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Abstract. This is a continuation and an extension of our recent work [J. Math. Pures Appl., 143
(2020), pp. 116--161] on the geometric structures of Laplacian eigenfunctions and their applications
to inverse scattering problems. In that work, we studied the analytic behavior of the Laplacian
eigenfunctions at a point where two nodal or generalized singular lines intersect. The results reveal
an important and intriguing property that the vanishing order of the eigenfunction at the intersecting
point is closely related to the rationality of the intersecting angle. In this paper, we continue this
development in three dimensions and study the analytic behaviors of the Laplacian eigenfunctions
at places where nodal or generalized singular planes intersect. Compared with the two-dimensional
case, the geometric situation is much more complicated, and so is the corresponding analysis: the
intersection of two planes generates an edge corner, whereas the intersection of more than three
planes generates a vertex corner. We provide a systematic and comprehensive characterization of
the relations between the analytic behaviors of an eigenfunction at a corner point and the geometric
quantities of that corner for all these geometric cases. Moreover, we apply the spectral results to
establish some novel unique identifiability results for the geometric inverse problems of recovering
the shape as well as the (possible) surface impedance coefficient by the associated scattering far-field
measurements.
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1. Introduction. In this paper, we consider the geometric structures of Lapla-
cian eigenfunctions and their application to the geometrical inverse scattering prob-
lem. The study of the geometric properties of Laplacian eigenfunctions has a rich
theory in the literature. As a background introduction and an inspiring source for
our study, we mention a few famous examples here. The first one is about the topology
of the nodal domains of the Laplacian eigenfunction, which has been an important
topic for many years [18, 30]. This includes the celebrated Courant's nodal domain
theorem [11]. The second example is the Schiffer's conjecture, which states that if a
Neumann eigenfunction takes a (nonzero) constant value on the boundary, then the
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1264 XINLIN CAO, HUAIAN DIAO, HONGYU LIU, AND JUN ZOU

domain must be a ball [30]. The Schiffer's conjecture has a close connection to the
Pompeium property in the integral geometry [12, 17, 30] and it also has an inter-
esting implication to invisibility cloaking [22]. The third example is the ``hot-spot""
conjecture, which states that the second Neumann eigenfunction attains its maxi-
mum value at a boundary point [3, 4, 19]. The last example is the eigenfunction
concentration/localization and its implication to the quantum ergodicity of the bil-
liard flow [31]. There are many other existing developments on the geometric and
analytic properties of the Laplacian eigenfunction and the corresponding study re-
mains an active field. We refer to the introductory section of our recent paper [5] and
the related references therein for a more comprehensive discussion of this intriguing
topic. The current paper is a continuation as well as a significant further development
of our study in [5], where the intersection of two nodal or generalized singular lines
is considered. Our results in [5] reveal a novel intriguing property that the vanishing
order (analytic quantity) of an eigenfunction at an intersecting point is related to the
rationality (geometric quantity) of the corresponding intersecting angle. These spec-
tral results were applied directly in [5] to the inverse obstacle scattering problem and
the inverse diffraction grating problem to establish several novel unique identifiability
results in determining the polygonal shape/support of an inhomogeneous scattering
object as well as the (possible) surface impedance coefficient by a few far-field mea-
surements. We note that determining the shape/support of an unknown scatterer
by a minimal/optimal number of far-field measurements constitutes a long-standing
open problem in the inverse scattering theory [10]. It is very natural to explore if
similar results can be established in the more important three-dimensional case about
the intersections of nodal or generalized singular planes and their implications to the
analytic behaviors of the eigenfunctions. But the geometric setup is much more com-
plicated in three dimensions, and so is the corresponding analysis: the intersection
of two planes produces an edge corner, whereas the intersection of more than three
planes produces a vertex corner; see Figure 1 for a schematic illustration. We aim
to derive a comprehensive characterization of the relationship between the analytic
behaviors of an eigenfunction at a corner point and the geometric quantities of that
corner. More specifically, at the edge corner case, we can show that the vanishing
order of the eigenfunction is related to the rationality of the intersecting angle in a
similar manner to the two-dimensional case, whereas at the vertex corner case, the
vanishing order of the eigenfunction is proved to be related to the intersecting angle in
a more complicated and mysterious manner through the roots of the Legendre polyno-
mials. As an important application, these new spectral results are applied to establish
several novel and fundamental unique identifiability results for the geometrical inverse
scattering problem of determining an impenetrable obstacle as well as the (possibly)
surface impedance by at most a few far-field measurements in the polyhedral setup.
The rest of this section is mainly devoted to the introduction of the mathematical
setup for our study.

Let \Omega be an open set in \BbbR 3. Consider u \in L2(\Omega ) and \lambda \in \BbbR + such that

 - \Delta u = \lambda u.(1.1)

The solution u to (1.1) is referred to as a (generalized) Laplacian eigenfunction. We
emphasize that compared with the conventional notion of Laplacian eigenfunctions,
we do not prescribe any homogeneous boundary condition for u in (1.1). This means
that the spectral results that we shall establish in this paper apply to any function
that satisfies (1.1) in the interior of \Omega , in particular, including all the conventional
Laplacian eigenfunctions with various boundary conditions. We next introduce several
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critical definitions for our subsequent analysis. In what follows, for \Pi being a flat plane
in \BbbR 3, any nonempty open connected subset \Sigma \Subset \Pi is called a cell of \Pi . Let \widetilde \Pi = \Pi \Sigma 

denote the connected component of \Pi \cap \Omega that contains \Sigma .

Definition 1.1. Consider a nontrivial eigenfunction u to (1.1). Let \Sigma \subset \Omega be a
cell of \Pi , and let \eta \in \BbbC be a constant. If u| \Sigma = 0, \Sigma is said to be a nodal cell of u in

\Omega . By analytic continuation, it is seen that u| \widetilde \Pi = 0, and \widetilde \Pi is said to be a nodal plane
of u. In a similar manner, in the case (\partial \nu u+ \eta u)

\bigm| \bigm| 
\Sigma 
= 0, where \nu is a unit one-sided

normal direction of \Pi and \eta \in \BbbC is a constant, \Sigma and \widetilde \Pi are respectively called the
generalized singular cell and plane. In the particular case \eta \equiv 0, a generalized singular
plane is also called a singular plane. Let \scrN \lambda 

\Omega , \scrS \lambda 
\Omega , and \scrM \lambda 

\Omega , respectively, signify the
sets of nodal, singular, and generalized singular planes of u in (1.1).

According to Definition 1.1, a nodal/generalized singular plane is actually a cell
that is fully extended in \Omega . Indeed, by the fact that u is analytic in \Omega , we know that
if the homogeneous condition is satisfied on a cell, then it is also satisfied on the so-
called plane in Definition 1.1 by the analytic continuation. In what follows, most of the
planes are actually the nodal/generalized singular planes in the sense of Definition 1.1,
which should be clear from the context. Moreover, we would like to emphasize that
in defining a generalized singular plane, the parameter \eta can be replaced to be a
complex-valued real-analytic function. Indeed, all of the results obtained in this work
hold for the case that \eta is a variable function as mentioned above. However, in order
to ease the exposition, we stick to the case that \eta is a constant till section 4, and we
shall make more relevant remarks in section 5.

Let B\rho (x) denote a ball of radius \rho \in \BbbR + and centered at x \in \BbbR 3.

Definition 1.2. Let \Pi 1 and \Pi 2 be two adjacent faces of a polyhedron \scrP in \Omega .
Let \bfitl be a connected open portion of the edge formed by \Pi 1 and \Pi 2 such that \bfitl \Subset \Omega .
Then any x \in \bfitl is said to be an edge corner point; see Figure 1 for a schematic illus-
tration. For notational convenience, we also let \scrE (\Pi 1,\Pi 2, \bfitl ) denote the edge corner
as illustrated in Figure 1.

Definition 1.3. Let \{ \Pi \ell \} n\ell =1 (n \geq 3) be n planes in \Omega such that they form a
polyhedral cone \scrK with the vertex x0 \in \Omega . Let \rho \in \BbbR + be sufficiently small such that
B\rho (x0) \subset \Omega ; then \scrK \cap B\rho (x0) is called a vertex corner associated with \Pi 1, \Pi 2, . . .,
\Pi n, and denoted by \scrV (\{ \Pi \ell \} n\ell =1,x0). See Figure 1 for a schematic illustration.

It is obvious that a vertex corner \scrV (\{ \Pi \ell \} n\ell =1,x0) is composed of finite many edge
corners, which are intersected by any two adjacent planes. Moreover, a vertex corner
must be an edge corner. Definitions 1.1--1.3 describe some geometric notions. Next,
we introduce several analytic notions for the Laplacian eigenfunction.

Π1
Π2

φ

Edge corner : x0 = (x′, x3)

Vertex corner : x0

Π2

...
Πi

Π1

Πn

Fig. 1. Schematic illustrations of edge corner and vertex corner, respectively.
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1266 XINLIN CAO, HUAIAN DIAO, HONGYU LIU, AND JUN ZOU

Definition 1.4. Let u be a nontrivial eigenfunction in (1.1). For a given point
x0 \in \Omega , if there exists a number N \in \BbbN \cup \{ 0\} such that

lim
\rho \rightarrow +0

1

\rho m

\int 
B\rho (\bfx 0)

| u(x)| dx = 0 for m = 0, 1, . . . , N + 2,(1.2)

we say that u vanishes at x0 up to the order N . The largest possible N such that (1.2)
is fulfilled is called the vanishing order of u at x0, and we write

Vani(u;x0) = N.

If (1.2) holds for any N \in \BbbN , then we say that the vanishing order is infinity.

By the strong unique continuation property, if the vanishing order of u at x0 \in \Omega 
is infinite, we know that u \equiv 0 in \Omega .

Similarly, we can introduce the definition of the vanishing order of u at an edge
or vertex corner.

Definition 1.5. Let u be a nontrivial eigenfunction to (1.1). Consider an edge
corner \scrE (\Pi 1,\Pi 2, \bfitl ) \Subset \Omega . For any given x0 \in \bfitl , if

Vani(u;x0) = N,

we say that u vanishes at x0 associated with the edge corner \scrE (\Pi 1,\Pi 2, \bfitl ) \Subset \Omega up to
order N , denoted by

Vani(u;x0,\Pi 1,\Pi 2) = N.

For a vertex corner x0 \in \Omega which is intersected by \Pi i, i = 1, 2, . . . n, the vanishing
order of u at x0 is defined by

Vani(u;x0) := max
\bigl\{ 

max
i=1,2,...n - 1

Vani(u;x0,\Pi i,\Pi i+1),Vani(u;x0,\Pi n,\Pi 1)
\bigr\} 
.

With the above definitions, we shall investigate in sections 2, 3, and 4 the de-
tailed vanishing properties of the Laplacian eigenfunctions at places where two or
more nodal/singular/generalized singular planes intersect. The remaining part of the
paper is organized as follows. In section 2, we consider the vanishing property of the
Laplacian eigenfunction at an edge corner intersected by two planes of three types:
nodal planes, singular planes, or generalized singular planes. In section 3, we study
the vanishing property at a vertex corner intersected by n planes (n \geq 3), on the
basis of section 2. As a direct consequence of sections 2 and 3, section 4 is devoted
to the discussion of the irrational intersection as a special case with infinite vanish-
ing order. In section 5, we remark on the extension to the case that \eta is a variable
function instead of being a constant. In section 6, as an important application of our
new spectral results, we study an open fundamental mathematical issue in inverse
obstacle scattering problems, namely, the unique identifiability results in determining
the obstacle as well as the surface impedance by at most two far-field measurements.

2. Vanishing orders at edge corners. In this section, we study the vanishing
property of the Laplacian eigenfunction at an edge corner x0 \in \bfitl associated with
\scrE (\Pi 1,\Pi 2, \bfitl ). The two planes \Pi \ell (\ell = 1, 2) could be any one of the following three
types: nodal, singular, or generalized singular planes. First, we give a definition of
the irrational or rational dihedral angle of two intersecting planes.
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Definition 2.1. Let \Pi 1 and \Pi 2 be two planes in \BbbR 3 that intersect with each
other. Let \phi \in (0, \pi ) be one of the associated intersecting dihedral angles of \Pi 1 and
\Pi 2 satisfying

\phi = \alpha \cdot \pi , \alpha \in (0, 1).

Then, \phi is said to be an irrational dihedral angle if \alpha is an irrational number, and
it is said to be a rational dihedral angle of degree q if \alpha = p/q with p, q \in \BbbN and is
irreducible.

