p‖2

0,K .

This proves the first estimate in (5.7).
Using the interpolation error estimates in Lemma 5.2 and the convergence theory

in Theorem 4.1, we can now derive the error estimate for the projection operator Ph

defined in (5.1).
Lemma 5.4. Let B ∈ H0(curl,div; Ω) and p ∈ L2

0(Ω) be given such that B ∈
H1+s1(Ωk) in each Ωk (k = 1, 2, 3) for some 0 ≤ s1 < 1 and p ∈ Hs2(Ω) for some
0 ≤ s2 < 1. Then the following error estimates hold for the projection (Bh, ph) of
(B, p) defined in (5.1):

3∑
i=1

‖B − Bh‖2
H(curl,div;Ωi)

<∼ h
4s1
3

3∑
i=1

‖B‖2
1+s1,Ωi

+ h2s2‖p‖2
s2,Ω .
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Proof. Let X = H0(curl,div; Ω) and M = L2
0(Ω), Xh = H0h, and Mh = Q0h,

then we can apply Theorem 4.1 to the system (5.1) to obtain

‖B − Bh‖H0
<∼ inf

Ah∈H0h

‖B − Ah‖H0 + inf
qh∈Q0h

‖p− qh‖(5.9)

+ sup
Ah∈Vh

a(B,Ah) − ah(B,Ah)

‖Ah‖H0h

.

Noting that for B ∈ H0, we have ShB ∈ H0h. On the other hand, for p ∈ L2
0(Ω), let

πhp be its standard L2 projection in Qh. Clearly πhp may not be in Q0h. But if we
set p̃h = πhp−πhp, where q stands for the average of q over Ω for any q ∈ L2(Ω), then
we have p̃h ∈ Q0h, and the following estimates hold using the standard approximation
property of the L2 projection:

‖p− p̃h‖ = ‖(p− πhp) − (p− πhp)‖ ≤ ‖p− πhp‖ <∼ hs2‖p‖s2,Ω .

Using this and Lemma 5.2, we derive by taking Ah = ShB and qh = p̃h in (5.9) that

inf
Ah∈H0h

‖B − Ah‖H0
+ inf

qh∈Q0h

‖p− qh‖ <∼ h
2s1
3

3∑
i=1

‖B‖1+s1,Ωi
+ hs2‖p‖2

s2,Ω .(5.10)

It remains to estimate the last term in (5.9). Let K be the same as in Lemma 5.3,
then by the definition of a(·, ·) and ah(·, ·), we can write for any Ah ∈ H0h (cf. [10]),

a(B,Ah) − ah(B,Ah) =
∑

K∈T ∗
h

∫
K
(β(x) − βh(x))∇× B · ∇ × Ahdx .

Using the Cauchy–Schwarz inequality, we obtain

|a(B,Ah) − ah(B,Ah)|
<∼

∑
K∈T ∗

h

{
‖∇ × ShB‖0,K ‖∇ × Ah‖0,K + ‖∇ × (B − ShB)‖0,K ‖∇ × Ah‖0,K

}
.

By Lemmas 5.3 and 5.2, we deduce

|a(B,Ah) − ah(B,Ah)| <∼
∑

K∈T ∗
h

hK ‖∇ × ShB‖0,K ‖∇ × Ah‖0,K

+
∑

K∈T ∗
h

h
1/2
K ‖∇ × (B − ShB)‖0,K ‖∇ × Ah‖0,K

<∼ h ‖∇ × ShB‖0,Ω ‖∇ × Ah‖0,Ω

+ h1/2 ‖∇ × (B − ShB)‖0,Ω ‖∇ × Ah‖0,Ω

<∼ (h + h1/2+2s1/3)