Since  - \Delta is invariant under rigid motions, throughout the rest of this paper, we
assume that the edge corner \scrE (\Pi 1,\Pi 2, \bfitl ) satisfies

\bfitl =
\bigl\{ 
x = (x\prime , x3) \in \BbbR 3;x\prime = 0, x3 \in ( - H,H)

\bigr\} 
\Subset \Omega ,(2.1)

where 2H is the length of \bfitl . That is, \bfitl coincides with the x3-axis. We further assume
that \Pi 1 coincides with the (x1, x3)-plane while \Pi 2 possesses a dihedral angle \alpha \pi 
away from \Pi 1 in the anticlockwise direction; see Figure 2 for a schematic illustration.
Clearly, we can assume that \alpha \in (0, 1). Moreover, when we consider the vanishing
order at an edge corner of \scrE (\Pi 1,\Pi 2, \bfitl ), we assume throughout this section that the
edge corner under consideration is the origin 0 \in \bfitl .

In the next subsection, we first study a relatively simpler case that at least one
of the intersecting planes of \scrE (\Pi 1,\Pi 2, \bfitl ) is a nodal plane. Without loss of generality,
we assume u| \Pi 1

\equiv 0 throughout this subsection.

2.1. Vanishing orders at an edge corner with at least one plane being
nodal. We first derive several important auxiliary results for the subsequent analysis,
for which we will often use the spherical coordinate of any point x in \BbbR 3:

x = (r sin \theta cos\phi , r sin \theta sin\phi , r cos \theta ) := (r, \theta , \phi ), r \geq 0, \theta \in [0, \pi ), \phi \in [0, 2\pi ) .(2.2)

Then the following proposition is a consequence of direct computing using spherical
coordinates.

Proposition 2.2. Let \Pi be any of the two planes associated with \scrE (\Pi 1,\Pi 2, \bfitl ).
For any point x \in \Pi , we know that \phi defined in (2.2) is fixed; see Figure 2. Let \nu be
the unit normal vector that is perpendicular to \Pi . Then

\partial u

\partial \nu 
= \pm 1

r sin \theta 

\partial u

\partial \phi 
.

Lemma 2.3 (see [9, section 3.3]). The solution u to (1.1) has the spherical wave
expansion in spherical coordinates around the origin:

x1

x2

Π1 Π2

φ

O

H

Edge corner : x0

x3

Fig. 2. Schematic illustration of two intersecting planes with an edge corner and the dihedral
angle \phi .
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u(x) = 4\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)Y m

n (\theta , \phi ),(2.3)

where jn(t) is the spherical Bessel function of order n, and Y m
n (\theta , \phi ) is the spherical

harmonics given by

Y m
n (\theta , \phi ) =

\sqrt{} 
2n+ 1

4\pi 

(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\phi 

with Pm
n (t) being the associated Legendre functions.

Lemma 2.4 (see [29, Theorem 2.4.4]). In the spherical coordinate system, the
associated Legendre functions fulfill the following orthogonality condition for any fixed
n \in \BbbN and any two integers m \geq 0 and l \leq n:\int \pi 

 - \pi 

Pm
n (cos \theta )P l

n(cos \theta )

sin \theta 
d\theta =

\Biggl\{ 
0 if l \not = m,

(n+m)!
m(n - m)! if l = m.

Lemma 2.5. Suppose that for t \in (0, h), h \in \BbbR +,

\infty \sum 
n=0

\alpha njn(t) = 0,(2.4)

where jn(t) is the nth spherical Bessel function. Then

\alpha n = 0, n = 0, 1, 2, . . . .(2.5)

Proof. By [9, section 2.4] we know that

jn(t) :=

\infty \sum 
p=0

( - 1)ptn+2p

2pp!1 \cdot 3 \cdot \cdot \cdot (2n+ 2p+ 1)
=

tn

(2n+ 1)!!

\Bigl( 
1 +

\infty \sum 
p=1

( - 1)pt2p

2pp!Nl,n

\Bigr) 
,(2.6)

where Nl,n = (2n + 3) \cdot (2n + 5) \cdot \cdot \cdot (2n + 2p + 1). Substituting (2.6) into (2.4) and
comparing the coefficient of tn (n = 1, 2, . . .), we can deduce (2.5).

We are now in a position to study the general vanishing orders with the help
of the spherical wave expansion of the Laplacian eigenfunction u to (1.1) around an
intersecting edge corner.

Lemma 2.6. Let u be a Laplacian eigenfunction to (1.1). Suppose that there exists
an edge corner \scrE (\Pi 1,\Pi 2, \bfitl ) such that

\scrE (\Pi 1,\Pi 2, \bfitl ) \Subset \Omega ,

where \Pi 1 and \Pi 2 are from either \scrN \lambda 
\Omega , \scrS \lambda 

\Omega , or \scrM \lambda 
\Omega . If there exists a sufficiently small

\varepsilon \in \BbbR + such that

u| B\varepsilon (\bfzero )\cap \bfitl = 0,(2.7)

then it holds for the coefficients in (2.3) that

a0n = 0, n \in \BbbN \cup \{ 0\} .(2.8)
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Proof. Since the line segment \bfitl associated with \scrE (\Pi 1,\Pi 2, \bfitl ) coincides with the x3-
axis, we know \theta = 0 or \pi for x \in \bfitl in the spherical coordinate system (2.2). Combining
with Lemma 2.3, we know under the condition (2.7) that

u| B\varepsilon (\bfzero )\cap \bfitl = 4\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (\pm 1)eim\phi = 0.

(2.9)

On the other hand, we have that for m \in \BbbN (cf. [2]),

P - m
n = ( - 1)m

(n - m)!

(n+m)!
Pm
n , Pm

n (\pm 1) = 0, P 0
n(+1) = 1, P 0

n( - 1) = ( - 1)n.(2.10)

Substituting (2.10) into (2.9), it is easy to see that

\infty \sum 
n=0

in
\sqrt{} 

2n+ 1

4\pi 
a0njn(

\surd 
\lambda r) = 0.

By virtue of Lemma 2.5, we readily see

in
\sqrt{} 

2n+ 1

4\pi 
a0n = 0 for n = 0, 1, 2, . . . ,

which completes the proof of Lemma 2.6.

First, we consider the case that two nodal planes intersect with each other to
yield the edge corner.

Theorem 2.7. Let u be a Laplacian eigenfunction to (1.1). Consider an edge
corner \scrE (\Pi 1,\Pi 2, \bfitl ) \Subset \Omega where the two planes \Pi \ell , \ell = 1, 2, are assumed to be nodal,
namely \Pi \ell \in \scrN \lambda 

\Omega (\ell = 1, 2). If the corresponding dihedral angle can be written as

\angle (\Pi 1,\Pi 2) = \phi = \alpha \cdot \pi , \alpha \in (0, 1),

where \alpha satisfies for an N \in \BbbN , N \geq 3,

\alpha \not = q

p
, p = 1, 2, . . . , N  - 1, q = 1, 2, . . . , p - 1,(2.11)

then u vanishes up to order at least N at the edge corner 0.

Proof. Since u| \Pi i
\equiv 0, i = 1, 2, it follows from Lemma 2.3 that

u| \Pi 1
= 4\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta ) = 0,

(2.12)

u| \Pi 2
= 4\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi = 0,

(2.13)

where \phi = 0 on \Pi 1 and \phi = \alpha \cdot \pi , \alpha \in (0, 1) on \Pi 2. It is obvious that u| \bfitl = 0; then
we have (2.8) from Lemma 2.6. Thus comparing the coefficient of r and substituting
a0n = 0 for n = 0, 1 into (2.12) and (2.13), we obtain
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(a11 + a - 1
1 )P 1

1 (cos \theta ) = 0, (a11e
i\alpha \cdot \pi + a - 1

1 e - i\alpha \cdot \pi )P 1
1 (cos \theta ) = 0.

Since \theta \in (0, \pi ) is arbitrary, utilizing the orthogonality condition (Lemma 2.4), we
can deduce

a11 + a - 1
1 = 0, a11e

i\alpha \cdot \pi + a - 1
1 e - i\alpha \cdot \pi = 0.

Therefore, if \alpha \not = 0, 1, we derive that a\pm 1
1 = 0.

Assume that amn - 1 = 0, m = \pm 1,\pm 2, . . . ,\pm (n  - 1). We next show by induction
that amn = 0, m = \pm 1,\pm 2, . . . ,\pm n. Indeed, comparing the coefficients of rn, we obtain

n\sum 
m= - n

inamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta ) = 0,(2.14)

n\sum 
m= - n

inamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi = 0.(2.15)

Similarly, substituting a0n = 0 into (2.14) and (2.15), noting that \theta is arbitrary, and
utilizing the orthogonality condition (Lemma 2.4) again, we can derive form = 1, 2, . . .
that

amn + a - m
n = 0, amn eim\alpha \cdot \pi + a - m

n e - im\alpha \cdot \pi = 0.(2.16)

Hence if \alpha \not = k
m , k = 1, 2, . . . ,m - 1, the coefficient matrix fulfills\bigm| \bigm| \bigm| \bigm| 1 1

eim\alpha \cdot \pi e - im\alpha \cdot \pi 

\bigm| \bigm| \bigm| \bigm| =  - 2i sinm\alpha \cdot \pi \not = 0,

which yields that amn = 0 for m = \pm 1,\pm 2, . . . ,\pm n and hence completes the proof of
Theorem 2.7.

Remark 2.8. In the proof of Theorem 2.7, we make use of the boundary conditions
of u on \Pi 1 and \Pi 2 as well as the orthogonality property in Lemma 2.4 to arrive at
the homogeneous linear system (2.16), which in turn proves that a\pm m

n = 0 provided a
certain condition on the dihedral angle \alpha \cdot \pi is fulfilled. This type of argument shall
be frequently used in the proofs of Theorems 2.9, 2.11, and 3.1 in what follows.

We now proceed to consider the case that a nodal plane \Pi 1 \in \scrN \lambda 
\Omega intersects with

a generalized singular plane \Pi 2 \in \scrM \lambda 
\Omega .

Theorem 2.9. Let u be a Laplacian eigenfunction to (1.1). Consider an edge
corner \scrE (\Pi 1,\Pi 2, \bfitl ) \Subset \Omega such that

\Pi 1 \in \scrN \lambda 
\Omega , \Pi 2 \in \scrM \lambda 

\Omega , and \angle (\Pi 1,\Pi 2) = \phi = \alpha \cdot \pi , \alpha \in (0, 1).

If for an N \in \BbbN , N \geq 2, there holds

\alpha \not = 2q + 1

2p
, p = 1, 2, . . . , N  - 1, q = 1, 2, . . . , p - 1,

then u vanishes up to order at least N at the edge corner 0.

Proof. Since u| \Pi 1
\equiv 0, it is direct to know that u| \bfitl \equiv 0, which indicates that

a0n = 0 for n = 0, 1, 2, . . . from Lemma 2.6. Furthermore, by Lemma 2.3 we have
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u| \Pi 1 = 4\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta ) = 0.(2.17)

Combining with Proposition 2.2, we derive the following expression on \Pi 2:

\partial u

\partial \nu 
+ \eta u

\bigm| \bigm| \bigm| 
\Pi 2

=
1

r sin \theta 

\partial u

\partial \phi 
+ \eta u

\bigm| \bigm| \bigm| 
\phi =\alpha \cdot \pi 

=
1

r sin \theta 
4\pi 

\infty \sum 
n=0

n\sum 
m= - n

in+1mamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi 

+ \eta \cdot 4\pi 
\infty \sum 

n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi = 0.

(2.18)

Since \theta \in (0, \pi ) and r > 0, multiplying r sin \theta on the both sides of (2.18) we can
obtain that

\infty \sum 
n=0

n\sum 
m= - n

in+1mamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi 

+ \eta \cdot r sin \theta 
\infty \sum 

n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi = 0.

(2.19)

Following an argument similar to Theorem 2.7, we may compare the coefficients of r
in (2.17) and (2.19), respectively. First for (2.17) we have

1\sum 
m= - 1

iam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

P
| m| 
1 (cos \theta ) = 0.

Since a01 = 0, using Lemma 2.4 we can deduce that

a11 + a - 1
1 = 0.(2.20)

Then for (2.19), we have

1\sum 
m= - 1

mam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

Pm
1 (cos \theta )eim\alpha \cdot \pi = 0(2.21)

since a00 = 0. By the orthogonality condition of Pm
1 for arbitrary \theta \in (0, \pi ) and the

fact that a01 = 0 we can simplify (2.21) to get

a11e
i\alpha \cdot \pi  - a - 1

1 e - i\alpha \cdot \pi = 0.

Combining (2.20) with (2.21) we can obtain that if \alpha \not = 1
2 , then a\pm 1

1 = 0. By induction,
we assume that amn - 1 = 0, m = \pm 1,\pm 2, . . . ,\pm (n - 1). Considering the coefficients of
rn in (2.17), we have

n\sum 
m= - n

inamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta ) = 0,
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from which we can derive

amn + a - m
n = 0 for m = 1, 2, . . .(2.22)

by virtue of the fact that a0n = 0 and Lemma 2.4. Similarly, for (2.19), we know the
coefficients of rn fulfill that

n\sum 
m= - n

in+1mamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi 

+ \eta \cdot sin \theta 
n - 1\sum 

m= - (n - 1)

in - 1amn - 1

\surd 
\lambda 
n - 1

(2n - 1)!!

\sqrt{} 
2n - 1

4\pi 

\sqrt{} 
(n - 1 - | m| )!
(n - 1 + | m| )!

P
| m| 
n - 1(cos \theta )e

im\alpha \cdot \pi = 0.

(2.23)

Substituting amn - 1 = 0, m = \pm 1,\pm 2, . . . ,\pm (n  - 1), and a0n = 0 into (2.23), utilizing
Lemma 2.4 again we derive

amn eim\alpha \cdot \pi  - a - m
n e - im\alpha \cdot \pi = 0.(2.24)

Therefore, by the virtue of Remark 2.8, we can deduce from (2.22) and (2.24) that if
\alpha \not = 2k+1

2m (k = 0, 1, . . . ,m - 1), then amn = 0, m = \pm 1,\pm 2, . . . ,\pm n, hence completing
the proof of Theorem 2.9.

It is straightforward to verify from the proof of Theorem 2.9 that \eta can be 0. In
such a case, we have the following result.

Corollary 2.10. Let u be a Laplacian eigenfunction to (1.1). Consider an edge
corner \scrE (\Pi 1,\Pi 2, \bfitl ) \Subset \Omega such that

\Pi 1 \in \scrN \lambda 
\Omega , \Pi 2 \in \scrS \lambda 

\Omega , and \angle (\Pi 1,\Pi 2) = \phi = \alpha \cdot \pi , \alpha \in (0, 1).

If for an N \in \BbbN , N \geq 2, there holds

\alpha \not = 2q + 1

2p
, p = 1, 2, . . . , N  - 1, q = 1, 2, . . . , p - 1,

then u vanishes up to order at least N at the edge corner 0.

2.2. Vanishing orders at an edge corner intersected by generalized sin-
gular planes. In this subsection, we consider the case that an edge corner \scrE (\Pi 1,\Pi 2, \bfitl )
is intersected by two generalized singular planes, namely \Pi \ell \in \scrM \lambda 

\Omega , \ell = 1, 2. In what
follows, we signify the boundary parameters on \Pi \ell to be \eta \ell , \ell = 1, 2. Then we can
derive the following three theorems.

Theorem 2.11. Let u be a Laplacian eigenfunction to (1.1). Consider an edge
corner \scrE (\Pi 1,\Pi 2, \bfitl ) \Subset \Omega with \Pi \ell \in \scrM \lambda 

\Omega , \ell = 1, 2 and \angle (\Pi 1,\Pi 2) = \phi = \alpha \cdot \pi for
\alpha \in (0, 1). If there exists a sufficiently small radius \varepsilon \in \BbbR + such that

u| B\varepsilon (\bfzero )\cap \bfitl \equiv 0,(2.25)

and for an N \in \BbbN , N \geq 3,

\alpha \not = q

p
, p = 1, 2, . . . , N  - 1, q = 1, 2, . . . , p - 1,

then u vanishes up to the order at least N at the edge corner 0.
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Proof. Since u| \Pi i
= \partial u

\partial \nu + \eta iu = 0, i = 1, 2, we have by using Proposition 2.2 that

\partial u

\partial \nu 
+ \eta 1u

\bigm| \bigm| \bigm| 
\Pi 1

=  - 1

r sin \theta 

\partial u

\partial \phi 
+ \eta 1u

\bigm| \bigm| \bigm| 
\phi =0

= 0,

\partial u

\partial \nu 
+ \eta 2u

\bigm| \bigm| \bigm| 
\Pi 2

=
1

r sin \theta 

\partial u

\partial \phi 
+ \eta 2u

\bigm| \bigm| \bigm| 
\phi =\alpha \cdot \pi 

= 0,

which can be written more explicitly in a spherical coordinate system by Lemma 2.3
as

 - 
\infty \sum 

n=0

n\sum 
m= - n

in+1mamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )

+ \eta 1r sin \theta 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta ) = 0(2.26)

and

\infty \sum 
n=0

n\sum 
m= - n

in+1mamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi 

+ \eta 2r sin \theta 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi = 0.

(2.27)

Under the condition (2.25), we know from from Lemma 2.6 that

a0n = 0 for n = 0, 1, 2, . . . .(2.28)

Comparing the coefficients of r1 in (2.26) and (2.27), respectively, we have

1\sum 
m= - 1

mam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

P
| m| 
1 (cos \theta ) = 0,

 - 
1\sum 

m= - 1

mam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

P
| m| 
1 (cos \theta )eim\alpha \cdot \pi = 0.

Utilizing the orthogonality condition (Lemma 2.4) and the fact that a01 = 0 we can
obtain the linear system with respect to a\pm 1

1 as

a11  - a - 1
1 = 0, a11e

i\alpha \cdot \pi  - a - 1
1 e - i\alpha \cdot \pi = 0.

Since \alpha \in (0, 1), which indicates that \phi \not = 0, \pi , it is easy to see that a\pm 1
1 = 0. Using

the same argument, by induction, we assume that

amn - 1 = 0, m = \pm 1,\pm 2, . . . ,\pm (n - 1).(2.29)

Then by considering the coefficients of rn in (2.26) and (2.27) we have

 - 
n\sum 

m= - n

in+1mamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )

+ \eta 1 sin \theta 

n - 1\sum 
m= - (n - 1)

in - 1amn - 1

\surd 
\lambda 
n - 1

(2n - 1)!!

\sqrt{} 
2n - 1

4\pi 

\sqrt{} 
(n - 1 - | m| )!
(n - 1 + | m| )!

P
| m| 
n - 1(cos \theta ) = 0

(2.30)
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and

n\sum 
m= - n

in+1mamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi 

+ \eta 2 sin \theta 

n - 1\sum 
m= - (n - 1)

in - 1amn - 1

\surd 
\lambda 
n - 1

(2n - 1)!!

\sqrt{} 
2n - 1

4\pi 

\sqrt{} 
(n - 1 - | m| )!
(n - 1 + | m| )!

P
| m| 
n - 1(cos \theta )e

im\alpha \cdot \pi = 0.

(2.31)

By induction, substituting (2.28) and (2.29) into (2.30) and (2.31), using Lemma 2.4
we can deduce that for m \in \BbbN +,\Biggl\{ 

amn  - a - m
n = 0,

amn eim\alpha \cdot \pi  - a - m
n e - im\alpha \cdot \pi = 0.

(2.32)

Hence if \alpha \not = k
m , k = 1, 2, . . . ,m  - 1, by virtue of Remark 2.8, we can deduce that

amn = 0, m = \pm 1,\pm 2, . . . ,\pm n, which completes the proof of Theorem 2.11.

Remark 2.12. It is important and necessary to assume u \equiv 0 on B\varepsilon (0) \cap \bfitl in
Theorem 2.11. Otherwise we cannot derive the recursive equations with respect to
amn from (2.26) and (2.27) to ensure the desired vanishing results.

Remark 2.13. It is straightforward to verify in the proof of Theorem 2.11 that \eta 1
and/or \eta 2 can be taken to be zero. That is, Theorem 2.11 also includes the cases that
at least one of the two planes \Pi \ell is a singular plane.

3. Vanishing orders at vertex corners. In this section, we study the vanish-
ing property of the Laplacian eigenfunction to (1.1) at a vertex corner \scrV (\{ \Pi \ell \} n\ell =1,x0) \Subset 
\Omega , where \Pi \ell could be either a nodal plane, a singular plane, or a generalized singular
plane. It is known that an edge corner \scrE (\Pi 1,\Pi 2, \bfitl ) can be regarded as part of a vertex
corner \scrV (\{ \Pi \ell \} n\ell =1,x0). In section 2, we have unveiled that the vanishing order of the
eigenfunction u at an edge corner can be determined by the intersecting dihedral angle
of \scrE (\Pi 1,\Pi 2, \bfitl ) under a generic condition (cf. (2.25)). In this section, we concentrate
on the condition

u(x0) = 0(3.1)

to study the vanishing property of u at x0. We should point out that (3.1) is much
more relaxed compared with (2.25), and it can be easily fulfilled in a certain generic
case, e.g., superpositions of two eigenfunctions at the point x0. In particular, such
a condition like (3.1) can be used to show the unique determination of some polyhe-
dral obstacles in \BbbR 3 by finitely many measurements in the inverse obstacle scattering
problem; see more details in section 6.

Similar to section 2, without loss of generality, we assume that the vertex corner
x0 of \scrV (\{ \Pi \ell \} n\ell =1, x0) coincides with the origin. We first focus on the case that n = 3,
which implies that the vertex corner \scrV (\{ \Pi \ell \} 3\ell =1,x0) is formed by three planes; see
Figure 3 for a schematic illustration. For n > 3, the related results can be derived in
a similar way; see Theorems 3.6--3.7. It is obvious that \scrV (\{ \Pi \ell \} 3\ell =1,x0) is formed by
three edge corners \scrE (\Pi 1,\Pi 2, \bfitl 1), \scrE (\Pi 2,\Pi 3, \bfitl 2), and \scrE (\Pi 3,\Pi 1, \bfitl 3), where \bfitl 1, \bfitl 2, and \bfitl 3
are three line segments of \Pi 1 \cap \Pi 2, \Pi 2 \cap \Pi 3, and \Pi 3 \cap \Pi 1, respectively. Hence, if any
of the three planes \Pi \ell is nodal, say, \Pi 3, then one can apply the results in section 2
to the edge corners \scrE (\Pi 2,\Pi 3, \bfitl 2) and \scrE (\Pi 3,\Pi 1, \bfitl 3) to derive a certain vanishing order
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x1

x2

x3

O

θ1 θ2~a

~bΠ1
Π2

Π3

α · π

Fig. 3. Schematic illustration of a vertex corner that is intersected by \Pi 1, \Pi 2, and \Pi 3.

at the vertex corder, by regarding it as an edge corner associated with \scrE (\Pi 2,\Pi 3, \bfitl 2)
and \scrE (\Pi 3,\Pi 1, \bfitl 3), respectively. Hence, we shall mainly focus on the vanishing order
generated through the intersection of the two planes \Pi 1 and \Pi 2, both of which are
assumed not to be nodal.

Theorem 3.1. Let u be a Laplacian eigenfunction to (1.1). Consider a vertex
corner \scrV (\{ \Pi \ell \} 3\ell =1,0) \Subset \Omega with \Pi \ell \in \scrM \lambda 

\Omega , \ell = 1, 2, \angle (\Pi 1,\Pi 2) = \phi = \alpha \cdot \pi , \alpha \in (0, 1),

and \Pi 3 \in \scrN \lambda 
\Omega . Assume that \Pi 3 = span\{ \vec{}a,\vec{}b\} , where \vec{}a = (r, \theta 1, 0) \in \Pi 1 \cap \Pi 3 and

\vec{}b = (r, \theta 2, \alpha \cdot \pi ) \in \Pi 2 \cap \Pi 3 for r > 0, \alpha \in (0, 1), and fixed \theta 1 and \theta 2 in the spherical
coordinate system. If for an N \in \BbbN , N \geq 3, it holds that

P 0
p (cos \theta i) \not = 0, i = 1 or 2, and \alpha \not = q

p
, p = 1, 2, . . . , N  - 1, q = 1, 2, . . . , p - 1,(3.2)

where P 0
p is the associated Legendre polynomial, then the vanishing order of u at 0

generated by the intersection of the two planes \Pi 1 and \Pi 2 is at least order N .

Proof. Since \Pi 1 and \Pi 2 are two generalized singular planes, we have

\partial u

\partial \nu 
+ \eta 1u

\bigm| \bigm| \bigm| 
\Pi 1

= 0 and
\partial u

\partial \nu 
+ \eta 2u

\bigm| \bigm| \bigm| 
\Pi 2

= 0.(3.3)

By Proposition 2.2 and Lemma 2.3, we can write (3.3) explicitly as

 - 1

r sin \theta 

\partial u

\partial \phi 
+ \eta 1u

\bigm| \bigm| \bigm| 
\phi =0

=  - 1

r sin \theta 
4\pi 

\infty \sum 
n=0

n\sum 
m= - n

in+1mamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )

+ \eta 14\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta ) = 0(3.4)

and

1

r sin \theta 

\partial u

\partial \phi 
+ \eta 2u

\bigm| \bigm| \bigm| 
\phi =\alpha \cdot \pi 

=
1

r sin \theta 
4\pi 

\infty \sum 
n=0

n\sum 
m= - n

in+1mamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi 

+ \eta 24\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi = 0.