(
3∑

k=1

‖B‖1+s1,Ωk

)
‖∇ × Ah‖0,Ω ,

and this completes the proof of Lemma 5.4.
Now, the above preparations enable us to make full use of the better local regu-

larity of B in each subdomain Ωk to derive the main results of this section, the finite
element convergence.
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Theorem 5.1. Let (B, p) ∈ H2(0, T ;H0)×L2(0, T ;L2
0(Ω)) be the solution to the

variational problem (3.7) such that B ∈ H1(0, T ;H1+s1(Ωk)) in each Ωk (k = 1, 2, 3)
for some 0 ≤ s1 < 1 and p ∈ H1(0, T ;Hs2(Ω)) for some 0 ≤ s2 < 1. And let (Bh, ph)
be the finite element solution to the fully discrete finite element approximation (4.15),
then we have the following error estimates:

max
1≤n≤M

‖Bn
h − Bn‖2 + τ

M∑
n=1

{
‖∇ × (Bn

h − Bn)‖2 + ‖∇ · (Bn
h − Bn)‖2

}

<∼ h
4s1
3

3∑
k=1

‖B‖2
H1(0,T ;H1+s1 (Ωk)) + h2s2‖p‖2

H1(0,T ;Hs2 (Ω))

+ τ2{‖B‖2
H2(0,T ;H0)

+ ‖p‖2
L2(QT )}.

Proof. Our aim is to estimate the error (Bn − Bn
h). Using the relation

Bn − Bn
h = (Bn − B̄n) + (B̄n − PhB̄

n) + (PhB̄
n − Bn

h),(5.11)

and the projection results from Lemma 5.4, it suffices to estimate the difference ξnh =
(PhB̄

n − Bn
h) in the specified norms. To do so, letting A = τ−1Ah ∈ H0h and

q = qh ∈ Q0h in (3.7), then integrating over [tn−1, tn] we obtain⎧⎨
⎩

(∂τB
n,Ah) + (β∇× B̄n,∇× Ah) + γ(∇ · B̄n,∇ · Ah) + (p̄n,∇ · Ah)

= Rα(f̄n
B ,∇× Ah) + Rm(u × B

n
,∇× Ah) ∀Ah ∈ H0h;

(∇ · B̄n, qh) = 0 ∀ qh ∈ Q0h,
(5.12)

where

f̄n
B =

1

τ

∫ tn

tn−1

f

1 + σ|B|2 B(t)dt.

Subtracting (4.15) from (5.12) yields

(∂τξ
n
h ,Ah) + (βh∇× ξnh ,∇× Ah) + γ(∇ · ξnh ,∇ · Ah)

= (∂τ (PhB̄
n − Bn),Ah) + Rα

(
f̄n
B − fn

h

1 + σ|Bn−1
h |2

Bn
h,∇× Ah

)
,

+ Rm(u × B
n − un

h × Bn
h,∇× Ah)

+ (βh∇× PhB̄
n − β∇× B̄n,∇× Ah) + (∇ · (PhB̄

n − B̄n),∇ · Ah)

+ (Php̄
n − p̄n,∇ · Ah) + (pnh − Php̄

n,∇ · Ah) ∀Ah ∈ H0h .

Letting Ah = τξnh ∈ H0h above, then using the second equations in both (4.15) and
(5.12) and the definition of the projection Ph, we come to (cf. [10])

τ(∂τξ
n
h , ξ

n
h ) + τ(βh∇× ξnh ,∇× ξnh ) + γτ(∇ · ξnh ,∇ · ξnh )

= Rατ
(
f̄n
B − fn

1 + σ|Bn−1
h |2

Bn
h,∇× ξnh

)
+ Rmτ(u × B

n − un × Bn
h,∇× ξnh )

+ τ(∂τ (PhB̄
n − Bn), ξnh ) + τ(B̄n − PhB̄

n, ξnh )

+ τ
(Rα(fn − fn

h )

1 + σ|Bn−1
h |2

Bn
h + Rm(un − un

h) × Bn
h,∇× ξnh

)
≡: (I)1 + (I)2 + (I)3 + (I)4 + (I)5 .(5.13)
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Obviously, (I)4 can be estimated immediately by the projection property. Below,
we shall analyze (I)1, (I)2, (I)3, and (I)5 one by one. For the estimation of (I)1, we
first consider

(II)1 ≡: f̄n
B − fn

1 + σ|Bn−1
h |2

Bn
h.