(3.5)
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1276 XINLIN CAO, HUAIAN DIAO, HONGYU LIU, AND JUN ZOU

Since \Pi 3 = span\{ \vec{}a,\vec{}b\} , where \vec{}a = (r, \theta 1, 0) \in \Pi 1 \cap \Pi 3 and \vec{}b = (r, \theta 2, \alpha \cdot \pi ) \in \Pi 2 \cap \Pi 3

for fixed \theta 1, \theta 2, and u| \Pi 3
\equiv 0. It is direct to see u| \vec{}a = u| \vec{}b = 0, which further indicates

that

u| \vec{}a = 4\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta 1) = 0(3.6)

and

u| \vec{}b = 4\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta 2)e

im\alpha \cdot \pi = 0.(3.7)

Combining with (3.4) and (3.5), it suffices to use (3.6) or (3.7) to study the
coefficients of rn, n \in \BbbN . In what follows, without loss of generality, we discuss only
(3.6). Since u| \vec{}a \equiv 0, the coefficient of r0 fulfills that

4\pi a00

\sqrt{} 
1

4\pi 
P 0
0 (cos \theta 1) = 0,

where we can know that a00 = 0 since P 0
0 \equiv 1. Considering the coefficients of r, from

(3.4), (3.5), and (3.6), we can respectively see that

1\sum 
m= - 1

mam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

P
| m| 
1 (cos \theta ) + \eta 1 sin \theta a

0
0

\sqrt{} 
1

4\pi 
P 0
0 (cos \theta ) = 0,(3.8)

1\sum 
m= - 1

mam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

P
| m| 
1 (cos \theta )eim\alpha \cdot \pi (3.9)

 - \eta 2 sin \theta 

1\sum 
m= - 1

a00

\sqrt{} 
1

4\pi 
P 0
0 (cos \theta )e

im\alpha \cdot \pi = 0,

1\sum 
m= - 1

iam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

P
| m| 
1 (cos \theta 1) = 0.(3.10)

Substituting a00 = 0 into (3.8) and (3.9), combining with Lemma 2.4, we can directly
derive the following linear system with respect to a\pm 1

1 :

a11  - a - 1
1 = 0, a11e

i\alpha \cdot \pi  - a - 1
1 e - i\alpha \cdot \pi = 0.(3.11)

Thus we know that a\pm 1
1 = 0 since \alpha \in (0, 1). As a consequence, if P 0

1 (cos \theta 1) \not = 0 in
(3.10), we can deduce that a01 = 0 easily.

By induction, we assume that amn - 1 = 0 for m = 0,\pm 1,\pm 2, . . . ,\pm (n  - 1). Then
considering the coefficients of rn, by (3.4), (3.5), and (3.6), we have

 - 
n\sum 

m= - n

in+1mamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )

+ \eta 1 sin \theta 

n - 1\sum 
m= - (n - 1)

in - 1amn - 1

\surd 
\lambda 
n - 1

(2n - 1)!!

\sqrt{} 
2n - 1

4\pi 

\sqrt{} 
(n - 1 - | m| )!
(n - 1 + | m| )!

P
| m| 
n - 1(cos \theta ) = 0,

(3.12)

D
ow

nl
oa

de
d 

07
/1

8/
22

 to
 1

37
.1

89
.4

9.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GEOMETRIC STRUCTURES OF LAPLACIAN EIGENFUNCTIONS 1277

n\sum 
m= - n

in+1mam
n

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!P

| m| 
n (cos \theta )eim\alpha \cdot \pi 

+ \eta 2 sin \theta 

n - 1\sum 
m= - (n - 1)

in - 1am
n - 1

\surd 
\lambda 
n - 1

(2n - 1)!!

\sqrt{} 
2n - 1

4\pi 

\sqrt{} 
(n - 1 - | m| )!
(n - 1 + | m| )!P

| m| 
n - 1(cos \theta )e

im\alpha \cdot \pi = 0,

(3.13)

and

n\sum 
m= - n

inamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta 1) = 0.(3.14)

Utilizing the assumption amn - 1 = 0 for n = 0,\pm 1,\pm 2, . . . ,\pm (n - 1) in (3.12) and (3.13),
we know from the orthogonality condition in Lemma 2.4 that for m \in \BbbN +, a

m
n satisfies

amn  - a - m
n = 0, amn eim\alpha \cdot \pi  - a - m

n e - im\alpha \cdot \pi = 0.(3.15)

Therefore, if \alpha \not = k
m , k = 1, 2, . . . ,m - 1, and by virtue of Remark 2.8 we can derive

that amn = 0 for m = \pm 1,\pm 2, . . . ,\pm n. Now we are in a position to show that a0n = 0.
Indeed, substituting amn = 0, m = \pm 1,\pm 2, . . . ,\pm n into (3.14), we can obtain that if
P 0
n(cos \theta 1) \not = 0, then a0n = 0, which completes the proof of Theorem 3.1.

In the above proof of Theorem 3.1, we have analyzed only the condition u| \vec{}a = 0
for illustration. For the condition u| \vec{}b = 0, we give the discussion in the following
remark.

Remark 3.2. In the proof of Theorem 3.1, if we use (3.7) instead of (3.6), com-
bining with (3.4) and (3.5), to consider the coefficients of rn, n \in \BbbN , then (3.10)
becomes

1\sum 
m= - 1

iam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

P
| m| 
1 (cos \theta 2)e

im\alpha \cdot \pi = 0.(3.16)

Since we know a\pm 1
1 = 0 by (3.8) and (3.9), we can obtain from (3.16) that if P 0

1 (cos \theta 2)
\not = 0, then a01 = 0. By induction, in order to study a0n, we replace (3.14) by

n\sum 
m= - n

inamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta 2)e

im\alpha \cdot \pi = 0.(3.17)

Substituting amn = 0, m = \pm 1,\pm 2, . . . ,\pm n, which is derived from (3.15) to (3.17), we
can deduce that if P 0

n(cos \theta 2) \not = 0, then a0n = 0.
Hence, from the above discussions we know that it is actually equivalent to con-

sider u| \vec{}a = 0 or u| \vec{}b = 0 in the proof of Theorem 3.1. Therefore, in our subsequent
study, we shall only prove under the condition with respect to \vec{}a.

In Theorem 3.1, we have considered the case that \Pi 3 \in \scrN \lambda 
\Omega is a nodal plane.

Next, we study the more complicated case that \Pi 3 \in \scrM \lambda 
\Omega is a generalized singular

plane.

Theorem 3.3. Let u be a Laplacian eigenfunction to (1.1). Consider a vertex
corner \scrV (\{ \Pi \ell \} 3\ell =1,0) \Subset \Omega with \Pi \ell \in \scrM \lambda 

\Omega , \ell = 1, 2, 3, and \angle (\Pi 1,\Pi 2) = \phi = \alpha \cdot \pi ,
\alpha \in (0, 1). Assume that \Pi 3 = span\{ \vec{}a,\vec{}b\} , where \vec{}a = (r, \theta 1, 0) \in \Pi 1 \cap \Pi 3 and \vec{}b =
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1278 XINLIN CAO, HUAIAN DIAO, HONGYU LIU, AND JUN ZOU

(r, \theta 2, \alpha \cdot \pi ) \in \Pi 2 \cap \Pi 3 for r > 0, \alpha \in (0, 1), and fixed \theta 1 \in (0, \pi ) and \theta 2 \in (0, \pi ) in
the spherical coordinate system. If for an N \in \BbbN , N \geq 3, it holds that

u(\bfzero ) = 0, P 1
p (cos \theta i) \not = 0, i = 1 or 2, and \alpha \not = q

p
, p = 1, 2, . . . , N  - 1, q = 1, 2, . . . , p - 1,

(3.18)

where P 1
p is the associated Legendre polynomial, then the vanishing order of u at 0

generated by the intersection of the two planes \Pi 1 and \Pi 2 is at least order N .

Proof. Since \Pi i, i = 1, 2, 3, are three generalized singular planes, we have

\partial u

\partial \nu 
+ \eta 1u

\bigm| \bigm| \bigm| 
\Pi 1

= 0,
\partial u

\partial \nu 
+ \eta 2u

\bigm| \bigm| \bigm| 
\Pi 2

= 0 and
\partial u

\partial \nu 
+ \eta 3u

\bigm| \bigm| \bigm| 
\Pi 3

= 0.

From Theorem 3.1, we have already known that u satisfies (3.4) and (3.5) on \Pi 1 and
\Pi 2, respectively. Besides, by Remark 3.2, we can obtain that

\partial u

\partial \nu 
+ \eta 3u

\bigm| \bigm| \bigm| 
\vec{}a
= 0.(3.19)

Since \Pi 3 = span\{ \vec{}a,\vec{}b\} , which implies that \nu = \vec{}b \times \vec{}a = (sin \theta 2 sin(\alpha \cdot \pi ) cos \theta 1, sin \theta 1
cos \theta 2  - sin \theta 2 cos(\alpha \cdot \pi ) cos \theta 1, - sin \theta 1 sin \theta 2 sin(\alpha \cdot \pi ))T, we know that (3.19) can be
written as

\partial u

\partial \nu 
+ \eta 3u

\bigm| \bigm| \bigm| 
\vec{}a
=

1

r

\partial u

\partial \theta 
sin \theta 2 sin(\alpha \cdot \pi ) + 1

r sin \theta 1

\partial u

\partial \phi 

\cdot (sin \theta 1 cos \theta 2  - sin \theta 2 cos \theta 1 cos\alpha \cdot \pi ) + \eta 3u
\bigm| \bigm| \bigm| 
\theta =\theta 1,\phi =0

= 0.(3.20)

By Lemma 2.3, multiplying r sin \theta 1 on both sides of (3.20), the equation can be
simplified to

sin \theta 1 sin \theta 2 sin(\alpha \cdot \pi )
\infty \sum 

n=0

n\sum 
m= - n

inam
n jn(

\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

dP
| m| 
n (cos \theta )

d\theta 

\bigm| \bigm| \bigm| 
\theta =\theta 1

+ (sin \theta 1 cos \theta 2  - sin \theta 2 cos \theta 1 cos\alpha \cdot \pi )
\infty \sum 

n=0

n\sum 
m= - n

in+1mam
n jn(

\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

\cdot P | m| 
n (cos \theta 1) + \eta 3 sin \theta 1r

\infty \sum 
n=0

n\sum 
m= - n

inam
n jn(

\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!P

| m| 
n (cos \theta 1) = 0.

(3.21)

Since u(0) = 0, we know that a00 = 0. Combining (3.4), (3.5) with (3.21), the
corresponding coefficients of r respectively fulfill that

1\sum 
m= - 1

mam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

P
| m| 
1 (cos \theta ) + \eta 1 sin \theta a

0
0

\sqrt{} 
1

4\pi 
P 0
0 (cos \theta ) = 0,(3.22)

1\sum 
m= - 1

mam
1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1+| m| )!P

| m| 
1 (cos \theta )eim\alpha \cdot \pi  - \eta 2 sin \theta 

1\sum 
m= - 1

a0
0

\sqrt{} 
1

4\pi 
P 0
0 (cos \theta )e

im\alpha \cdot \pi =0,

(3.23)
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and

sin \theta 1 sin \theta 2 sin(\alpha \cdot \pi )
1\sum 

m= - 1

iam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

dP
| m| 
1 (cos \theta )

d\theta 

\bigm| \bigm| \bigm| 
\theta =\theta 1

 - (sin \theta 1 cos \theta 2  - sin \theta 2 cos \theta 1 cos(\alpha \cdot \pi ))
1\sum 

m= - 1

mam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

P
| m| 
1 (cos \theta 1)

+ \eta 3 sin \theta 1a
0
0

\sqrt{} 
1

4\pi 
P 0
0 (cos \theta 1) = 0.

(3.24)

Substituting a00 = 0 into (3.22) and (3.23), utilizing the orthogonality condition we
can derive

a11  - a - 1
1 = 0, a11e

i\alpha \cdot \pi  - a - 1
1 e - i\alpha \cdot \pi = 0,(3.25)

which yields a\pm 1
1 = 0 from the fact that \alpha \in (0, 1). In addition, taking a00 = a\pm 1

1 = 0
in (3.24), we have

sin \theta 1 sin \theta 2 sin(\alpha \cdot \pi )ia01

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 
( - P 1

1 (cos \theta 1)) = 0.(3.26)

Hence, by the assumptions on \theta 1, \theta 2, and \alpha , we can obtain that a01=0 if P 1
1 (cos \theta 1)\not =0.

Proving by induction, we assume that amn - 1 = 0 for m = 0,\pm 1,\pm 2, . . .\pm (n - 1).
Then considering the coefficients of rn in (3.4), (3.5), and (3.21) accordingly, we know
that there hold (3.12), (3.13) and also

sin \theta 1 sin \theta 2 sin(\alpha \cdot \pi )
n\sum 

m= - n

inam
n

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

dP
| m| 
n (cos \theta )

d\theta 

\bigm| \bigm| \bigm| 
\theta =\theta 1

+ (sin \theta 1 cos \theta 2  - sin \theta 2 cos \theta 1 cos\alpha \cdot \pi )
n\sum 

m= - n

in+1mam
n

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

\cdot P | m| 
n (cos \theta 1) + \eta 3 sin \theta 1

n - 1\sum 
m= - (n - 1)

in - 1am
n - 1

\surd 
\lambda 
n - 1

(2n - 1)!!

\sqrt{} 
2n - 1

4\pi 

\sqrt{} 
(n - 1 - | m| )!
(n - 1+| m| )!P

| m| 
n - 1(cos \theta 1)=0.

Using the assumption that amn - 1 = 0, m = 0,\pm 1,\pm 2, . . .\pm (n - 1) in (3.12) and (3.13),

similar to Theorem 3.3, we can obtain that if \alpha \not = k
m , k = 1, 2, . . . ,m - 1, then amn = 0

for m = \pm 1,\pm 2, . . .\pm n. Therefore, we can deduce from the last relation above that

sin \theta 1 sin \theta 2 sin(\alpha \cdot \pi )ina0n

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 
( - P 1

n(cos \theta 1)) = 0,(3.27)

which indicates that a0n = 0 if P 1
n(cos \theta 1) \not = 0 and hence completes the proof of

Theorem 3.3.

Remark 3.4. Following a similar argument in Theorem 3.3, if we take into account
the condition \partial u

\partial \nu + \eta 3u| \vec{}b \equiv 0 on \Pi 3, then we can derive similar results with respect
to \theta 2 instead of \theta 1.

Remark 3.5. By direct verifications in the proof of Theorem 3.3, one can show
that either of the boundary parameters \eta \ell , \ell = 1, 2, 3, can be taken to be zero. That
means the generalized singular planes in Theorem 3.1 can be replaced by singular
planes, and the vanishing results still hold.
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x1

x2

x3

O

A1

A2

Aj

Aj+1

Π1
Π2

· · ·

· · ·

An

α · π

A3

Πj

Πn

Fig. 4. Schematic illustration of a vertex corner that is intersected by \Pi 1, \Pi 2, . . ., \Pi n with n > 3.

In Theorems 3.1 and 3.3, we have considered the vanishing properties at a vertex
corner that is intersected by three planes (n = 3). In fact, similar arguments work
for the case that n > 3, in which the third plane no longer intersects with \Pi 1 or
\Pi 2. Without loss of generality, we denote the third plane to be discussed by \Pi j =

span\{ 
 -  - \rightarrow 
OAj ,

 -  -  -  - \rightarrow 
OAj+1\} , where 3 \leq j \leq n, and if j = n, we assume that An+1 := A1. Let

\Pi 1 coincide with the (x1, x3)-plane, \Pi 2 possesses a dihedral angle \alpha \cdot \pi away from

\Pi 1 in the anticlockwise direction, and
 -  - \rightarrow 
OA2 lies on the x3-axis; see Figure 4 for a

schematic illustration.

Theorem 3.6. Let u be a Laplacian eigenfunction to (1.1). Consider a vertex
corner \scrV (\{ \Pi \ell \} n\ell =1,0) \Subset \Omega as described above with \Pi \ell \in \scrM \lambda 

\Omega , \ell = 1, 2, \angle (\Pi 1,\Pi 2) =

\phi = \alpha \cdot \pi , \alpha \in (0, 1), and \Pi j \in \scrN \lambda 
\Omega . Assume that \Pi j = span\{ 

 -  - \rightarrow 
OAj ,

 -  -  -  - \rightarrow 
OAj+1\} , where -  - \rightarrow 

OAj = (r, \theta j , \phi j) and
 -  -  -  - \rightarrow 
OAj+1 = (r, \theta j+1, \phi j+1) for r > 0, \theta j , \theta j+1 \in (0, \pi ), and

\phi j , \phi j+1 \in (0, 2\pi ) such that 0 < \phi j+1  - \phi j < \pi in the spherical coordinate system. If
for an N \in \BbbN , N \geq 3, it holds that

P 0
p (cos \theta \tau ) \not = 0, \tau = j or j + 1, and \alpha \not = q

p
, p = 1, 2, . . . , N  - 1, q = 1, 2, . . . , p - 1,

(3.28)

where P 0
p is the associated Legendre polynomial, then the vanishing order of u at 0

generated by the intersection of the two planes \Pi 1 and \Pi 2 is at least order N .

Proof. Since \Pi 1 and \Pi 2 are two generalized singular planes, we can derive (3.4)
and (3.5) immediately. Considering \Pi j , we know that u| \Pi j = 0, which indicates that
u|  -  - \rightarrow 

OAj
\equiv 0 and u|  -  -  -  - \rightarrow 

OAj+1
\equiv 0. By Remark 3.2, it suffices to analyze u|  -  - \rightarrow 

OAj
\equiv 0 as

follows:

u|  -  - \rightarrow 
OAj

= 4\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta j)e

im\phi j = 0.

(3.29)

Taking m = n = 0 in (3.29) we have 4\pi a00

\sqrt{} 
1
4\pi P

0
0 (cos \theta j) = 0, where we can derive

a00 = 0 since P 0
0 \equiv 1. Thus from (3.4), (3.5), and (3.29), we know that the coefficients

of r satisfy (3.11) and thus a\pm 1
1 = 0. Moreover, we have

1\sum 
m= - 1

iam1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 

\sqrt{} 
(1 - | m| )!
(1 + | m| )!

P
| m| 
1 (cos \theta j)e

im\phi j = 0,(3.30)
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which can be further simplified as a01P
0
1 (cos \theta j) = 0 after substituting a\pm 1

1 = 0 into
(3.30). Hence, it is easy to see that a01 = 0 if P 0

1 (cos \theta j) \not = 0.
By induction, we assume that amn - 1 = 0 for m = 0,\pm 1,\pm 2, \cdot \cdot \cdot \pm (n  - 1). Con-

sidering the coefficients of rn, we can obtain (3.12) and (3.13) which induce (3.15) as
well as the equation

n\sum 
m= - n

inamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta j)e

im\phi j = 0.(3.31)

Since we have already known that if \alpha \not = k
m , k = 1, 2, . . .  - m  - 1, then amn = 0 for

m = \pm 1,\pm 2, . . . ,\pm n from (3.15). Substituting this result into (3.31), we can deduce
a0nP

0
n(cos \theta j) = 0. Therefore, we know that a0n = 0 if P 0

n(cos \theta j) \not = 0. Similarly, if we
utilize the condition u|  -  -  -  - \rightarrow 

OAj+1
\equiv 0, then the same argument and results work for \theta j+1,

which completes our proof.

We proceed to consider the case that \Pi j is a generalized singular plane instead
of a nodal plane as in Theorem 3.6.

Theorem 3.7. Let u be a Laplacian eigenfunction to (1.1). Consider a vertex
corner \scrV (\{ \Pi \ell \} n\ell =1,0) \Subset \Omega with \Pi \ell \in \scrM \lambda 

\Omega , \ell = 1, 2, \angle (\Pi 1,\Pi 2) = \phi = \alpha \cdot \pi , \alpha \in (0, 1),

and \Pi j \in \scrM \lambda 
\Omega . Assume that \Pi j = span\{ 

 -  - \rightarrow 
OAj ,

 -  -  -  - \rightarrow 
OAj+1\} , where

 -  - \rightarrow 
OAj = (r, \theta j , \phi j) and

 -  -  -  - \rightarrow 
OAj+1 = (r, \theta j+1, \phi j+1) for r > 0, \theta j , \theta j+1 \in (0, \pi ), and \phi j , \phi j+1 \in (0, 2\pi ) such that
0 < \phi j+1  - \phi j < \pi in the spherical coordinate system. If for an N \in \BbbN , N \geq 3, there
holds

u(0) = 0, P 1
p (cos \theta \tau ) \not = 0, \tau = j or j + 1, and \alpha \not = q

p
,(3.32)

where p = 1, 2, . . . , N  - 1, q = 1, 2, . . . , p  - 1, and P 1
p is the associated Legendre

polynomial, then the vanishing order of u at 0 generated by the intersection of the two
planes \Pi 1 and \Pi 2 is at least order N .

Proof. From Theorem 3.3 and the fact that \Pi 1 and \Pi 2 are two generalized singular
planes, we know u fulfills (3.4) and (3.5). Now considering \Pi j , there holds

\partial u
\partial \nu +\eta ju = 0

on \Pi j . Since \Pi j = span\{ 
 -  - \rightarrow 
OAj ,

 -  -  -  - \rightarrow 
OAj+1\} , we have \partial u

\partial \nu + \eta ju|  -  - \rightarrow OAj
= 0 and

\nu =
 -  - \rightarrow 
OAj \times 

 -  -  -  - \rightarrow 
OAj+1 =

\left(  sin \theta j sin\phi j cos \theta j+1  - sin \theta j+1 sin\phi j+1 cos \theta j
 - sin \theta j cos\phi j cos \theta j+1 + sin \theta j+1 cos\phi j+1 cos \theta j

sin \theta j cos\phi j sin \theta j+1 sin\phi j+1  - sin \theta j+1 cos\phi j+1 sin \theta j sin\phi j

\right)  .

Combining with Lemma 2.3, we can obtain by direct computations that

\partial u

\partial \nu 
+ \eta ju

\bigm| \bigm| \bigm|  -  - \rightarrow 
OAj

=
1

r sin \theta j

\partial u

\partial \phi 
(sin \theta j+1 cos \theta j cos(\phi j  - \phi j+1) - sin \theta j cos \theta j+1)

+
1

r

\partial u

\partial \theta 
sin \theta j+1 sin(\phi j  - \phi j+1) + \eta ju

\bigm| \bigm| \bigm| 
\theta =\theta j ,\phi =\phi j

= 0.(3.33)

Since \theta j \in (0, \pi ), multiplying r sin \theta j on the both sides of (3.33), we can deduce that
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(sin \theta j+1 cos \theta j cos(\phi j  - \phi j+1) - sin \theta j cos \theta j+1)

\infty \sum 
n=0

n\sum 
m= - n

in+1mamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\cdot 

\sqrt{} 
(n - | m| )!
(n+| m| )!

P | m| 
n (cos \theta j)e

im\phi j + sin \theta j sin \theta j+1 sin(\phi j  - \phi j+1)

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\cdot 
\sqrt{} 

2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

dP
| m| 
n (cos \theta )

d\theta 

\bigm| \bigm| \bigm| 
\theta =\theta j

eim\phi j + \eta j sin \theta jr

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\cdot 
\sqrt{} 

2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta j)e

im\phi j = 0.

(3.34)

Since u(0) = 0, we have a00 = 0. Considering the coefficients with respect to r in
(3.4), (3.5), and (3.34), we know that a\pm 1

1 fulfills (3.11) which induces that a\pm 1
1 = 0

since \alpha \in (0, 1). Moreover, it is easy to see from (3.34) that

sin \theta j sin \theta j+1 sin(\phi j  - \phi j+1)ia
0
1

\surd 
\lambda 

3!!

\sqrt{} 
3

4\pi 
( - P 1

1 (cos \theta j)) = 0.

Since \theta j , \theta j+1 \in (0, \pi ) and 0 < \phi j  - \phi j+1 < \pi , we know a01 = 0 if P 1
1 (cos \theta j) \not = 0.

Similarly, we assume that amn - 1 = 0, m = 0,\pm 1,\pm 2, . . . ,\pm (n - 1). Then combining
with Theorem 3.3, we know that amn satisfies (3.12), (3.13), and

(sin \theta j+1 cos \theta j cos(\phi j  - \phi j+1) - sin \theta j cos \theta j+1)

n\sum 
m= - n

in+1mamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\cdot 

\sqrt{} 
(n+ | m| )!
(n - | m| )!

P | m| 
n (cos \theta j)e

im\phi j + sin \theta j sin \theta j+1 sin(\phi j  - \phi j+1)

n\sum 
m= - n

inamn

\surd 
\lambda 
n

(2n+ 1)!!

\cdot 
\sqrt{} 

2n+1

4\pi 

\sqrt{} 
(n - | m| )!
(n+| m| )!

dP
| m| 
n (cos \theta )

d\theta 

\bigm| \bigm| \bigm| 
\theta =\theta j

eim\phi j + \eta j sin \theta j

n - 1\sum 
m= - (n - 1)

in - 1amn - 1

\surd 
\lambda 
n - 1

(2n - 1)!!