By direct manipulations, we have (cf. [10])

(II)1 =
1

τ

∫ tn

tn−1

(f − fn) + σf (|Bn−1
h |2 − |B|2) + σ(f − fn)|B|2

(1 + σ|B|2)(1 + σ|Bn−1
h |2)

B(t)dt

+
1

τ

∫ tn

tn−1

fn

1 + σ|Bn−1
h |2

{
(B(t) − B̄n) + (B̄n − PhB̄

n) + (PhB̄
n − Bn

h)
}
dt,

which can be easily bounded by

(5.14)

|(II)1| ≤
2

τ

∫ tn

tn−1

|f | {|Bn−1
h − PhB̄

n−1| + |PhB̄
n−1 − B̄n−1| + |B̄n−1 − B|}dt

+
1

τ

∫ tn

tn−1

|f − fn| |B(t)|dt +
1

τ

∫ tn

tn−1

|fn|
(
|B(t) − B̄n| + |B̄n − PhB̄

n| + |ξnh |
)
dt.

By the standard error estimates [5, 14, 10], we obtain from (5.14) that

|(II)1| ≤ 5fM

{√
τ‖B‖L2(tn−1,tn) +

√
τ‖Bt‖L2(tn−2,tn) +

n∑
k=n−1

|ξkh| +
n∑

k=n−1

|PhB̄
k − B̄k|

}
.

(5.15)

Similarly, for the estimation of (I)2, we first analyze (II2) := u × B
n − un × Bn

h.
We write

(II)2 =
1

τ

∫ tn

tn−1

{(u(t) − un) × B(t) + un × (B(t) − Bn
h)}dt ,

this leads readily to (with In = (tn−1, tn])

|(II)2| ≤ uM

√
τ‖B‖L2(In) + 2uM (

√
τ‖Bt‖L2(In) + |B̄n − PhB̄

n| + |ξnh |) .(5.16)

Next, we estimate the following term needed in (5.13):

(II)3 ≡: ∂τ (PhB̄
n − Bn) = ∂τ (PhB

n − Bn) + Ph∂τ (B̄
n − Bn)

=
1

τ

∫ tn

tn−1

(PhBt(s) − Bt(s))ds + Ph∂τ (B̄
n − Bn).(5.17)

For the second term above, we can write after some manipulations [10] that

∂τ (B̄
n − Bn) =

1

τ2

∫ tn

tn−1

∫ s

s−τ

∫ μ

s

Btt(λ)dλdμds,

this enables us to rewrite (II)3 as

(II)3 =
1

τ

∫ tn

tn−1

(PhBt(s) − Bt(s))ds +
1

τ2

∫ tn

tn−1

∫ s

s−τ

∫ μ

s

PhBtt(λ)dλdμds,
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and so,

|(II)3| ≤
1√
τ
‖PhBt − Bt‖L2(In) +

√
τ‖PhBtt‖L2(In).(5.18)

For the last term (I)5 in (5.13), by Lemma 5.3 and Young’s inequality there exists
some constant C̃ independent of τ and h such that [10]

|(I)5| ≤ 2τ h C̃(RαfM + 2RmuM )
∑

K∈T ∗
h

‖Bn
h‖0,K‖∇ × ξnh‖0,K

≤ βm

4
τ‖∇ × ξnh‖2 + Cτ h2 ‖Bn

h‖2 .(5.19)

Now, we obtain from (5.13) and (5.19) and Young’s inequality that

‖ξnh‖2 − ‖ξn−1
h ‖2 + τβm‖∇ × ξnh‖2 + γτ‖∇ · ξnh‖2 <∼ (III)1,(5.20)

where the term (III)1 is given by

(III)1 = τ {‖(II)1‖2 + ‖(II)2‖2 + ‖(II)3‖2 + ‖B̄n − PhB̄
n‖2 + ‖ξnh‖2 + h2‖Bn

h‖2} .