\cdot 
\sqrt{} 

2n - 1

4\pi 

\sqrt{} 
(n - 1 - | m| )!
(n - 1 + | m| )!

P
| m| 
n - 1(cos \theta j)e

im\phi j = 0.

(3.35)

In (3.12) and (3.13), utilizing the assumption amn - 1 = 0 for m = 0,\pm 1,\pm 2, . . . \pm 
(n - 1), we know that if \alpha \not = k

m , k = 1, 2, . . . ,m, then amn = 0, \pm 1,\pm 2, . . . ,\pm n. Hence
(3.35) can be simplified to

sin \theta j sin \theta j+1 sin(\phi j  - \phi j+1)i
na0n

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 
( - P 1

n(cos \theta j)) = 0.

Since \theta j , \theta j+1 \in (0, \pi ) and 0 < \phi j - \phi j+1 < \pi , we can derive that a0n = 0 if P 1
n(cos \theta j) \not =

0. The same results work for \theta j+1 if we take into account that \partial u
\partial \nu + \eta ju|  -  -  -  - \rightarrow OAj+1

= 0.

This completes the proof of Theorem 3.7.

Remark 3.8. Similarly to Remark 3.5, one can have by direct verifications that
the vanishing results in Theorem 3.7 still hold if any of the generalized singular planes
involved is replaced by a singular plane.
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4. Irrational intersections and infinite vanishing orders. From the results
derived in sections 2 and 3, one can identify that the vanishing order of the eigenfunc-
tion u at an edge or a vertex corner relies on the degree of the dihedral angle of the
underlying corner. In the following two definitions, we first introduce the irrational
and rational edge or vertex corner. Then, based on the results in sections 2 and 3,
we show that the vanishing order of the eigenfunction at an irrational edge or vertex
corner is generically infinity and hence it vanishes identically in \Omega .

Definition 4.1. Let \scrE (\Pi 1,\Pi 2, \bfitl ) be an edge corner defined in Definition 1.2 and
the corresponding dihedral angle of \Pi 1 and \Pi 2 is denoted by \phi = \alpha \cdot \pi , \alpha \in (0, 1). If \phi 
is an irrational dihedral angle, namely, \alpha is an irrational number, then \scrE (\Pi 1,\Pi 2, \bfitl ) is
said to be an irrational edge corner. Otherwise it is said to be a rational edge corner.
For a rational edge corner \scrE (\Pi 1,\Pi 2, \bfitl ), the dihedral angle between \Pi 1 and \Pi 2 is called
the rational degree of \scrE (\Pi 1,\Pi 2, \bfitl ).

Definition 4.2. Let \scrV (\{ \Pi \ell \} n\ell =1,x0) be a vertex corner defined in Definition 1.3,
where n \in \BbbN and n \geq 3. It is clear that \scrV (\{ \Pi \ell \} n\ell =1,x0) is composed of the following
n edge corners:

\scrE \ell := \scrE (\Pi \ell ,\Pi \ell +1, \bfitl \ell ), \scrE n := \scrE (\Pi n,\Pi 1, \bfitl n), \Pi n+1 := \Pi 1, \ell = 1, 2, . . . , n - 1,

where \bfitl \ell is the line segment of \Pi \ell \cap \Pi \ell +1 and \bfitl n is a line segment of \Pi n \cap \Pi 1,
respectively. Denote

I\sansI \sansR = \{ \ell \in \BbbN | 1 \leq \ell \leq n, \scrE \ell is an irrational edge corner\} ,
I\sansR = \{ \ell \in \BbbN | 1 \leq \ell \leq n, \scrE \ell is a rational edge corner\} .

(4.1)

If \#I\sansI \sansR \geq 1, then \scrV (\{ \Pi \ell \} n\ell =1,x0) is said to be an irrational vertex corner. If \#I\sansI \sansR \equiv 0,
then \scrV (\{ \Pi \ell \} n\ell =1,x0) is said to be a rational vertex corner. For a rational vertex corner
\scrV (\{ \Pi \ell \} n\ell =1,x0) composed of edge corners \scrE \ell := \scrE (\Pi \ell ,\Pi \ell +1, \bfitl \ell ), the largest degree of
\scrE \ell (\ell = 1, . . . , n) is referred to as the rational degree of \scrV (\{ \Pi \ell \} n\ell =1,x0).

When an irrational edge corner \scrE (\Pi 1,\Pi 2, \bfitl ) is intersected by two nodal planes of
u, we can derive the following result from Theorem 2.7.

Theorem 4.3. Let u be a Laplacian eigenfunction to (1.1). Suppose that \scrE (\Pi 1,
\Pi 2, \bfitl ) \Subset \Omega is an irrational edge corner with \Pi 1,\Pi 2 \in \scrN \lambda 

\Omega . Then it holds that

Vani(u;0,\Pi 1,\Pi 2) = +\infty , 0 \in \bfitl .

If the intersecting two planes of the irrational edge corner are one of the three
types---a nodal plane, a singular plane, or a generalized singular plane---for the general
case, we have the irrational intersection results as shown below.

Theorem 4.4. Let u be a Laplacian eigenfunction to (1.1). Suppose that \scrE (\Pi 1,
\Pi 2, \bfitl ) \Subset \Omega is an irrational edge corner with \Pi 1 \in \scrN \lambda 

\Omega and \Pi 2 \in \scrM \lambda 
\Omega . Then it holds

that

Vani(u;0,\Pi 1,\Pi 2) = +\infty , 0 \in \bfitl .

The same result can be derived for the case that \eta \equiv 0, which indicates that \Pi 2

is a singular plane. A detailed discussion can be found in Theorem 2.9.
The next theorem is concerned with the intersection of two generalized singular

planes, which is a direct corollary of Theorem 2.11.
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Theorem 4.5. Let u be a Laplacian eigenfunction to (1.1). Suppose that \scrE (\Pi 1,
\Pi 2, \bfitl ) \Subset \Omega is an irrational edge corner with \Pi \ell \in \scrM \lambda 

\Omega (\ell = 1, 2). If there exists a
sufficiently small \varepsilon > 0 such that

u| B\varepsilon (\bfzero )\cap \bfitl \equiv 0,(4.2)

then it holds that

Vani(u;0,\Pi 1,\Pi 2) = +\infty , 0 \in \bfitl .

If \eta 1 = 0 or \eta 2 = 0, which indicates that either \Pi 1 or \Pi 2 becomes a singular plane,
we can deduce the same vanishing property as Theorem 4.5. Moreover, if \eta 1 = \eta 2 = 0,
for the intersection of two singular planes, we can further obtain the explicit form of
u as below.

Theorem 4.6. Let u be a Laplacian eigenfunction to (1.1). Suppose that \scrE (\Pi 1,\Pi 2,
\bfitl ) \Subset \Omega is an irrational edge corner and \Pi \ell \in \scrS \lambda 

\Omega (\ell = 1, 2). If (4.2) is satisfied, then
it holds that

Vani(u;0,\Pi 1,\Pi 2) = +\infty , 0 \in \bfitl .(4.3)

Moreover, if u| B\varepsilon (\bfzero )\cap \bfitl \not \equiv 0, then we have the following expansion of u in a neighborhood
of the edge corner 0 in the polar coordinate system:

u(x) = 4\pi 

\infty \sum 
n=0

ina0njn(
\surd 
\lambda r)Y 0

n (\theta , \phi ),(4.4)

where Y 0
n (\theta , \phi ) is the spherical harmonics and jn(t) is the nth Bessel function.

Proof. By Theorem 2.11 and Remark 2.13, it is easy to verify that (4.3) holds
under the generic condition (4.2). However, if (4.2) fails to be fulfilled, then we can
not derive a0n = 0 for n = 0, 1, 2, . . ..

Since \partial u
\partial \nu | \Pi \ell 

\equiv 0, \ell = 1, 2, we can obtain by direct computation that

 - 
\infty \sum 

n=0

n\sum 
m= - n

in+1mamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta ) = 0(4.5)

and

\infty \sum 
n=0

n\sum 
m= - n

in+1mamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi = 0(4.6)

on \Pi 1 and \Pi 2, respectively. By comparing the coefficients of r in (4.5) and (4.6),
with the help of the orthogonality condition, we can still obtain that a\pm 1

1 = 0 since
\alpha \in (0, 1) for the dihedral angle \phi = \alpha \cdot \pi . By induction, following a similar argument
to the proof of Theorem 2.11, we can deduce that

 - 
n\sum 

m= - n

in+1mamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta ) = 0(4.7)

and

n\sum 
m= - n

in+1mamn

\surd 
\lambda 
n

(2n+ 1)!!

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi = 0.(4.8)

D
ow

nl
oa

de
d 

07
/1

8/
22

 to
 1

37
.1

89
.4

9.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GEOMETRIC STRUCTURES OF LAPLACIAN EIGENFUNCTIONS 1285

Therefore by Lemma 2.4, we see that amn = 0 (m = \pm 1,\pm 2, . . . ,\pm n) since the cor-
responding dihedral angle is irrational. Hence, we are able to obtain the explicit
expression (4.4) around the edge corner 0.

Based on the irrational intersection at an edge corner by two planes, we next
consider the corresponding properties at a vertex corner which is intersected by n
planes where n \geq 3.

Using Theorem 3.6 and Remark 3.8, we have the following results for an irrational
vertex corner.

Theorem 4.7. Let u be a Laplacian eigenfunction to (1.1). Consider an irratio-
nal vertex corner \scrV (\{ \Pi \ell \} n\ell =1,0) \Subset \Omega , where the intersecting n planes \Pi 1,\Pi 2, . . ., \Pi n

could be any of the three types: a nodal plane, a singular plane, or a generalized singu-

lar plane, n \in \BbbN and n \geq 3. Assume that for i = 1, 2, . . . , n, \Pi i = span\{ 
 -  - \rightarrow 
OAi,

 -  -  -  - \rightarrow 
OAi+1\} ,

where
 -  - \rightarrow 
OAi = (r, \theta i, \phi i),

 -  -  -  - \rightarrow 
OAi+1 = (r, \theta i+1, \phi i+1) for r > 0, \theta i, \theta i+1 \in (0, \pi ), and

\phi i, \phi i+1 \in (0, 2\pi ) such that 0 < \phi i+1  - \phi i < \pi in the spherical coordinate system.
Particularly when i = n, we denote \Pi n+1 := \Pi 1. Recall that I\sansR and I\sansI \sansR are defined in
(4.1). If one of the conditions is fulfilled that

(1) there exists an index \ell 0 \in I\sansI \sansR such that \Pi \ell 0 \in \scrN \lambda 
\Omega or \Pi \ell 0+1 \in \scrN \lambda 

\Omega ;
(2) for any \ell \in I\sansI \sansR , if \Pi \ell ,\Pi \ell +1 \in \{ \scrS \lambda 

\Omega \cup \scrM \lambda 
\Omega \} , u(0) = 0, and for a fixed \ell 0 \in I\sansI \sansR 

there exists an index j \in \{ 1, . . . , n\} such that the corresponding plane \Pi j =

span\{ 
 -  - \rightarrow 
OAj ,

 -  -  -  - \rightarrow 
OAj+1\} satisfies P 0

p (cos \theta \tau ) \not = 0 and P 1
p (cos \theta \tau ) \not = 0 for all p \in \BbbN ,

\tau = j, j + 1, where P 0
p and P 1

p are the associated Legendre polynomials,
then there holds that Vani(u;0) = +\infty .

5. Vanishing at edge and vertex corners involving generalized singular
planes with variable parameters. In sections 2--4, whenever a generalized singu-
lar plane \Pi is concerned, the parameter \eta (cf. Definition 1.1) was assumed to be a
constant. In this section, we remark that with some straightforward modifications,
all the results derived in sections 2--4 equally hold for the case that \eta is a (variable)
analytic function on \Pi . To that end, we make the following crucial observation. In
what follows, for an analytic function f on \Pi with the series representation

f(x) =

\infty \sum 
\ell =0

a\ell (\theta , \phi )r
\ell , x = (r, \theta , \phi ) \in \Pi ,(5.1)

we define deglow(f) = N if a\ell = 0 for \ell = 0, 1, . . . , N while aN+1 \not = 0. Next, we first
assume that \eta is an analytic function of the form (5.1) on \Pi . Recall that u has the
expansion (2.3) and assume that

amn = 0 for n = 0, 1, . . . , N and m = \pm n,\pm (n - 1), . . . ,\pm 1, 0.(5.2)

Then by straightforward calculations, one has

\partial u

\partial \nu 
+ \eta u

=
1

r sin \theta 
4\pi 

\infty \sum 
n=N

n\sum 
m= - n

in+1mamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi 

+

\infty \sum 
\ell =0

a\ell (\theta , \phi )r
\ell \cdot 4\pi 

\infty \sum 
n=N

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

\sqrt{} 
(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\alpha \cdot \pi .

(5.3)
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1286 XINLIN CAO, HUAIAN DIAO, HONGYU LIU, AND JUN ZOU

Using (2.6) and (5.3), it is straightforward to verify that deglow(\eta u) \geq N , while the
leading-order term for \partial u/\partial \nu +\eta u is the rN - 1-term, completely determined by \partial u/\partial \nu .
With such an observation, it is straightforward to show that all the results in sections
2--4 hold for the case that \eta is of the form (5.1) on \Pi . For the general case that \eta 
is analytic on \Pi , since all of our mathematical arguments can actually be localized
around the corner points, one can complete the proofs by using the fact that \eta has
the series expansion (5.1) locally around the corner points.

6. Unique identifiability for inverse obstacle problems. In this section, we
apply the results we have obtained in previous sections about the vanishing properties
of an eigenfunction at a vertex corner to study a fundamental mathematical issue in
inverse scattering problems, namely the unique identifiability of the inverse problem
recovering the shape of some unknown objects by certain wave probing data. The
inverse obstacle problem arises from many applications, such as those using radar,
sonar, and geophysical explorations.

Let \Omega \subset \BbbR 3 be a bounded Lipschitz domain such that \BbbR 3\setminus \=\Omega is connected. Let ui

be an incident field, and it is assumed in the subsequent analysis to be a plane wave
of the form

ui := ui(x; k,d) = eik\bfx \cdot \bfd , x \in \BbbR 3,

where k \in \BbbR + signifies the wavenumber and d \in \BbbS 2 denotes the incident direction.
Physically speaking, ui is the detecting wave field and \Omega denotes an impenetrable
obstacle which interrupts the propagation of the incident wave and generates the
corresponding scattered wave field us. Define u := ui + us to be the total wave field,
then the forward scattering problem of this process can be described by the system\left\{                   

\Delta u+ k2u = 0 in \BbbR 3\setminus \Omega ,

u = ui + us in \BbbR 3,

B(u) = 0 on \partial \Omega ,

lim
r\rightarrow \infty 

r

\biggl( 
\partial us

\partial r
 - ikus

\biggr) 
= 0,

(6.1)

where the last equation is the Sommerfeld radiation condition that holds uniformly
in \^x := x/| x| \in \BbbS 2. If B(u) := u, the boundary condition is of Dirichlet type and
\Omega is said to be a sound-soft obstacle; if B(u) := \partial \nu u, the boundary condition is of
Neumann type and \Omega is said to be a sound-hard obstacle; if B(u) := \partial \nu u + \eta u, \Omega 
becomes an impedance obstacle with Robin type boundary condition where \nu denotes
the exterior unit normal vector to \partial \Omega and \eta \in L\infty (\partial \Omega ) signifies the corresponding
impedance boundary parameter. For unification of the notation, we write all three
types of boundary conditions as

B(u) := \partial \nu u+ \eta u = 0 on \partial \Omega ,(6.2)

where the cases that \eta = \infty and \eta = 0 stand for the Dirichlet and Neumann boundary
conditions, respectively.

The forward scattering problem (6.1) has been studied in [9, 27] and there exists
a unique solution u \in H1

loc(\BbbR 3\setminus \Omega ) fulfilling the following expansion:

us(x; k,d) =
eikr

r
u\infty (\^x; k,d) +\scrO 

\biggl( 
1

r2

\biggr) 
as r \rightarrow \infty ,(6.3)
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where u\infty is known as the associated far-field pattern or the scattering amplitude. The
asymptotic form (6.3) holds uniformly with respect to all directions \^x := x/| x| \in \BbbS 2.

The inverse obstacle scattering problem corresponding to (6.1) is to recover \Omega (and
\eta as well in the impedance case) by the knowledge of the far-field pattern u\infty (\^x; k,d).
By introducing an operator \scrF which sends the obstacle to the corresponding far-field
pattern, defined by the forward scattering system (6.1), the aforementioned inverse
problem can be formulated as

\scrF (\Omega , \eta ) = u\infty (\^x; k,d).(6.4)

It can be directly verified that the inverse problem (6.4) is nonlinear. The problem is
also known as the Schiffer problem in the inverse scattering theory, which has had a
long and colorful history since M. Schiffer's pioneering 1960 work [20]. It constitutes
an open problem whether one can establish the one-to-one correspondence for (6.4) by
a single far-field pattern or a finite number of far-field patterns (namely with a fixed
pair of k and d or a finite number of the pairs k and d). We refer to a recent survey
paper [10] by Colton and Kress for more discussions about the historical developments
of this fundamental problem.

Some significant progress has been made recently about the Schiffer problem when
the unknown obstacles are of general polyhedral type in \BbbR n, n \geq 2. Uniqueness and
stability results can be found in [1, 6, 7, 8, 13, 14, 15, 16, 21, 23, 24, 25, 26] by
using a finite number of far-field patterns. Particularly, the unique determination for
impedance-type obstacles was studied in [26] for a partial solution to this fundamental
problem. Very recently in [5], we have developed a completely new method that
is applicable for sound-soft, sound-hard, and impedance type obstacles to provide a
solution to the inverse obstacle problem in the two-dimensional space. We have shown
that in a rather general scenario one can determine the convex hull of an impedance
obstacle as well as its boundary parameter by at most two far-field patterns by utilizing
this new approach. In this section, we apply the spectral results established in the
previous sections to study this fundamental issue, namely to recover the obstacle and
its surface impedance in \BbbR 3. We shall first obtain some local uniqueness results for the
inverse problem since the method developed here is completely local. Nevertheless,
if the underlying obstacles are further assumed to be convex, the local uniqueness
results imply the global uniqueness results. Moreover, we would like to point out that
in deriving those unique determination results, we need to introduce certain restrictive
conditions on the underlying polyhedral obstacles. One such condition is contained
in the following admissibility definition.

Definition 6.1. Let \Omega \subset \BbbR 3 be an open polyhedron associated with the gen-
eralized impedance boundary condition (6.2). Then \Omega is said to be an admissible
polyhedral obstacle if the following conditions are fulfilled:

\bullet On each face of \partial \Omega , the surface impedance \eta is either a constant (possibly
zero) or \infty .

\bullet For any vertex of \Omega that is intersected by n planes: \Pi 1,\Pi 2, . . . ,\Pi n, n \geq 3,

there exists a plane \Pi j := \{ 
 -  - \rightarrow 
OAj ,

 -  -  -  - \rightarrow 
OAj+1\} , where O denotes the vertex locating

at the origin.
 -  - \rightarrow 
OA\tau = (r, \theta \tau , \phi \tau ) for r > 0, \theta \tau \in (0, \pi ), and \phi \tau \in (0, 2\pi ) in

a spherical coordinate system such that P 0
n(cos \theta \tau ) \not = 0 and P 1

n(cos \theta \tau ) \not = 0,
where \tau = j, j+1, n \in \BbbN , P 0

n , and P 1
n are the associated Legendre polynomials.

Remark 6.2. By noting the fact that P 0
n(1) \equiv 1, P 1

n(1) \equiv 0 when \theta = 0 for all
n \in \BbbN , and the continuity of the associated Legendre polynomials, one easily knows
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1288 XINLIN CAO, HUAIAN DIAO, HONGYU LIU, AND JUN ZOU

that there exists \delta 0 > 0 such that for any \epsilon > 0 and \theta \in (0, \delta 0), P
0
n(cos \theta ) \in (1 - \epsilon , 1)

and P 1
n(cos \theta ) \in (0, \epsilon ), which in turn imply the existence of \theta \tau in Definition 6.1.

Therefore, the aforementioned admissible polyhedral obstacle is well defined.

Remark 6.3. In view of section 5, in Definition 6.1, the surface impedance \eta can
be relaxed so that it is either an analytic function (possibly zero) or \infty ; see also
Remark 6.12 in what follows.

Throughout this section, we signify an admissible polyhedral obstacle as (\Omega , \eta ).
Then we define the rational and irrational obstacle in \BbbR 3 based on Definition 4.2 for
the rational and the irrational vertex corner of \Omega .

Definition 6.4. Let (\Omega , \eta ) be an admissible polyhedral obstacle. If there exists a
rational vertex corner, then it is said to be a rational obstacle. If all the vertex corners
of \Omega are irrational, then it is called an irrational obstacle. The smallest degree of the
rational corner of \Omega is referred to as the rational degree of \Omega .

Definition 6.5. \Omega is said to be an admissible complex polyhedral obstacle if it
consists of finitely many admissible polyhedral obstacles. That is,

(\Omega , \eta ) =

l\bigcup 
j=1

(\Omega j , \eta j),

where l \in \BbbN and each (\Omega j , \eta j) is an admissible polyhedral obstacle. Here, we define

\eta =

l\sum 
j=1

\eta j\chi \partial \Omega j
.

Moreover, \Omega is said to be irrational if all of its component polyhedral obstacles are
irrational; otherwise it is said to be rational. For the latter case, the smallest degree
among all the degrees of its rational components is defined to be the degree of the
complex obstacle \Omega .

Next, we give the unique determination result for an admissible complex irrational
polyhedral obstacle by at most two far-field patterns.

Theorem 6.6. Consider a fixed k \in \BbbR + and two distinct incident directions d1

and d2 from \BbbS 2. Let (\Omega , \eta ) and (\widetilde \Omega , \widetilde \eta ) be two admissible complex irrational obsta-
cles, with u\infty and \widetilde u\infty being their corresponding far-field patterns and G being the

unbounded connected component of \BbbR 3\setminus (\Omega \cup \widetilde \Omega ). If u\infty and \widetilde u\infty are the same in the
sense that

u\infty (\^x; k,d\ell ) = \widetilde u\infty (\^x; k,d\ell ) for \ell = 1, 2 and all \^x \in \BbbS 2,(6.5)

then (\partial \Omega \setminus \partial \widetilde \Omega )\bigcup (\partial \widetilde \Omega \setminus \partial \Omega ) cannot possess a vertex corner on \partial G. Moreover,

\eta = \widetilde \eta on \partial \Omega \cap \partial \widetilde \Omega .(6.6)

Proof. We prove the theorem by contradiction. Assume that (\partial \Omega \setminus \partial \widetilde \Omega )\bigcup (\partial \widetilde \Omega \setminus \partial \Omega )
has a vertex corner xc on \partial G. Then, xc is located at either \Omega or \widetilde \Omega . Without loss
of generality, we assume that xc is a three-dimensional vertex corner of \widetilde \Omega , which
also indicates that xc lies outside \Omega . Let h \in \BbbR + be sufficiently small such that
Bh(xc) \Subset \BbbR 2\setminus \Omega ; then we can suppose for n \geq 3 that
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Bh(xc) \cap \partial \widetilde \Omega = \Pi i, i = 1, 2, . . . , n,

where \Pi i are the n planes lying on the n faces of \widetilde \Omega that intersect at xc.

Recall that G is the unbounded connected component of \BbbR 3\setminus (\Omega \cup \widetilde \Omega ). By (6.5)
and the Rellich theorem (cf. [9]), we know that

u(x; k,d\ell ) = \widetilde u(x; k,d\ell ), x \in G, \ell = 1, 2.(6.7)

Since \Pi i \subset \partial G, i = 1, 2, . . . , n, combining (6.7) with the generalized boundary condi-

tion (6.2) on \partial \widetilde \Omega , it is easy to obtain for n \geq 3 that

\partial \nu u+ \widetilde \eta u = \partial \nu \widetilde u+ \widetilde \eta \widetilde u = 0 on \Pi i, i = 1, 2, . . . , n.

Furthermore, since Bh(xc) \Subset \BbbR 2\setminus \Omega , we have  - \Delta u = k2u in Bh(xc). We divide our
remaining proof into two separate cases.