Using the estimates for (II)1, (II)2, and (II)3 in (5.15)–(5.18), we can further estimate
(III)1 by

(III)1 <∼
∫ tn

tn−1

‖PhBt(s) − Bt(s)‖2ds + τ2

∫ tn

tn−1

‖PhBtt(t)‖2dt + τ{‖ξn−1
h ‖2 + ‖ξnh‖2}

+ τ

{
n∑

k=n−1

‖PhB̄
k − B̄k‖2 + τ

∫ tn

tn−2

(‖B(t)‖2 + ‖Bt(t)‖2)dt

}
+ τ h2‖Bn

h‖2.

Summing both sides of (5.20) over n = 1, 2, . . . , k ≤ M yields

‖ξkh‖2 + βmτ

k∑
n=1

‖∇ × ξnh‖2 + 2τ

k∑
n=1

‖∇ · ξnh‖2

<∼ ‖ξ0
h‖2 + ‖PhB(0) − B(0)‖2 + τ

k∑
n=1

‖ξnh‖2 + τ h2
k∑

n=1

‖Bn
h‖2

+

∫ T

0

‖PhBt(t) − Bt(t)‖2dt + τ2

∫ T

0

‖PhBtt(t)‖2dt

+ τ
k∑

n=1

‖PhB̄
n − B̄n‖2 + τ

∫ T

0

(‖B(t)‖2 + ‖Bt(t)‖2)dt
}
.(5.21)

Finally using Lemmas 5.1, 5.2, and 5.4, and applying the discrete Gronwall inequality,
we are led to the error estimates in Theorem 5.1.

6. Application to a solar interface dynamo. For the astrophysical applica-
tion of the mathematical theory, we shall concentrate on the numerical modelling of
solar interface dynamos. Helioseismology reveals the existence of a highly differen-
tially rotating transition zone at the bottom of the convection zone, which is usually
referred to as the solar tachocline [28]. It is thought that the tachocline offers an ideal
location for the generation and storage of the Sun’s strong toroidal magnetic fields.



SPHERICAL INTERFACE DYNAMOS 1899

In other words, the large-scale solar surface magnetic activities can be interpreted
as a result of the rising and emerging of tachocline-seated, strong toroidal magnetic
fields driven by magnetic buoyancy [34]. The existence of the tachocline leads to
development of the solar interface dynamo first proposed by Parker [25], in which
the generation of a weak poloidal magnetic field and a strong toroidal magnetic field
takes place in separate fluid regions. Parker’s interface dynamo concept depicts an
attractive picture of generating a strong toroidal magnetic field within the tachocline
while avoiding the dilemma relating to the strong alpha quenching in the convection
zone. We shall apply the finite element dynamo theory and algorithm discussed in
the previous sections to the problem of solar interface dynamo modelling.

In the solar interface dynamo model, we shall take u as the solar-like internal
differential rotation profile, a result of the helioseismic inversion (e.g., [28]) while the
function f is assumed to be given by

f(x, t) = sin2 θ cos θ sin

[
π

(r − r1)

(r2 − r1)

]
,

where (r, θ, φ) is the spherical polar coordinates. Similar forms have been used in the
previous solar dynamo simulations [27, 21, 16]. Furthermore, the weaker pole-equator
differential rotation in the convection zone is neglected and the amplification of the
toroidal magnetic field only occurs in the tachocline. It follows that the two magnetic
induction sources, the generation of a poloidal field in the convection zone, and the
amplification of the toroidal field in the tachocline, is spatially separated, as suggested
by Parker [25].

We have simulated three nonlinear finite element dynamos at Rα = 30 for differ-
ent magnetic Reynolds numbers, Rm = 100, 200, and 500. Figure 2 displays magnetic
energies of the three nonlinear dynamo solutions as a function of time. The corre-
sponding butterfly diagram, contours of the azimuthal magnetic field evaluated at
the bottom of the convection zone plotted against time, is also shown in Figure 2
for the case with Rm = 200. In Figure 3, we illustrate the time-dependent spatial
structure of the generated magnetic field in a meridional plane for Rm = 200, showing
an equatorially propagating dynamo wave similar to that of the solar cycle.
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Fig. 2. The left panel shows magnetic energy Em of the dynamo as a function of time with a
steady tachocline for different values of Rm at Rα = 30 with β1 = 1, β2 = 1, and β3 = 150. The
right panel displays “a butterfly diagram” for the solution Rm = 200 with the azimuthal magnetic
field evaluated at the bottom of the convection zone.
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Fig. 3. Contours of the azimuthal field Bφ in a meridional plane plotted at six different instants
for t = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 (from top left to right and then from lower left to right) for Rm = 200,
β1 = 1, β2 = 1, and β3 = 150.

There are a number of important features shown in our finite element dynamo
solutions. First, the effect of the large-scale differential rotation u in the tachocline
always gives rise to an oscillatory dynamo with a period of about one magnetic dif-
fusion unit, which is about 10 years if we adopt λ2 = 108m2s−1, approximate to
what has been observed in the solar magnetic field. Second, the interface dynamo
solutions always select dipolar symmetry and propagate equator ward though the
numerical simulation is fully three-dimensional, which is again consistent with the
observed feature of the solar magnetic field. Finally, the generated magnetic field
mainly concentrates in the vicinity of the interface between the tachocline and the
convection zone. A strong toroidal magnetic field in the tachocline is likely to be
susceptible to magnetic buoyancy instabilities leading to a quick eruption of the field
into the surface of the Sun in the form of sunspots.

7. Concluding remarks. Modelling stellar and planetary dynamos represents
an important, highly active research front in astrophysics and planetary physics.
Nearly all current stellar dynamo models are based on spectral methods in terms
of spherical harmonic expansions, which are computationally inefficient on modern
parallel computers and limit the application to general dynamo models, especially to
the models with variable physical coefficients of space and time. The finite element
method discussed in this paper offers an attractive alternative for simulating dynamos
in spherical geometry.

The first attempt at using finite element methods for numerical simulations of
spherical dynamos was made in [11]. The current work presents the first mathe-
matical theory and numerical analysis for mean-field spherical dynamos, and it has
made contributions in the following aspects: (1) The well-posedness of the mean-field
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dynamo system is rigorously demonstrated; the dynamo system is characterized in
terms of a saddle-point type formulation which can be conveniently approximated by
finite element methods. (2) The existing convergence theory on saddle-point systems
is improved and generalized so that the symmetric part of the bilinear form allows the
approximations of curved interfaces by straight polygons and numerical integrations
on polyhedra with curved faces are replaced by much easier integrations on polyhe-
dra with planar faces; and this is the first work of such type on saddle-point systems.
(3) A fully discrete finite element method is proposed for the interface dynamo system
with discontinuous coefficients, and error estimates are established under very weak
global and local regularity assumptions on the solutions, and this work seems to be the
first in achieving error estimates of numerical methods for three-dimensional interface
PDEs with curved interfaces, especially for nonlinear PDEs. (4) The application of
the proposed numerical method to a solar interface dynamo verifies some important
physical observations.

We believe that the mathematical theory and finite element methods for spherical
dynamos and their successful application to the solar interface dynamo presented in
this paper open up an exciting opportunity for future numerical simulation of stellar
dynamos. We also believe that the finite element theory and method developed in the
paper would also benefit other research communities in geophysics, planetary physics,
and astrophysics where the magnetic field and spherical geometry play an essential
role.

REFERENCES

[1] M. H. Acuna and N. F. Ness, Jupiter’s main magnetic field measured by Pioneer 11, Nature,
253 (1975), pp. 327–328.
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