Case 1. Suppose that either u(xc; k,d1) or u(xc; k,d2) is zero. Without loss of
generality, we assume that u(xc; k,d1) = 0. By the assumption of the theorem that\widetilde \Omega is an admissible irrational obstacle, we know that xc is an irrational vertex corner
of \widetilde \Omega , which also implies that there exist \Pi i0 and \Pi i0+1 such that the corresponding
intersecting dihedral angle is irrational. Hence, by our results in sections 3 and 4, we
can immediately derive that

u(x; k,d1) = 0 in Bh(xc),

which in turn yields by the analytic continuation that

u(x; k,d1) = 0 in \BbbR 3\setminus \Omega .(6.8)

In particular, one has from (6.8) that

lim
| \bfx | \rightarrow \infty 

| u(x; k,d1)| = 0.(6.9)

But this contradicts the fact that follows from (6.3):

lim
| \bfx | \rightarrow \infty 

| u(x; k,d1)| = lim
| \bfx | \rightarrow \infty 

\bigm| \bigm| eik\bfx \cdot \bfd 1 + us(x; k,d1)
\bigm| \bigm| = 1.(6.10)

Case 2. Suppose that both u(xc; k,d1) \not = 0 and u(xc; k,d2) \not = 0. Set

\alpha 1 = u(xc; k,d2) and \alpha 2 =  - u(xc; k,d1)(6.11)

and

v(x) = \alpha 1u(x; k,d1) + \alpha 2u(x; k,d2) \forall x \in Bh(xc).(6.12)

It is easy to verify for n \geq 3 that v fulfills

 - \Delta v = k2v in Bh(xc) and \partial \nu v + \widetilde \eta v = 0 on \Pi i, i = 1, 2, . . . , n.(6.13)

Moreover, by the choice of \alpha 1 and \alpha 2 in (6.11), it is obvious to see that v(xc) = 0.
Hence, by our results in sections 3 and 4, we deduce that

v = 0 in Bh(xc),
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and thus

\alpha 1u(x; k,d1) + \alpha 2u(x; k,d2) = 0 in \BbbR 3\setminus \Omega (6.14)

by the analytic continuation. However, since d1 and d2 are distinct, we know from [9,
Chapter 5] that u(x; k,d1) and u(x; k,d2) are linearly independent in \BbbR 3\setminus \Omega . There-
fore, from (6.14) we can obtain that

\alpha 1 = \alpha 2 = 0,(6.15)

which contracts the assumption at the beginning that both \alpha 1 and \alpha 2 are nonzero.
It remains to prove (6.6), and we do it by contradiction. Let \scrE \subset \partial \Omega \cap \partial \widetilde \Omega be an

open subset such that \eta \not = \widetilde \eta on \scrE . By taking a smaller subset of \scrE if necessary, we
can assume that \eta (respectively, \widetilde \eta ) is either a fixed constant or \infty on \scrE . Clearly, one
has u = \widetilde u in \BbbR 3\setminus (\Omega \cup \widetilde \Omega ). Hence it holds that

\partial \nu u+ \eta u = 0, \partial \nu \widetilde u+ \widetilde \eta \widetilde u = 0, u = \widetilde u, \partial \nu u = \partial \nu \widetilde u on \scrE .(6.16)

Combining with the assumption that \eta \not = \widetilde \eta on \scrE , we can deduce by direct computing
that

u = \partial \nu u = 0 on \scrE ,(6.17)

which in turn yields by the Homogren's uniqueness result (cf. [25]) that u = 0 in
\BbbR 3\setminus \Omega . Therefore, we arrive at the same contradiction as that in (6.9), leading to the
conclusion (6.6).

Theorem 6.6 presents a local uniqueness result by showing the lack of an irrational
vertex corner. If the underlying admissible complex irrational obstacles are convex,
we can obtain a global unique identifiability result by two far-field patterns as follows.

Corollary 6.7. Consider a fixed k \in \BbbR + and two distinct incident directions

d1 and d2 from \BbbS 2. Let (\Omega , \eta ) and (\widetilde \Omega , \widetilde \eta ) be two convex admissible complex irrational
obstacles, with u\infty and \widetilde u\infty being their corresponding far-field patterns and G being

the unbounded connected component of \BbbR 3\setminus (\Omega \cup \widetilde \Omega ). If u\infty and \widetilde u\infty are the same in
the sense that

u\infty (\^x; k,d\ell ) = \widetilde u\infty (\^x; k,d\ell ) for \ell = 1, 2 and all \^x \in \BbbS 2,(6.18)

then
\Omega = \widetilde \Omega , \eta = \widetilde \eta .

Proof. Since \Omega and \widetilde \Omega are both convex, due to the Krein--Milman theorem [28],
we know that a convex polyhedron is fully determined by the set of its vertices. Now
we prove by absurdity. If \Omega \not = \widetilde \Omega , it is obvious that there exists a vertex corner xc

on \partial G, where G is the unbounded connected component of \BbbR 3\setminus (\Omega \cup \widetilde \Omega ). Following
the similar argument in Theorem 6.6, by the condition (6.18), we can arrive at the

contradictions (6.10) or (6.15). Therefore, we can prove that \Omega = \widetilde \Omega . The conclusion
\eta = \widetilde \eta can be obtained by using the similar argument in Theorem 6.6.

We proceed to consider the unique determination of rational obstacles. By Def-
initions 4.2 and 6.4, we know that a rational obstacle contains at least one rational
vertex corner. Recalling the results in sections 2 and 3, for a fixed rational vertex
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corner xc which is intersected by \Pi i, where \Pi i = span\{ 
 -  - \rightarrow 
OAi,

 -  -  -  - \rightarrow 
OAi+1\} with the n dihe-

dral angles \angle (\Pi i,\Pi i+1) = \alpha i \cdot \pi , i = 1, 2, . . . , n (n \geq 3), it is direct to verify that the
eigenfunction u to (1.1) of the form

u(x) = 4\pi 

\infty \sum 
n=0

n\sum 
m= - n

inamn jn(
\surd 
\lambda r)

\sqrt{} 
2n+ 1

4\pi 

(n - | m| )!
(n+ | m| )!

P | m| 
n (cos \theta )eim\phi 

satisfies that a00 = 0 if u(xc) = 0, where x = (x1, x2, x3) = r(sin \theta cos\phi , sin \theta sin\phi ,
cos \theta ) \in \BbbR 3, \lambda is the corresponding eigenvalue, Pm

n (t) denotes the associated Legendre
function and jn(t) signifies the nth spherical Bessel function. Since \alpha i \in (0, 1) for any
i = 1, 2, . . . , n, one can immediately obtain that a\pm 1

1 = 0; see Theorems 2.9, 3.1, and
3.3 for detailed discussions. Moreover, if we denote

 -  - \rightarrow 
OAi = (r, \theta i, \phi i) for r > 0, \theta i \in (0, \pi ) and \phi i \in (0, 2\pi )(6.19)

in the spherical coordinate system, then there always holds that P 1
1 (cos \theta i) =  - sin \theta i \not =

0. However, since P 0
1 (cos \theta i) = cos \theta i, we know that P 0

1 (cos \theta i) \not = 0 is only true for
\theta i \not = \pi 

2 , and thus a01 = 0. That is, the eigenfunction u vanishes at least to the second
order when \theta i \not = \pi 

2 , and u vanishes at least to the first order otherwise.
Let \Omega be a polyhedron in \BbbR 3 and xc be a vertex corner of \Omega . Then we introduce

for r \in \BbbR + that \Omega r(xc) = Br(xc) \cap \BbbR 3\setminus \Omega and define for any f \in L2
loc(\BbbR 3\setminus \Omega ) that

\scrL (f)(xc) := lim
r\rightarrow +0

1

| \Omega r(xc)| 

\int 
\Omega r(\bfx c)

f(x) dx

if the limit exists. It is easy to see that if f(x) is continuous in \Omega \epsilon 0(xc) for a sufficiently
small \epsilon 0 \in \BbbR +, then \scrL (f)(xc) = f(xc).

Now we are ready to study the unique determination of rational obstacles.

Theorem 6.8. Consider a fixed k \in \BbbR + and two distinct incident directions d1

and d2 from \BbbS 2. Let (\Omega , \eta ) and (\widetilde \Omega , \widetilde \eta ) be two admissible complex rational obstacles
of degree p \geq 3, with u\ell (x) := u(x; k,d\ell ) and \widetilde u\ell := \widetilde u(x; k,d\ell ) being their corre-
sponding total wave fields associated with the incident field eik\bfx \cdot \bfd \ell , and u\infty (\^x; k,d\ell )
and \widetilde u\infty (\^x; , k,d\ell ) being their corresponding far-field patterns for \ell = 1, 2. We fur-

ther write G for the unbounded connected component of \BbbR 3\setminus (\Omega \cup \widetilde \Omega ). Then the set

(\partial \Omega \setminus \partial \widetilde \Omega )\cup (\partial \widetilde \Omega \setminus \partial \Omega ) cannot possess a vertex corner on \partial G if the following conditions
are satisfied:

u\ell ,\infty (\^x; k,d\ell ) = \widetilde u\ell ,\infty (\^x; k,d\ell ), \^x \in \BbbS 2, \ell = 1, 2,(6.20)

\scrL (u2 \cdot \nabla u1  - u1 \cdot \nabla u2) (xc) \not = 0 and \scrL (\widetilde u2 \cdot \nabla \widetilde u1  - \widetilde u1 \cdot \nabla \widetilde u2) (xc) \not = 0(6.21)

for all vertices xc of \Omega . Moreover,

\eta = \widetilde \eta on \partial \Omega \cap \partial \widetilde \Omega .(6.22)

Proof. We prove the theorem by contradiction. Assume that (6.20) holds but

(\partial \Omega \setminus \partial \widetilde \Omega )\cup (\partial \widetilde \Omega \setminus \partial \Omega ) has a vertex corner xc on \partial G. Without loss of generality, we still

assume that xc is a vertex corner of \widetilde \Omega . In what follows, we adopt the same notation
as those introduced in the proof of Theorem 6.6.
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By following an argument similar to the proof of Theorem 6.6, one can show that
there exist n pieces of planes \Pi i \subset \partial G intersecting at xc such that \partial \nu u+ \widetilde \eta u = 0 on
\Pi i, i = 1, 2, . . . , n. Using the fact that u = \widetilde u near xc, we derive by the Rellich lemma
and the condition (6.21) on (\widetilde \Omega , \widetilde \eta ) that

u(xc; k,d2) \cdot \nabla u(xc; k,d1) - u(xc; k,d1) \cdot \nabla u(xc; k,d2) \not = 0.(6.23)

Clearly, this implies that \alpha 1 := u(xc; k,d2) and \alpha 2 =  - u(xc; k,d1) cannot be iden-
tically zero. Let v be the same combination as introduced in (6.12); then we can
directly verify that v fulfills (6.13) and

v(xc) = 0 and \nabla v(xc) \not = 0.(6.24)

Noting that \widetilde \Omega is a rational obstacle of degree p \geq 3, we know that \Pi i, i = 1, 2, . . . , n,
intersect at either an irrational vertex corner or a rational vertex corner of degree
p \geq 3. In either case, we see by our results in sections 2, 3, and 4 that v vanishes at
least to second order at xc if \theta i \not = \pi 

2 in (6.19) for i = 1, 2, . . . , n. Hence, there holds
that \nabla v(xc) = 0, which is a contradiction to (6.24). Following a similar argument
in the proof of Theorem 6.6, if \eta \not = \widetilde \eta , one can directly verify that (6.16) and (6.17)
still hold. Therefore, (6.22) can be derived directly by using Homogren's uniqueness
principle.

Remark 6.9. In the proof of Theorem 6.8, we may illustrate the vanishing order
of u by the normal derivatives in Taylor expansion. That is, the conditions that
v(xc) = \nabla v(xc) = 0 imply that v vanishes at xc at least up to the second order.
Indeed, this is equivalent to the vanishing condition that a00 = a\pm 1

1 = a01 = 0 for the
coefficients of u in the spherical wave expansion, which follows readily from the main
theorems of sections 2 and 3 under the condition that \theta i \not = \pi 

2 for i = 1, 2, . . . , n.

Remark 6.10. The uniqueness results and the corresponding argument in Theo-
rems 6.6 and 6.8 are ``localized"" around the corner xc based on the spectral results
in sections 2 and 3. This provides a novel and very effective analytical approach to
study inverse scattering problems. Similar to Corollary 6.7, if the underlying admis-
sible complex rational obstacle is convex, then it can be uniquely determined by two
far-field patterns under the same generic conditions as those in Theorem 6.8.

Remark 6.11. We would like to point out that the condition (6.21) can be fulfilled
under certain generic conditions on \Omega . For instance, if the obstacle \Omega is sufficiently
small compared with the wavelength, namely k \cdot diam(\Omega ) \ll 1, then it is known from
the physical point of view that the scattered wave field due to the obstacle is of a
much smaller magnitude than the incident field, and thus the incident plane wave
dominates in the total wave field u = ui + us. Under this circumstance, (6.21) can
be verified directly. Condition (6.21) can hold in more general scenarios, but we shall
not explore this technical issue further in the present paper.

Remark 6.12. We would like to point out that by using the results in section 5,
Theorems 6.6 and 6.8 equally hold for the case that the surface impedance \eta is a
(variable) analytic function; see also Remark 6.3.

Acknowledgment. The authors would like to express their gratitude to the two
anonymous referees for many constructive comments and suggestions, which have
led to significant improvements on the results as well as the presentation of the
paper.
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